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ABSTRACT 
We have examined the convergence behavior of the LSCMA in some simple environments. Algorithms 
such as Multi¬ Target CMA, Multistage CMA, and Iterative Least Squares with Projection can be 
used for this purpose. The results presented here can form a basis for analysis of these multi-signal 
extraction techniques. Clearly, the variance and distribution of output SINR obtained with the LSCMA 
is also an important area for investigation. We finally comment on the hard-limit non-linearity. For 
high SIR, the hard-limiter is the optimal non-linearity when the desired signal has a constant 
envelope. However, at low SIR other non-linearities can yield greater SIR gain. Thus, it is possible 
that non-linear functions other than the hard-limit can be used to develop blind adaptive algorithms, 
which converge faster for low initial SINR.  
 
 

1. INTRODUCTION 

The first CMA, to be proposed, was based 
on a Stochastic Gradient Descent (SGD) 
form [1]. The main drawback of this 
method is its slow convergence. A faster 
converging CMA similar in form to the 
Recursive Least Squares method is the 
orthogonal zed CMA [5]. Another fast 
converging CMA is the Least Squares CMA 
(LSCMA) [1-4], which is a block-update 
iterative algorithm. It is guaranteed to be 
stable and is easily implemented.  Despite 
the generally accepted use of the LSCMA, 
few analytical results on its convergence 
have appeared in the open literature. The 
performance of the algorithm has instead 
been demonstrated through Monte Carlo 
simulation. The lack of analytical results is 
due to the difficulty of analyzing the non-

linear CMA cost function. Existing work on 
the convergence behavior of CMA mostly 
deals with finding minima of the CMA cost 
function and finding undesirable stable 
equilibrium  in equalization applications. A 
notable exception is the work by Treichler 
and Larimore on convergence of SGD 
CMA in an environment containing two 
complex sinusoids [6-7]. Their work 
predicts the output power of each sinusoid 
in a temporal filtering application. The 
Analytic CMA (ACMA) algorithm 
presented by van der Veen in [8] should 
also be noted. This algorithm solves 
directly a set of beam former weight vectors 
that spatially separate a set of CM signals. 
The ACMA, although effective in many 
situations, is complex and its behavior with 
closely spaced and/or low SNR signals is 
not clear. For these reasons, it is 
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recommended in [8] that the ACMA be 
used to initialize the LSCMA, and that 
several iterations of the LSCMA be used to 
find the optimal solutions for the weight 
vectors. In this paper, we determine the 
convergence rate of the LSCMA in some 
simple environments, including: (1) high 
output SIR; (2) sinusoidal desired signal 
and sinusoidal interferer; (3) CM desired 
signal and CM interferer; (4) CM desired 
signal and Gaussian interferer. We assume 
that the interference is uncorrelated with the 
desired signal. The convergence rate is 
expressed in terms of the SIR improvement 
achieved with one iteration of the LSCMA. 
We first examine the situation where the 
LSCMA output SIR is high we show that if 
the interference is perfectly removable, 
each LSCMA iteration will increase the 
output SIR by approximately 6 dB. This 
result is valid for any CM desired signal 
(arbitrary angle modulation), and any 
uncorrelated interference. We next examine 
an environment containing two complex 
sinusoids, and show that the LSCMA output 
SIR can be predicted for each iteration. The 
results are analogous to those presented in 
[8-10]. An environment containing two CM 
signals, each having random phase, is then 
considered. It is shown that the average 
behavior of the LSCMA in this 
environment is similar to the deterministic 
behavior in the two-sinusoid environment. 
Finally, an environment containing a CM 
desired signal and Gaussian interference is 
examined.  

 
2. ANALYSIS FRAMEWORKS 

 
In this section we describe the general 
framework used to analyze the LSCMA. A 
key assumption is that the interference is 

uncorrelated with the desired signal. We 
essentially describe a simple way to 
measure the quality of the pseudo-training 
signal, d(n). If no background noise is 
present, the quality of the beamformer 
output y( n) will be identical to the quality 
of d(n). When background noise is present, 
the quality of y(n) is dependent on the 
quality of d( n) and the optimal output 
SINR. The optimal output SINR is in turn 
dependent on many factors, including the 
array geometry, the number of antennas, the 
number of incident signals, and the angle of 
arrival of each signal. The beamformer 
output signal at the kth iteration can be 
expressed, to within a multiplica¬tive 
constant, as  

 (1) 
Where s ( n) is the constant modulus desired 
signal, z( n) is noise and interference, and the 
SINR of the beamformer output is controlled by 
g. Both the desired signal s(n) and the 
interference z( n) have unit variance. The hard-
limiter output dk( n) will contain three 
com¬ponents: (1) one component which is 
correlated with the desired signal; (2) one 
component which is correlated with the 
interference; and (3), one component which is 
correlated with neither the signal nor the 
interference. This last component is the result of 
intermodulation. 
between the signal and the interference. We 
can express the hard-limiter output as 

(n)= =  (2) 

Where the scalars  
desired signal power and the interference 

intermodulation terms. We will now 
examine the relationship between the SINR 
in dk (n) and the SINR in the up¬dated 
beam former output y_(k+1). We initially 
assume that no background noise is present, 
and that the array has sufficient degrees of 
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freedom to completely remove the 
interference. Given these assumptions, the 
optimal beam former output SINR is 
infinite. These assumptions are clearly not 
realistic, but this helps provide insight into 
the behavior of the LSCMA. As the block 

W_(k+1)minimizes the MSE between 
y_(k+1)(n) and d_k (n), 

=  

 
(3) 

We can express the updated beamformer 
output as  

  (4) 
 

Which, together with (12), allows the MSE 
to be written as  

 

=   

(5) 

where we have made use of the fact that 

uncorrelated. Clearly the MSE is minimized 
 

signal component in the updated 
beamformer output will match the 
magnitude and phase of the signal 
component in the hard-limiter output. Thus 
the MSE betweend_k (n) and the updated 
beamformer outputy_(k+1) (n) is 
minimized when 

 
 

 
(7) 

cross-correlation of s(n) and z(n), 
respectively, with d(n). Note that 

(8)

=          (9) 
=                                                          (10) 
Similarly, we have 

                     (11) 
The SINR  in the hard-limiter output dk is 

             (12)        

since we model s( n) and z( n) as having 
unit variance. Thus, the output SIR of the 
up¬dated LSCMA weight vector can be 
determined from Rsd and Rzd. This 
requires that the probability density 
function (PDF) of the signal and the 
interference be known. To illustrate the 
concepts behind this analysis framework, 
we will apply the LSCMA to a simple 
environment containing two uncorrelated 
complex sinusoids. The array configuration 
consists of two antennas, with the 

is the carrier wavelength. One sinusoid, 
with a frequency of 5/1024, is incident from 
broadside to the array, which we define as 
0°. This sinusoid is treated as the desired 
signal. The second sinusoid, with a 
frequency of -31/1024, is incident from 
30 . This sinusoid is treated as the 
interfering signal. The amplitude of the first 
sinusoid is unity, and the amplitude of the 
second sinusoid is 0.9. The LSCMA is 
applied to this environment with the initial 
weight vector Wo = [ 1 0]. Thus the initial 
SIR is approximately -0.9 dB. The LSCMA 
block size N is set to 1024 samples. The 
periodogram of the initial beamformer 
output yo(n) is shown in Figure 1. The next 
step in the LSCMA is to hard-limit the 
beamformer output. The periodogram of the 
hard-limited beamformer output is shown in 
Figure 2. Note that the original sinusoidal 
frequencies are still present, along with 
intermodulation products. Also note that the 

 =  
 

 
(6) 
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relative amplitude of the desired sinusoid is 
now slightly higher relative to the 
interfering sinusoid. The exact change in 
relative amplitude is calculated later in 
Subsection 3.2. The next step in the 
LSCMA is to update the weight vector 
using the hard-limiter output in the same 
manner as a training signal. Figure 3 shows 
the periodogram of the updated beamformer 
output. As discussed earlier, the amplitude 
of each sinusoid in the updated beamformer 
output matches the amplitude of the 
corresponding sinusoids in the hard-limiter 
output. The intermodulation products are 
orthogonal to the signals present in the 
array data, and so have no effect on the 
weight update. It can be seen that the SIR in 
the updated beamformer output is 
approximately 3 dB higher than the initial 
SIR. 

 
Fig. 1.Periodogram of the initial beam 

former output for the simple two-sinusoid 
environment. The initial SIR of 0.9 dB is 
indicated by the dotted horizontal lines 

 

 
Fig. 2.Periodogram of the hard-limited 

beam former output for the simple two-
sinusoid environment. The SIR of 3.09 dB 
is indicated by the dotted horizontal line. 
Note that the calculation of SIR does not 
take into account the intermodulation 
terms. 

 

We now derive an expression for the 
output SINR of the updated LSCMA 
weight vector when background noise is 
present. This will be shown to be 
dependent only on the optimal output 
SINR, the initial SINR, and the SINR 
gain provided by the hard limit non-
linearity. The observed data is modeled 
as: 

 
Fig. 3.Periodogram of the updated beam 
former output for the simple two-sinusoid 
environment. The SIR of 3.09 dB is 
identical to the SIR in the hard-limiter 
outputs. 

 

When background noise is present, the 
interference and noise cannot be 
completely removed by beam forming. 
Independent thermal noise generated by 
each of the M receivers required for the 
M antennas in the array is a common 
source of background noise. The 
relationship between the SINR in 

and the updated LSCMA output 
SINR is then somewhat more 
complicated. We now derive an 
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expression for the output SINR of the 
updated LSCMA weight vector when 
background noise is present. This will be 
shown to be dependent only on the 
optimal output SINR, the initial SINR, 
and the SINR gain provided by the hard 
limit non-linearity. The observed data is 
modeled as 
                                 (13) 
Where a is the spatial signature of the 
desired signal and q( n) contains the 
noise and interference. We assume that 
Rqq is equal to the identity matrix. There 
is no loss of generality since whitening 
the data has no effect on the LSCMA. 
The cross-correlation vector Rxd is given 
by 
       Rxd                       (14) 
where W_0 is the initial weight vector, and 
c is the square root of the SINR gain, with 

      c  

The covariance matrix of the data is 
      
By the matrix inversion lemma 

                                    (16) 

 
where p is the optimal output SINR . The 
updated weight vector w_(k+1)is 
                                     (17) 

          = ( )( )      (18) 

          = ( )                       (19) 

The output SINR of the updated weight 
vector is 
                                (20) 

=       (21)

 
Since the initial SINR is 

                                           (22) 

the output SINR of the updated LSCMA 
weight vector can be written 

           (23) 

We argued earlier that the output SINR of 
the updated LSCMA beamformer is equal 
to the SINR in the hard limited signal dk ( 
n) if no background noise is present. It is 
straightforward to show that 
              (24) 

Which supports the argument made 
earlier. Also note that when c operation 
provides no gain, and                                
Here the output SINR of the updated 
weight vector equals the initial output 
SINR, as expected. In order for LSCMA 
to converge, the hard-limiter must 
emphasize the desired signal relative to 
the noise and interference. The effect of 
hard-limiting and other non-linear 
operations on communication signals 
and noise has been a topic of study 
since the 1950's, e.g., see [1-5] and 
references therein. A central motivation 
for this work is to understand the effect 
of non-linear amplifiers on 
communication signals, which are 
commonly used in satellite 
transponders. Non-linear processing has 
also been studied as a possible means 
for reducing the effects of noise and 
interference, e.g., [3-4]. These studies 
have clearly shown that hard-limiting 
and filtering a constant envelope signal 
will increase the SNR, even when the 
intermodulation components are 
considered. In fact, for a constant 
envelope signal, the hard-limiter 
becomes the optimal nonlinearity as the 
SNR tends to infinity [7-10]. 
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3. TWO COMPLEX SINUSOID 
ENVIRONMENT 
We now examine the behavior of the 
LSCMA in an environment where the 
antenna array receives two orthogonal 
complex sinusoids in the absence of 
background noise. We show that if the SIR 
at iteration k is known, the LSCMA output 
SIR can be predicted exactly for all later 
iterations. We also show that these results 
are a very good approximation with 
sinusoids having arbitrary, but well 
separated, frequencies. The results 
presented here are deterministic. Other 
results presented later examine the mean 
behavior of the LSCMA using a 
probabilistic framework. The beam former 
output signal obtained with the existing 
LSCMA weight vector is modeled as 

 
 

 

(25) 

 
where  = 2 /N for integer ki. The 
parameter  determines the relative power 
of the sinusoids. In (43), s(n) and z(n) 
represent the desired signal and the 
interferer, respectively. The amplitude of 
the desired signal in y(n) is assumed to be 
unity, which has no effect on the behavior 
of the LSCMA. Temporal cross-correlation 
of the desired signal,s(n), and the hard-
limiter output signal, d(n), is 

  =      (26)

 
Where . We note that since y is 
periodic, 1/  is also periodic and may 
therefore be expressed as a Fourier series. 
The period of 1/ is 2 / . The function 
is real and even, so the Fourier series is 
given by 
                (27) 

Where 
            

The Fourier coefficients given by (28) are 
independent of , which implies that the 
results to follow hold true for any 
frequencies  and , if these frequencies 
lead to orthogonal sinusoids. Substituting 
(27) into (26) yields 

 
=  

=                                                   (29) 
 
The Fourier coefficients  and  may be 
found using numerical integration. Using a 
similar approach for Zd  ,  the output SIR of 
the hard-limiter is 

              (30) 

and the SIR gain is 
 
                           (31) 

Figure4 shows the SIR gain (31) as a 
function of input SIR. Note that the SIR 
gain tends asymptotically to 6 dB as 
predicted by the high SIR analysis. 

The results presented in Figure 4 are 
now used to predict the output SIR of 
the LSCMA in an environment 
containing a sinusoidal desired signal 
and a sinusoidal interferer. A two 
element beam former is simulated with 
the inter-element spacing equal to one-
half the carrier wavelength, A. The 
desired signal is incident from broadside 
with amplitude of one, and the interferer 
is incident from 30° off broadside with 
amplitude of 0.9. The initial LSCMA 
weight vector is set to , so that the 
initial SIR +0.9 dB. The block size is 
1024 samples, with = 5/1024 and  = -
31/1024. Table 1 compares the predicted 
results.  
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Fig. 4.Improvement in SIR achieved by 
one iteration of LSCMA with sinusoidal 
desired signal and sinusoidal interferer. 

 

Figure .5.Amplitude of both complex 
sinusoids in the beam former output as a 
function of the number of LSCMA 
iterations. Solid line indicates predicted 
amplitude, '+' indicates amplitude 
measured in simulation. 

 
Measured output SIR at several 
iterations of the algorithm, which 
shows excellent agreement with theory. 
These same results are presented in an 
alternative manner in Figure5. This 
figure shows the amplitude of each 
sinusoid as a function of the number of 
LSCMA iterations. A similar figure, 
showing the behavior of the SGD CMA 
in an environment with two sinusoids, 
appears in [10]. 
 
 
 
 

Table 1.Comparison of predicted and 
measured LSCMA output SIR in an 
environment containing two complex 
sinusoids. 
 

Iteration Output SIR (dB) SIR Gain 

 Measured Theory  

0 0.915 0.915 - 

1 3.097 3.095 2.181 

2 7.195 7.193 4.099 

3 12.554 12.552 5.358 

4 18.390 18.388 5.837 

5 24.363 24.361 5.973 

6 30.372 30.370 6.009 

7 36.389 36.387 6.018 

8 42.409 42.407 6.020 

 

 4. CONCLUSIONS 

The convergence behavior of the Least 
Squares Constant Modulus Algorithm in an 
adaptive beam forming application is 
examined. It is assumed that the desired 
signal and the interference are uncorrelated. 
The improvement in output SIR with each 
iteration of the algorithm is predicted for 
several different signal environments. 
Deterministic results are presented for an 
environment containing two complex 
sinusoids. Probabilistic results are presented 
for a constant modulus desired signal with a 
constant modulus interferer and with a 
Gaussian interferer. The asymptotic 
improvement in output SIR as the output 
SIR becomes high is also derived. The 
results of Monte Carlo simulations using 
sinusoidal, FM, and QPSK signals are 
included to support the derivations. 
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