
Journal of Artificial Intelligence in Electrical Engineering, Vol. 2, No. 8, March 2014 

 

40 

 

 

Nonlinear H
 Control for Uncertain Flexible Joint Robots 

with Unscented Kalman Filter 
 

Roya Elsa
1
, Mohammad Esmaeil Akbari

2
 

 
1,2

Department of Electrical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran 

 

Email: r-elsa@iau-ahar.ac.ir 

Email: M-akbari@iau-ahar.ac.ir 

 

 

ABSTRACT  

Todays, use of combination of two or more methods was considered to control of systems. In this paper is 

presented how to design of a nonlinear H∞ (NL-H∞) controller for flexible joint robot (FJR) based on bounded 

UKF state estimator. The UKF has more advantages to standard EKF such as low bios and no need to 

derivations. In this research, based on spong primary model for FJRs, same as rigid robots links position are 

selected as differential equations variables. Then this model was reformed to HNL  differential equations. 

The results of simulations demonstrate that mixed of HNL  controller and UKF estimator lead to 

conventional properties such as stability and good tracking. Also, Simulation results show the efficiency and 

superiority of the proposed method in compare with EKF. 

 

      1. INTRODUCTION 

The control of link position for flexible 

manipulators is considered by control 

researchers [2]. This problem for rigid 

manipulators was solved in several 

approaches. But, for flexible robots which 

have uncertainties and disturbed input signal, 

there is no any suitable solution.  Flexibility in 

this type of robots is emerged by mechanical 

elements. In most applications of flexible 

manipulators, for reach to simple controller, 

supposed which robot is rigid [2]. While this 

assumption is a preventive to fine control of 

link position, and also can generate unwanted 

behavior such as vibration. Nowadays, for 

controlling of new applications such as space 

manipulators, mechanical hands and human 

coworker robots which must be controlled 

high precision, rigid assumption can not 

become useful for flexibility description [3]. 

For many last years, using of harmonic drivers 

for backlash reduction was a usual method. 

This gearbox has the high stiffness 

characteristic, so that generates flexibility in 

robots manipulator's joint. This type of robots 

called Flexible Joint Robot (FJR) . The 

differential equations of FJR more complex 

than rigid's equations. Also, feedback 

linearization is not useful in this case (FJRs). 

In recent years, several researchers have 

proposed several approaches to control of FJR 

robots. These methods can be split to, two 

major groups, linear and nonlinear controllers. 

The other problem is uncertainties in FJR's 

describer parameters, such as unbalancing and 

asymmetrically , mass and length  tolerances , 

nonlinearity of harmonic drive stiffness  and 

other parameter changing in mechanical parts, 

that might generated with lapse [1,4]. 

To counter this problem, researchers were 

proposed a type of controllers, which called 

robust controller. These controllers are 

resistant against uncertainties and disturbance.  
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Nonlinear H  (NL- H ) controller is one of 

the best robust controllers, because that has 

nonlinear structure [6]. NL- H  needs for full 

state of controlled system, therefore, for using 

of that must be prepared all internal states [5].  

In FJRs, states are related to links and 

actuators position and velocities. More 

instrument equipments are need for measuring 

of full states. On the other hand, equipment 

addition can created complexity in mechanical 

structure . In practical applications can 

reduced number of sensors by using of state 

estimators. 

Kalman Filter (KF) for estimating of states in 

linear systems is usual. But that is not 

convenient to FJRs, because FJRs have 

nonlinear behaviors and nonlinear equations. 

Extended Kalman Filter (EKF) and Unscented 

Kalman Filter (UKF) are proposed for 

nonlinear systems such as FJR robots [12]. 

EKF cannot use for high precision control, 

because that has the extra bios, when as UKF 

with less bios and don't use of local 

linearization has more performance to EKF 

[8]. 

This paper has the four sections. In section 2, 

we have a discussion about FJRs equations. 

Then in section 3 uncertain nonlinear systems 

and preliminary of NL- H  controller are 

studied. The UKF with five sigma points is 

perused in next section. At the final section, 

NL- H  controller with UKF state s estimator 

are simulated on the single link FJR. For 

achieving to good tracking and least error of 

tracking with least overshooting at step 

response by NL- H  , penalty coefficients for 

link position and tracking error states are 

selected nonzero and also   link position as 

measured output entered to UKF block.  

 

2. UNCERTAIN NONLINEAR 

SYSTEMS 

Based on spong primary model for FJRs, same 

as rigid robots links position are selected as 

differential equations variables. Moreover, 

actuators position as new variables are added 

to exiting variables. Hence, FJRs equations for 

n-links manipulator have 2n (n number of 

links) variables. Let  nii ,...,2,1:   show the 

i’th link position and nini ,...,2,1:   show the 

i’th actuator position. Q  is the vector of  links 

position and actuators position as below: 

 1 2 1 2 3 2 1 2 1 2, ,..., , | , ,..., , ,
TT T T

n n n n n nQ q q          
    

 (1) 

 

 

where 1q  is the vector of links position and 2q  

is the vector of  actuators position. Based on 

above assumptions, spong was proposed FJRs 

model as follows [9]: 
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(2) 

 

 

 

where I   is the links inertia matrix, J  is 

motors inertia matrix, C  is the vector of all 

gravitational, centrifugal and Coriolis torques 

and u  is the input vector torques. In this 

model we suppose stiffness of the i’th joints 

( niki ,...,2,1:  ) has linear behavior such as 

linear spring. Thus, they can be created the 

diagonal positive define matrix K . 

3.  
HNL  CONTROLLER  

Suppose states of nonlinear plant are ready 

and those describe by following equations: 

)()(

)()()(

)()()()(

2
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Where nRtx )( is the state with 0)0( x , 

sRtz )( is the penalty output to be regulated. 

pRty )( is the measured output. mRu is the 

control input, and denotes the plant 

disturbance f (x), h1(x), h2(x), l1(x),g1(x) and 

g2(x) are all known smooth mappings defined 

in X  with f (0) = 0. 

to simplify the analysis and to provide a 

reasonable expression of the controller, we 

make the following assumption about the 

nonlinear plan : 

 

2

1

)()(

0)()(

Rxlxl

xlxh

T

T




 

 

(4) 

 

 

 

Where 2R  is a constant and nonsingular. Then 

control law can be written as follow: 

)(xku   

IN THIS EQUATION )(xk  is a smooth function 

which satisfying 0)0( k . 

This controller has two aimds, closed loop 

stability and to attenuate effect of external 

disturbances to penalty outputs ( )(tz ). Closed 

loop stability means that the plant at 0u  with 0w  

is asymptotically stable, And  the disturbance 

attenuation means that the external 

disturbances are locally attenuate by a real and 

positive number such as   if there exists a 

neighborhood  X  of the point  0)0( x  that 

satisfies blow condition: 

 

 

T T

TT dssdsddsszsz
0 0

2 )()()()(   

 

(5) 

 

 

 

 

to solve the HNL  problem, the Hamiltonian 

function is formed as below: 

1 2

2 22

( , , , ) ( ( )

( ). ( ). )
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( ( ) ( ). )

2

T

aH x p d u p f x
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Under assumption (6), the above Hamiltonian 

function can be written as follows: 

1 2

1
( , , , ) ( ) ( ) ( )

2

1
[ ( ) ( )] [ ]

2

T T
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T T

H x p d u p f x h x h x
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   

 

 

 

(7) 

 

 

where ),( 2
2

RIdiagR  and pgd T
12

* 1


  and 

pgRu
T
2

1
2

*   are selected as optimal inputs. 

Then with x
T

Vp   equation (7) become as 

following: 

 

0)(
2

1

2

1
)( 2

1
222

11
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x

T

x
T

x VgRg
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VhhxfV


 
(8) 

 

 

if there exist a positive define function such as 

)(xV  which satisfies above differential 

equation (8), then the control signal law can be 

written as following: 
T
x

T
VxgRu )(2

1
2
  

 

 

4. UKF STATE ESTIMATOR 

In the nonlinear systems often aren't available 

some states, or measuring of those are 

difficult. Usual at this type of systems, state 

estimators can be useful. Kalman filter (KF) as 



Roya Elsa, Mohammad Esmaeil Akbari: Nonlinear Control for Uncertain Flexible Joint Robots with Unscented...  
 

43 

 

a state estimator is used at linear systems. But 

KF hasn't good performance at systems with 

high nonlinearity. Instead, Extended Kalman 

Filter (EKF) can be useful for state estimating 

at such systems. But, EKF often has a high 

level bias for nonlinear systems. For solving 

this problem, a new approach for state 

estimating was proposed. Unscented Kalman 

Filter (UKF) is same new approach. UKF has 

several performance to EKF such as, low bios, 

don't need to derivations. Also this type 

estimator can be useful for work points which 

are farther from 0x . Suppose discrete time 

equation of the nonlinear plant is as below: 

kkk nXY 

                  v ) U, F(X    X kkk1k  
(9) 

 

Where kX  is state vector, kU  is input vector 

and kY  is measured output vector. kv  and kn  

are process and measuring noise, which 

assume are Gaussian noise. Standard UKF has 

the algorithm as follows: 

Initial with: 

 

    00
ˆ XEX     ;     









T
XXXXEP 00000
ˆˆ  

  For      ,....,2,1k  

 

Calculate Sigma points: 
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Time update: 
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c
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6:   1|1| 
 kkkk

XHY  

7:  



 

n

i
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m
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2

0

1|,
ˆ  

v
R = process noise covariance 

Measurement updates equations: 
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10: 1
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11:    kkkkk yyKXX ˆˆˆ  

12: T
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kk ˆˆ
   

n
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Algorithm 1: Standard UKF algorithm 

Where UKF parameters define as below: 

)0   nW
m  

)1() 2
0   nW
c  

)}2{1  nW
c
i

  

ni 2,...,2,1  

)}2{1  nW
m
i

 

ni 2,...,2,1  

 

 

(10) 

                                                                                                                                                                                                                              

                                                                                                                                                                      

and scaling parameters are nn  )(2   and 

)(   n . 

In the above parameters   is a positive 

constant, which define sigma points distance 

from operating point ( 11 4  e ), and   is 

the second scaling constant.   is disturbance 
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constant ( 2  is optimal value for Gaussian 

noise). 

5. STATE SPACE/ FJR / MODELING 

In this research a HNL  controller is 

designed to attenuate disturbance and 

uncertainties effects and also having good 

tracking. Signal error is selected 

as  
t

d dxxe
0

1 )(  , and also state vector 

as  eqqqqx 2211
 . So FJR space state 

equations can be written as follows: 

 

 
d
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
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


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

also, penalty function is preferred as 

 TxQxh 50000)(  . Usually in practical 

manipulators driver (DC motor) dynamic has a 

high frequency pole, which its effect can be 

canceled and only mk , bk , R  are spotted at 

final equations. Therefore, final equations are 

written based on below figure: 

 

Fig.1. n-link FJR with n DC motors 

To control FJR manipulator with )(xku  law 

is deeds for whole states of plant. In this 

research, it is supposed that measurable output 

is only link position vector ( 1x ), that 

means 1xy  . So the other states must be 

obtained using of the UKF state estimator as 

figure (2). 

 

 
Fig.2. n-link FJR HNL  controller with UKF 

estimator 

5x  isn’t an internal state of FJR. So UKF only 

creates 4331 ,,, xxxx  vectors, based on FJR 

equations without 5x  .  

    6.   ILLUSTRATION EXAMPLE 

to verify the efficiency of the discussed method , that 

simulated on the single-link FJR.  

Space state equation of single-link FJR as 

follows: 

d
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


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

 

link, DC motor and UKF estimator parameters 

are shown in Tables 1,2,3.  

Table1. Arm parameters and tolerances 

Parameters Nominal values Tolerance 

Mass M=1 5% 

Joint stiffness K=100 12% 

Length L=1 3% 

Gravity  coefficient g=9.8 1% 

Inertia I=1 4% 

Motor inertia J=1 3% 

Table2. DC Motor parameters and tolerances 
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Parameters Nominal values Tolerance 

Coil resistance r=10 ohm 4% 

Coil inductance l=0.1 H 5% 

Torque constant km=9 3% 

Back emf constant kb=1 3% 

Friction constant B=.1 15% 

   

Table3. UKF estimator parameters 

Parameters  values 

  2 

  1 

  0 

n  4 

So, we have: 
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and also penalty vector is selected as 

following: 

u

x

x

z .
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0

0

0

300

0

0

0

60

2/1

5

1







































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





                (11) 

 

in (11), 160x  reduces step response overshoot 

and  5300x  guarantees fast response to step 

command. It is well known, there is no 

analytically solution for control signal law in 

general for HNL  , so that is calculated by 

numerical approach [7] order to 3 based on 
]3[

31. .Qu xQx . 

 Results of simulation are shown at figures (3-

7). At the all simulations, results of state 

measuring are compared with state estimating 

by UKF estimator.   

 

 

 

Fig .3.step response '180dx  by HNL    

 

 
 

Fig .4.signal control '180dx  by HNL    

 

 

 

Fig .5.step response '90dx  by HNL  and HL   
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Fig .6.signal control '90dx  by HNL  and HL   

 

 

Fig .7.response to )sin(
10

txd
  by HNL   

 

Fig .8.signal control to )sin(
10

txd
  by HNL   

 

Effects of modeling uncertainty and external 

disturbances were processed. The simulations 

results are shown figs (9-12). Figure 9, shows 

tip position of link by measuring and in figure 

10 by using UKF estimator. Disturbance effect 

was simulated by using step and sin form 

disturbances so that inputs command was 90' 

with 2 second delay.   
 

 

Fig .9.Response to '90dx  by HNL with 

%20MM  

 

Fig .10.Response to '90dx  by HNL with 

%20MM  

 



Roya Elsa, Mohammad Esmaeil Akbari: Nonlinear Control for Uncertain Flexible Joint Robots with Unscented...  
 

47 

 

Fig.11.Response to '90dx  by HNL with step 

form disturbance, mN
df

.1  

 
Fig.12. Response to '90dx  by HNL with sin 

form disturbance, )sin(1 .
tf

mN
d   

Figures (3 -12) show that combination of  

HNL  and UKF estimator have ability to 

control of uncertain and distributed nonlinear 

system. 

6. CONCLUSIONS 

In this paper a UKF estimator was proposed 

for robust control of n-link FJRs by HNL . 

The UKF has several performance to EKF 

such as, low bios, don't need to derivations. 

The results of simulations show that  

composite of HNL  controller and UKF 

estimator have ability to stable and control of 

such systems which have disturbance and 

uncertainties effects and also having good 

tracking. 
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