
Journal of Artificial Intelligence in Electrical Engineering, Vol. 2, No.7, November 2013

24

Using Program Slicing Technique to Reduce the Cost of Software
Testing

Asghar Mohammadian 1, Bahman Arasteh 2
1Department of Computer Engineering, Ilkhchi Branch, Islamic Azad University, Ilkhchi, Iran.

Email: asgharmohammadian@gmail.com
2Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

ABSTRACT
Systems of computers and their application in the lives of modern human beings are vastly expanding.
In any kind of computer application, failure in computer systems can lead to a range of financial and
mortal losses. Indeed, the major origin of software failure can be located in designing or
implementing software. With regard to these statistics, 30% of the software projects have been
prosperous and successful. The proposed method is intended to reduce the cost and time of testing and
it focuses on enhancing the efficiency of software testing methods. In this paper, we investigated the
effect of slicing techniques on the reduction rate of testing cost and time. The results of experiments
show that we can cover a large number of program instructions, branches and paths by a small
number of test cases in the sliced program.

KEYWORDS: Software testing, Cost, Program slicing, Coverage

1. INTRODUCTION

Systems of computers and their
application in the lives of modern human
beings are vastly expanding. The citizens of
the global village, witness new aspects and
facets of computer systems in their routine
lives. Hence, information technology and
software systems are increasingly involved
in our lives. Various industrial, military
applications of computers, applications in
communications and transportations are
evidences of their use in our lives.

In any kind of computer application,
failure in computer systems can lead to a
range of financial and mortal losses. As a
case in point, in the new millennium,
computers play significant roles in a vast
range of applications from air traffic
navigation systems, nuclear reactors, aircraft

systems, sensor networks, industrial
processing systems and medical
instruments. Hence, the computer systems
which are used in such important and
critical systems should have remarkable
dependability and reliability. The capability
of a software system can be defined in terms
of dependable and reliable services and
applications.

The results of the conducted
experiments in the computer and software
literature indicate that a 25-percent increase
in the complexity of issues results in a 100-
percent complexity of the related
programming and the number of program
lines. For instance, the number of code lines
of a software used inside a modern
automobile is approximately 19000 lines
and in the navigation software of airplane
systems a few hundred thousand lines of

Asghar Mohammadian, Bahman Arasteh: Using Program Slicing

25

codes might be used. Error occurrence in the
software systems of critical applications
might lead to un-returnable and un-
rectifiable losses [1, 16, 17].

Indeed, the major origin of software
failure can be located in designing or
implementing software. Table 1 illustrates
the percentage of successful and
unsuccessful software projects in the year
1996 and Table 2 shows the same statistics
on the status of software projects in the year
2000 [1, 8, 9 ,10, 11, 16]. With regard to
these statistics, 30% of the software projects
have been prosperous and successful [8, 10,
11, 16].
 It should be noted that the issues and
concepts which are related to software error
should be considered in the software
production phase. The financial and mortal
losses resulting from software failure
motivates and forces the software producers
to sort out and resolve the errors in the
process of producing software and after the
code is produced, they try and experiment
the software to locate and resolve the errors.
Thus, it can be argued that spotting out the
errors and enhancing the dependability and
reliability of software is of high
significance.

Table 1. The percentage of successful and
unsuccessful software projects in the year 1996

Software Projects Status 1996
Cancelled Challenged Successful

31% 53% 16%

Table 2. The percentage of successful and
unsuccessful software projects in the year 2000

Software Projects Status 2000
Cancelled Erroneous Successful

28% 49% 28%

2. THE OBJECTIVES OF THE STUDY

The objective of conducting this
research study is to propose methods for
testing and evaluating application software.
The proposed method is intended to reduce
the cost and time of testing and it focuses on
enhancing the efficiency of software testing
methods. As the results of the related studies
have revealed, the different parts and
components of a program have effects on
the amount and quality of the software
output. Hence, in the proposed method, the
inputting program will be first analyzed and
those parts which impact the results will be
identified; as a result, only some parts of the
program code for carrying out operations
will be selected. Thus, testing only the
effective arts of the program will reduce
the required time and cost. An important
issue which should be considered is that the
program should be both statically and
dynamically analyzed in order to identify
the effective parts of the program and
conduct technical tests.

Inasmuch as the code sizes are usually
massive and overwhelming and there are
complex relationships among program
commands, dynamic analysis of the
program is considered to be complicated
and difficult. The method proposed in this
study can help improve the following
variables:
 Saving the required time for the testing

process
 Saving the required costs for the testing

process

Journal of Artificial Intelligence in Electrical Engineering, Vol. 2, No. 7, November 2013

26

3. REVIEW OF THE RELATED
LITERATURE

The size of data in an organization can

be an index of the complexity of software
systems and applications. Data size has
rapidly increased during the past forty years
[1]. Software quality is a software feature
which refers to the consistency and
compatibility of the software with the
operational needs; also, it can also be
defined as the well-defined efficiency of the
software and should be in line with
standards of development [2]. Many
instances of software failure can be found
where the failure leads to critical and
undesirable conditions and situations.
Software is regarded as the unobservable
part of a system and this invisibility of the
software enhances its importance in terms of
reliability. Software reliability can be
considered as a process of executing a
program to find its errors [2]. The following
issues are considered in software testing:

 What aspects of software are
considered and analyzed in software
testing?

 How much time is required for
software testing?

 How much does it cost to test and
evaluate a software?

It is assumed that using a software test
which covers and analyzes most parts of the
software code can locate and find more of
the software errors; as a result, software
testers can find more accurate results and
findings about software reliability.
However, with regard to the input intervals
of a software, it should be argued that
implementing a comprehensive test even on
a software including only 100 code lines
calls for overly vast amounts of time and

cost. In many recent studies, this issue has
been regarded as a research challenge for
researchers. Testing those softwares which
are related to safety-critical applications
might cost three, four or five times as much
money as the entire production cost of other
softwares. The complete and comprehensive
testing of the different aspects of a software
can be seldom realized.

Some researchers contend that they
should reduce and limit the number of tested
features and aspects so that the test cost can
be reduced [8]. The main drawback of this
testing method is that the degree of covered
errors in this method will be limited and
hence the number of discovered errors will
be significantly smaller. The studies [5, 7, 9]
used some methods in which program
controlling graphs were used to produce test
features. These studies highlighted the
significance of node coverage and edge
coverage. Using control graph and its
coverage as a test criterion facilitates the
production of test data. Also, this method
can be used for testing the designing stages
of a software.

The method proposed in [6] covers and
tests the conditional commands and
branches of a program. However, the main
shortcoming of this method is that the errors
related to the other blocks of the program
(non-conditional commands) cannot be
discovered. The method proposed in [10,
11] reduces the testing time, so that the time
and cost involved in testing can be
controlled and reduced. In this method, an
attempt is made so that the degree of error
coverage would not be reduced.

The studies reported in [12, 13] used
discovery methods to minimize the time and
cost of testing. Using discovery methods to
produce test data will lessen the time and

Asghar Mohammadian, Bahman Arasteh: Using Program Slicing

27

cost of software testing. The method
proposed in [14] evaluates the degree of test
efficacy. In this paper, error coverage rate
and the required time have also been
considered. The study reported in [15]
considers coverage criterion as a criterion
for examining the testing techniques.

With regard to the above-mentioned
studies, it can be maintained that coverage
rate, testing time and cost have been
examined and considered as the variables
and testing criteria in all of the software
testing methods. In the method proposed in
this study, the magnitude of the
effectiveness of the different blocks and
sections on the program output are analyzed
so that the different blocks and functions of
a software can be classified. In the method
which has been offered and examined in this
paper, those parts of the program which
have no impact on the program output are
identified in a two-phase process and hence
they will be excluded from testing. Indeed,
the testing process will be implemented on
the sensitive and effective parts of the
program. This method will determine the
degree of the effectiveness of the different
parts on the program output and then it will
focus on and emphasize covering and
analyzing the vulnerable aspects of the
program. In other words, according to the
proposed method, covering the sensitive and
effective commands and data, rather than
covering all commands and data
indiscriminately will result in time reducing
and controlling the time and cost which are
involved in the program testing process.

4. PROPOSED METHOD

As mentioned in the literature review,
much time consumption, high cost and low

efficiency are regarded as generic
shortcomings of the commonly used
methods for software testing. Hence,
developing efficient, low-costing and
automatic methods of software testing is
considered to be a research challenge of this
area. In the present study, an attempt was
made to develop an efficient, fast and low-
costing method and the method was
designed to have as high coverage as
possible for application software. To
minimize and lessen the testing cost, the
proposed method analyzes the input
portions of the program and hence finds
those sections which have an effect on the
program output. As a result, the testing
operation will be carried out on only those
effective section which have been identified.

In line with the purpose of the study, the
proposed method focuses on those arts of
the program which have significant impact
on its output. Those parts of the program
code which are not directly involved in
program output are eliminated from the
testing process. As regards the
identification of those sections which
influence the program output, both of the
following methods will be used:

 Static analysis of the program
 Dynamic analysis of the program

In the first phase, the code of the input

program will be statistically examined and
analyzed. In this phase, those parts of the
code which have no effect on the program
output should be statically and syntactically
identified.

Accordingly, the parts and code which
are related to the qualitative needs of the
program will be removed. Hence, as the size
of the code is reduced in this way, testing

Journal of Artificial Intelligence in Electrical Engineering, Vol. 2, No. 7, November 2013

28

time and cost will also decrease. However,
since the first phase of the program was
done statically and analytically, only some
of the ineffectual parts of the program could
be identified. Thus, it can be argued that
after the static analysis of the program, a
significant amount of ineffectual still
remains in the program. Therefore, the
second phase of the proposed method makes
use of the dynamic technique identifies the
remaining parts of the code which have no
effect on the output.

The purpose doing the second phase is
to dynamically examine the different parts
of the program code and spot out those

parts which were left unidentified. When
compared with static analysis, the dynamic
approach can locate significantly more
ineffective parts of the code. It should be
noted that the reason for using the static
analysis before the dynamic analysis is that
the dynamic analysis requires much time
due to the need for running the program;
hence, using the static analysis before the
dynamic analysis can save some time.
Figure 1 below represents the schemata of
the proposed method.

SlicingProgram
Dynamic
Analysis

Input data

Proposed Method

Effectual instruction of
the input program

Testing the
program

Input data

Figure.1. Schemata and blueprint of the proposed method for reducing test cost

Indeed, it should be mentioned that
only those commands which have an impact
on program output are kept in the program
and the other commands are eliminated.
Therefore, in the second phase of the
method which focuses on the dynamic
behavior of the program, some other parts of
the program will be removed.

Finally, throughout the two phases of
the method, the ineffectual parts of the
program will be eliminated and the result
will be a simplified version of the program.
The simplified version is equal to the main
program. Thus, the time and cost involved
with the simplified version will be in turn
less than those of the main program.

Slicing a technique is used to identify
program commands which calculate a series
variables at a certain point of the program.
Slices are produced based on the slicing
criterion. The slicing criterion is in turn
determined based on the arranged pair (v,
n). V refers to a series of variables and n is a
node in the control graph of the program. In
the program slicing, graph nodes of a
program such as p which are not able to
change the value of V variables are removed
so that a slice p can be produced with regard
to (v, n). Figure 2 shows an original
program and Figures 3 and 4 show its slices
based on different variable.

Algorithm find_max_min()

Asghar Mohammadian, Bahman Arasteh: Using Program Slicing

29

1) {
2) b = a[0];
3) s = a[0];
4) for (i =0; i<=max ; i++)
5) {
6) if(b < a[i])
7) b= a[i];
8) if(s > a[i])
9) s =a[i];
10) }

13) }

Figure. 2. The source code of a program for
finding the max and min of a list

 As the Figure 2, 3 and 4 illustrate, the
program calculates the values of the highest
and lowest elements of an array and saves
the results in b and s; with regard to the
output, the related slices include the main
parts of the program and the related
calculations.

Algorithm find_max_min()
1) {
2) b = a[0];
3) for (i=0;i<=max ; i++)
4) {
5) if(b < a[i])
6) b= a[i];
7) }

9) }

Figure.3. Sliced version of program in Fig. 2
based on variable b

Algorithm find_max_min()
1) {

2) s = a[0];
3) for (i =0; i<=max ; i++)
4) {
5) if(s > a[i])
6) s =a[i];
7) }
8)

 9) }

Figure.4. Sliced version of program in Fig 2
based on variable s

The program lines are numbered to
recognize the program nodes and the used
slices. These figures illustrate the effect of
slicing on determining the effective
calculations of the output. Static backward
slicing has been used in this figure [18].

Using the program slice rather than the
main program reduces the degree of
program complexity. Hence, with regard to
the available commands and data in a
program slice, the number of tests will be
accordingly reduced. As a case in point, the
control flow graph of the programs in
Figure 2 and Figure 3 shown in Figure 5. If
node coverage is considered as the test
requirement, then we need three test data (2,
1, 3) for covering all nodes in the original
program. Indeed, these three test-data lead
to execute all instructions in the original
program. Whereas original program needs
three test-data, the sliced program needs
only two test-data (1, 2) to cover all
instruction. As a result, the number of test-
data for testing the sliced program is lower
than the number of test-data for the

Journal of Artificial Intelligence in Electrical Engineering, Vol. 2, No.7, November 2013

30

4

3

2

1

5

6

4

5

3

2

6

7

1

8

b) CFG of the sliced program a) CFG of the original program
TR: {1, 2, 3, 4, 5, 6,}
Test case: a[]={1, 2}

TR1: {1, 2, 3, 4, 5, 6, 7, 8}
Test case: a[]={2, 1, 3}

Figure.5. The control-flow graphs for the original and sliced version and the corresponding test
cases for covering instructions

4

3

2

1

5

6

4

3

2

1

5

6

b) Executable path2 which covers
{(2,3),(3,5),(5, 2),(2,6)}

a) Executable path1 which covers
{(2,3),(3,4),(5,2),(2,6)}

TR = {(2,3) , (2,6), (3,4), (3,5)}
Test case a[] = { }

Figure. 6. The paths in the sliced program and the corresponding test cases for branch coverage

1 Test Requirements

Asghar Mohammadian, Bahman Arasteh: Using Program Slicing

31

corresponding original program. Testing a
program with a small number of test data
will decrease the time and cost of software
testing. Testing sliced program rather than
the original program will decrease the cost
and time of software testing.

Figure 6 (a) illustrates the required test
cases for the branch coverage in the original
program and sliced program. Regarding the
control-flow graph of the original program,
the input array should be initialized with {2,
1, 3}. Figure 6 (b) illustrates the designed
test case for covering the branches of the
sliced program. If the input array is
initialized with the {2, 1}, all the branches
in the sliced program will be covered. Thus,
the number of required test case for
covering branches in the sliced program is
lower than the number of required test case
for the original program. As a result, testing
a sliced software have lower cost and time
than the original software.

4. EXPERIMENTS AND RESULTS

This section presents the results of
experiments that have been conducted to
evaluate the effectiveness of the proposed
method in the reduction percentage of
testing cost. A set of four different
programs were used in the experiments. We
developed two different versions of each
program. The original program is the first
version and the slice of the same program
using the Amorphous Slicing technique is
the second version. The following
programs, all written in the C programming
language, have been employed in the
experiments:

 Matrix multiplication (MM): a classic
matrix multiplication algorithm is used
to multiply to 10*10 matrixes.

 Bubble sort (BS): an efficient version of
the bubble sort algorithm is used to sort
a list of 100 integer elements.

 Binomial Coefficient (BC): a bottom-up
dynamic algorithm is used to compute
the binomial coefficient for value n and
k.

These programs were compiled by the
GCC compiler. The node, branch and path
coverage are taken into consideration in the
experiments. The required test data has
been generated randomly with unified
distribution. Indeed, a same test-set was
used for testing original and sliced
programs. Regarding the results of
experiments, using the same number of test
data in the sliced program have higher
node, branch and also path coverage.
Attaining 100% coverage in the slices
program needs a lower number of test data
and consequently lower time than the
original program. Figure 7 illustrates the
effect of slicing technique on the reduction
of the number of test-cases and
consequently on the reduction of cost and
time.

In our experiments, the behavior of the
main (original) program is equal to that of
the program slice. Therefore, running the
testing process will on the slice will require
a lower number of test data. In case one can
cover large parts of the program by fewer
numbers of test cases and test data, the
testing cost will hence be reduced. This is
done here via the slicing technique.

Journal of Artificial Intelligence in Electrical Engineering, Vol. 2, No. 7, November 2013

32

5. CONCLUSIONS

 In this paper, we investigated the effect
of slicing techniques on the cost and time of
software testing. The results of experiments
show that we can cover a large number of
program instructions, branches and paths by
a small number of test cases in the sliced
program. Indeed, using slicing techniques

in the software-testing process will decrease
the number of required test cases and
consequently the cost and time of testing
will be decreased.

a)Testing MM program with 20 randomly
generated data

b)Testing BS program with 15 randomly
generated data

c)Testing BC program with 20 randomly
generated data

Figure.7. The amount of node, branch and path coverage in the original and sliced program with the same test cases

REFERENCES

[1] Handbooks of Software Reliability

ISBN 0 -07-039400-8, IEEE-CS
Press, 1995.

[2]

copyright 2005.
[3] Total Variance Approach to

Software Reliability Estimation
Trans.SoftwareEngineering,Vol.22,
No.9,1996,pp.687-688.

[4] P. Popic, D. Desovski, W. Abdelmoez, and B.
Error Propagation in the Reliability

Analysis of Component Based Systems
Symposium. Software Reliability Eng.,pp.53-
62,2005.

[5] B. Software Testing Techniques
Second Edition. New York: Van Nostrand
Reinhold, 1990.

[6] How Many Paths
Are Needed for Branch Testing

Systems and Software, vol. 35, no. 2, pp. 95-
106, Nov. 1996.

[7] P.G. Frankl and E An Applicable
Family of Data Flow Testing Criteria
Trans. Software Eng., vol. 14, no. 10, pp. 1483-
1498, Oct. 1988.

[8] Reducing and
Estimating the Cost of Test Coverage Criteria

 Software Eng. (ICSE 18),
pp. 486-494, Mar. 1996.

[9] Selecting
Software Test Data Using Data Flow
Information , vol.
11, no. 4, pp. 367-375, Apr. 1985.

[10] G. Rothermel, M.J. Harrold, J. Ostrin, and C.
Empirical Study of the Effects of

Minimization on the Fault Detection
Capabilities of Test Suites
Software Maintenance, pp. 34-43, Nov. 1998.

[11] W.E. Wong, J.R. Horgan, S. London, and A.P.
Effect of Test Set Minimization on

Fault Detection Effectiveness th

Asghar Mohammadian, Bahman Arasteh: Using Program Slicing

33

Conf. Software Eng. (ICSE 17), pp. 41-50, Apr.
1995.

[12]

-Hill,
1995.

[13] D. Corne, M. Dorigo, and F. Glover, editors.
New Ideas in Optimization McGraw-Hill,

1999.
[14] A. Mockus, "Test Coverage and Post-

Verification Defects: A Multiple Case Study", In
the 3rd International Symposium on Empirical
Software Engineering and Measurement, ESEM
2009.

[15] Is Coverage a Good Measure of
Testing Effectiveness
engineering ETH Zurich, CH-8092 Zurich,
Switzerland.

[16] System Software Reliability
Springer Series in Reliability Engineering,
ISBN 0 -07-039400-8, Springer-Verlag London
Limited 2006.

[17] o Software

PRESS, ISBN 978-0-521-88038-1, 2008.
[18] The semantic approach

to program slicing -PLAN
Conference on Programming Language Design
and Implementation, pages 26, 1991.

[19] B. Korel, J. Rill Dynamic program slicing
methods
Technology special Issue on Program Slicing,
volume 40, pages 647, 1998.

[20] Conditioned program
slicing
special Issue on Program Slicing, volume 40,
pages 595, 1998.

[21] Inter-
procedural slicing using dependence graphs
ACM Transactions on Programming Languages
and Systems, 1990.

