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Abstract 
The main risks of arising from the using fossil fuels can be referred to environmental pollution, the 

effects of greenhouse gases, climate change and acid rain.  For this reason, efficient use of energy in 
economic development has always been considered as an important goal of sustainable development. 
In this study, the effects of time-varying electricity prices in the energy storage components 
performance is examined for a HRES in network by settings FLC based on optimization. The modeling 
results indicate that the performance of energy storage devices on the network HRES strongly affected 
by the price of the electricity grid as well as applying the capacity of the FLC is essential for this kind 
of data. Optimized FLC results have shown better performance compared to non-optimized 
counterpart have with applied settings for both daily and weekly operating period. The findings of this 
study indicate that the FLC optimize is better when is used on the HRES network according to the 
forecast periods shorter, in other words, prediction short-term results will conducive to the best 
performance on more accurate prediction of the data and settings of FLC for more than one day. 

Keywords: electric energy storage, hybrid networks, renewable energy, fuzzy controller optimization 
algorithm 

1. Introduction 

Consumption of fossil fuels such as oil 
and gas as energy sources prevailing in the 
country will be caused to provide 
irreparable damage to humanity. To the 
extent that excessive use of these resources 
will increases the amount of water vapor, 
carbon dioxide and toxic gases such as co 
and so2 [1]. With increasing amount of 
carbon dioxide into the atmosphere, the 
Earth's temperature increases. 

 A large amount of solar energy on 
shorter wavelengths, which can pass of the 
Earth's atmosphere and absorbed these 
pollutants, the earth appears thermal 
radiation when the earth takes the heat 
from sun, but the energy of the earth is in 
long wavelengths and is absorbed to 

carbon dioxide, this phenomenon will lead 
to the increasing temperature in the Earth's 
surface. The main risks of ascending from 
the applying fossil fuels can be referred to 
environmental pollution, the effects of 
greenhouse gases, climate change and acid 
rain. For this reason, efficient applying of 
energy  

In economic development has always 
been considered as an important goal in 
sustainable development. The solar energy, 
wind energy and geothermal energy, etc. is 
recommended to avoid the impact of these 
disadvantages of renewable energy or the 
energies compatible with environment 
such as. 

2. Materials and Methods 

2.1 Shuffled Frog Leaping Algorithm 
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SFL algorithm is based on super 
innovative population has been designed to 
follow a global optimal solution by 
intelligent heuristic Search using a 
heuristic function. This is implemented in 
evolution of done behavioral patterns by 
global interaction and exchange of 
information among the population [2]. 
Although population-based evolutionary 
and genetic adhere to the same basic 
principles, they look to the degree that the 
variation mechanisms have been used for 
disseminating one member’s information 
of population to other different members. 
Population-based evolution is very flexible 
mechanism is. Ideas between all people in 
the population are transition while 
interactions are allowed only in genetic 
algorithm (GA) as a parenthesis.  

Table 1 FLC rules to manage energy storage 
components performance for on-grid HRES 

bi convP − hP Price SOC dp 

N P L L N 
N Z L M N 
Z Z L H N 
Z P H L N 
Z P H M N 
Z Z H H N 
N P L L Z 
Z Z L M Z 
Z N L H Z 
Z P H L Z 
Z Z H M Z 
P P H H Z 
Z Z L L P 
Z N L M P 
P N L H P 
Z Z H L P 
P P H M P 
P P H H P 

Pay attention to a group of leap-frog in a 
swamp. Swamp has a number of stones 
that frogs can move on it. The goal of these 
frogs is to find the stone with a maximum 
amount of food available as quickly as 
possible by improving behavioral patterns. 
Frogs can communicate with each other 
and can transfer their behavioral patterns 
(data transfer) to the other. 

 Improved results of behavior patterns 
are implemented only by adjusting the size 
of the mutation step in changing the 
position of frog. Leap Frog in the PSO 
algorithm is used as a tool local search and 
competition of ideas and information to 
move towards to global solution of leads 
Shuffled Complex Evolution algorithm as 
a parallel-local [3].  

 In these algorithms, unique frogs are 
very important and they are not considered 
as a host for memes and defined as an 
amemetic vector. Leap Frog's behavior 
improves and increases its performance 
towards the. Leap Frog is an extension of 
the process used in PSO. After a certain 
number of population-based evolutionary 
stages, the datum between meme 
complexes in a process caused to enhance 
the quality of memes, and then frogs 
transmitted from infected meme complex. 

 After the collision, the search is resumed 
for optimal solutions by using the 
information in independent meme 
complex. The local search process 
continues until a satisfactory convergence 
criterion happen [4, 5]. Convergence curve 
for PSO algorithm and leap-frog with 100 
repeats has been shown in Fig 2. 
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Fig. 1. Flowchart optimization method is designed in this study for FLC to manage 

performance energy storage components for on-grid HRES. 
 

Table 2 characteristic parameters of SFL algorithm [3, 5] 
Parameters Specifications amount 

m  The number of meme complex 30 
n  The number of frogs in the meme complex 17 
q  The number of frogs in the submemplexes 9 
N  The amount of memetic assessment before shuffling 17 

maxd  The allowed- size amount 100 

2.2 Statistical data for simulation 

For the simulation, a set of data has been 
recorded for three weeks is divided into 
two parts. The first two weeks as historical 
data has been used for forecasting data for 
the third week. The second part is the 
actual data in the third week what has later 
been used to investigate the effects of 
FLC-optimize operational on-grid HRES 
forecast data. A set of data recorded as 
hours for grid electricity price and 

electricity and environmental parameters 
has been used to simulate on-grid HRES in 
Ontario, Canada [6, 7], as shown in fig 3, 
the winter wind speed is variation. Note 
that for better representation of 
performance of the FLC about the price of 
electricity network is shown in fig 3, 
defines three levels of pricing are used 
including high range (above $ 0.06), 
medium range (0.06 to $ 0.04) and low 
range (below $ 0.04) for later analysis FLC 
performance for various prices conditions 
(Fig 4). 
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Fig. 2. Curve for the convergence of PSO and SFL algorithm: (a) day (forth-day) and (b) weekly 

downloads energy costs for on-grid HRES. 

 
Fig 3. Hourly Data [8] will be logged for a week for environmental parameters such as wind speed, 

solar radiation and ambient temperature and the price of electricity grid [9] and electricity. 

3. Results and Discussion 

The simulation results for energy storage 
devices has been presented in Table 3 
based on the network performance 

management HRES using the PSO 
algorithm and SFL algorithm in different 
states including non-optimized modes, 
weekly optimized and the daily optimized, 
HRES network is based on SFL algorithm.  
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Table 3. Comparing results of the simulation algorithm PSO; and SFL algorithm for FLC in 

conditions of non-optimized, weekly optimized and the daily optimized 
 

State Method SOC 
Average (%) 

( )ELJ kWh  ( )FcJ kWh  Weekly 
operational 

costs ($) 
Non- 

optimized-
FLC 

 
53.38 82.04 25.39 18.64 

Weekly 
optimized-

FLC 

PSO 57.05 42.87 23.15 16.67 

Leap Frog 58.33 40.65 22.73 16.16 

daily 
optimized-

FLC 

PSO 62.40 38.23 22.11 15.51 

Leap Frog 62.88 20.83 20.83 14.34 

 
It should be noted that 4th-day results 

have been selected and represents MF for 
use in daily FLC energy expenditure 
optimization. In all three non-optimized 
modes, weekly optimized and the daily 
optimized, HRES network is based on SFL 
algorithm presented in Table 4. 

The total operational energy costs during 
the last 7 days for FLC in conditions of 
non-optimized, weekly optimized and the 

daily optimized was 18.64, 16.16, 14.34 
dollars respectively. 

 As it stands, FLC in conditions of 
weekly optimized and the daily optimized 
has low costs, which are respectively 
13.3% and 23% compared to non-
optimized counterpart. 

 
 

 
Table 4. Comparing energy costs for FLC daily HRES network FLC in conditions of non-optimized, 

weekly optimized and the daily optimized based on leap-frog. 
Optimization 

mode 
Day 

 1 2 3 4 5 6 7 Total 
non-

optimized 
7.68 4.75 4.87 -2.67 0.55 -0.05 3.51 18.64 

weekly 
optimized 

7.22 4.21 4.57 -3.33 0.37 -0.12 3.22 16.16 

daily 
optimized 

6.84 4.19 4.54 -3.48 -0.30 -0.62 3.16 14.34 
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Fig 4. Net power inflow of grid-connected HRES for times: (+) for more power and (-) for lack of 
power. 

Net power flow has been presented in 
fig. 4 for the operation grid and satisfying 
the electricity. For the first three days, you 
need to buy energy from the grid (net 
inflow of negative power) because in this 
time period of wind speed has been 

considered low. Then, with increasing 
wind speed, production of wind power 
increases and net power flow in the grid 
utilization would be increased and selling 
energy has been done to the grid or 
storage.  

Fig. 5. The impact of network electricity prices in the exchange of FLC network daily optimized: (+) 
to purchase (-) to sale. 

Fig. 5 shows price impact of the power 
grid in the exchange of FLC network daily 
optimized for 0-48 hours,  To buy power 
from the grid in the range of medium and 

high price grid power is needed  due to 
negative net power flow (Fig 4-3) and lack 
of energy stored in the hydrogen storage 
tank (Fig 9).
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Fig. 6. Comparing operational performance of energy hourly storage management in connected-HRES 
network by FLC using stack battery power 

Fig. 7. Comparing operational performance of energy hourly storage management in connected-HRES 
network by FLC using fuel cell Power / electrolyzer 

Implement hourly operational Profile on 
the HRES network for stack batteries and 
fuel cell / electrolyzer is shown in Fig. 6 to 
Fig. 10 in conditions of non-optimized, 
weekly optimized and the daily optimized. 

As a result, compared with optimized 
FLC in conditions of non-optimized, 
weekly optimized and the daily optimized 
requires less operating time in battery 
stacks and fuel cell / electrolyzer, in other 
words, HRES network operating costs 
reduces (Table 2). 
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Fig. 8. Comparing operational performance of energy hourly storage management in connected-HRES 
network by FLC using SOC battery stack 

Fig. 9. comparing operational performance of energy hourly storage management by FLC in 
connected-HRES network in the level of hydrogen tank 

To meet the needs of short-term storage, 
as shown in Fig. 9 is shown, the average 
value of SOC is higher than non-optimized 
control modes and weekly optimized in 
conditions FLC daily optimized; in other 
words, the average battery SOC stack for 
FLC, operational period of 7 days, 

respectively, is 53.38, 58.33, 62.88 percent 
in conditions of non-optimized, weekly 
optimized and the daily optimized.  Fig. 9 
represents a hydrogen reservoir storage 
level over 7 days has been optimized on 
HRES practical network FLC in conditions 
of non-optimized, weekly optimized and 
the daily optimized.  
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Fig. 10. the effect of network disconnect in the first 4 days for FLC in condition of daily optimized on 
power grid and power storage devices 

When a network connection is created, it 
is usually due to weather conditions or 
other events occur, the operation of HRES 
network is converted to out of the network 
state (Independent of the network) and Fig. 
10 shows hourly profiles of the operational 
performance on the HARES network with 
being independent in the beginning of the 4 
day. While HARES network performance 
shown in Fig. 5 in the first three days is the 
same. 

Disconnect network effects and be 
delivered in time by HRES is shown in Fig 
(4-10). It is observed that despite the fact 
that prior to disconnection of network 
storage would be done; there is no loss of 
power delivery and load fully provided by 
the HRES network, However, after the 
network disconnection, load demand has 
been unmet in the hour of 75, 80, 81, 124-
127 where the system has been designed 

out of the network HRES and electricity 
shortages get severe during the last few 
hours on the seventh-day (152-168). Then, 
the SOC battery stack and the hydrogen 
storage levels are shown in fig. 12 and fig. 
13, by disconnecting from the network. 

 After the network disconnection, the 
stored energy is the only source to meet the 
load and there is negative net power flow, 
fluctuations has become more severe in the 
performance of storage devices (72-168 
hours) (Fig. 12 and Fig. 13) For Loss of 
Power Supply Probability (LPSP), In the 
event that it is possible that output is 
insufficient power supply, When HRES is 
not able to meet the demand in out of the 
network modes in [10], the optimal 
configuration is determined from HRES 
components. This configuration has been 
implemented based on the optimum size 
method presented in Reference [11] 
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Fig. 11. on-grid and off-grid HRES performance at the start of 4 days with daily optimized by delivery 
power FLC (production, storage and purchasing) and load power 

Fig. 12. The effect of network disconnect in the first 4 days for FLC in condition of daily optimized on 
the performance of HRES network storage devices in SOC battery stack 

Fig. 13 the effect of network disconnect in the first 4 days for FLC in condition of daily optimized on 
the performance of HRES network storage devices on the network HRES hydrogen tank 
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Table 5 comparing the costs of HARES for on-grid and off-grid configuration with optimal size 
Type On-grid HRES Off-grid HRES Price / Unit 

Wind Turbine 11kW 20kW 2500$/kW 
PV array 6kW 10kW 6000$/kw 
Fuel cell 8kW 10kw 3000$/kW 

Electrolyzer 8kW 8kW 2000$/kW 
Battery 10kWh 30kWh 200$/kWh 

Hydrogen Tank 100kWh 130kWh 30$/kW 
Converter 8kW 10kW 1000$/kW 

HRES Price 116,500 175,900 

4. Conclusion

In this study, the implications of time-
varying electricity prices based on the 
optimization are studied in the 
performance of energy storage components 
for HRES in a network by adjustments 
FLC. Leap Frog algorithm in order to 
optimize due to the better integration and 
lower operating costs, SFL algorithm 
compared to the algorithm PSO. 

 That is modeled for finding optimized-
MF values in FLC based on the in data 
forecasting for the period of daily and 
weekly operations. FLC-optimized results 
have respectively shown better 
performance with applied settings for both 
daily and weekly operating period 
compared to non-optimized counterpart. 
Optimizing FLC is leading to less volatility 
than average of SOC battery, which 
directly affects the battery life. The 
findings of this study indicate that FLC 
Optimizing is better when is used on the 
HRES network based on the shorter 
forecasting periods, In other words, short-
term results in more accurate prediction of 
expected data and regulation of FLC for 
more than one day will conducive to the 
best performance.  
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