
Journal of Artificial Intelligence in Electrical Engineering, Vol. 5, No. 18, September 2016

11

Proposing an Efficient Software-Based Method for Enhancing the
Reliability of Critical Application Robot

Reza solhi
Department of Electrical Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran

Email:roboreza67@gmail.com

Abstract

Robots play such remarkable roles in humans’ modern lives that performing many tasks without them is
impossible. Using robotic systems is gradually increasing the tasks allocated to them and they are becoming
more complex and critical. Software reliability is one of the most significant requirements of robots. For
enhancing reliability, systems should be inherently designed to be tolerable of soft errors. In this study, via
software, a method was proposed to enhance the reliability of the software embedded within robots against
soft errors with minimum efficiency overhead. In as much as the research method was based on experiment,
a set of programs was used as benchmarks. Indeed, errors were injected at the execution time of programs
for evaluating them. The data related to the execution behavior of the programs were accumulated and then
were analyzed. Simplescaller simulation software was used for investigating program behavior in the
presence of the injected error. [2]

Keywords: soft error, inherent error toleration, software reliability, benchmark, error injection
.

1- Introduction

As a result of the development of robotic
systems in industry and their application in
human life, it is essential that the reliability of
such systems in terms of hardware and
software be investigated. As a case in point,
consider the reliability of the operations of an
ATM which is regarded as one of the obvious
requirements of modern life. Using inherent
error tolerance techniques, a robot, as an
advanced machine, can detect and discover
different types of errors. The software of a
robot can use inherent error tolerant features
to enhance the performance of the
system.[3].Indeed, an inherent error tolerant
system is a system which can perform its
tasks properly even at the presence of
software errors and hardware faults. Due to

the ever-increasing use of robots in different
aspects of modern human life, error tolerance
is considered to be a significant issue. For
enhancing the reliability of robotic systems in
safety-critical applications, numerous
software and hardware methods have been
proposed. Using hardware and software
redundancy is one of the typical methods for
enhancing reliability. It should be noted that
using hardware methods for enhancing the
reliability of robotic systems can lead to cost
increases, hardware changes and complexity.
In contrast, software methods can enhance
reliability and reduce hardware costs.

 The main shortcoming of software
methods used for enhancing the reliability of
robotic systems are software complexity and
efficiency overhead.

R.Solhi: Proposing an efficient software-based method for enhancing …

12

The method proposed in this study was
aimed at solving the problems of hardware
methods and other software methods.

The purpose of this study was to optimize
software reliability by utilizing inherent
features without using hardware and software
redundancy. In this method, programming
structures and memory classes of the program
data were investigated. Indeed, it should be
maintained that using programming
structures with low error vulnerability can
enhance the inherent reliability of the
program. Redundancy was not used in the
method proposed in this study. [4, 5]

2- Related works

In [21], the public tool for evaluating and
detecting errors in programs was used. An
executable claim is a command which
examines whether specific conditions are
maintained between the different variables of
a program? Since these commands are not
hidden from the programmer’s view and their
effect depend on the nature of program and
the programmer’s ability, they can result in
several problems.

Procedure duplication method was
introduced in [24]. In this method, the
programmer decides to repeat the majority of
the critical procedures and compares the
obtained results with one another. Code is
changed manually which leads to the
production of error [22]. The automatic
conversions method was introduced in [23]
which is based on data production and
redundancy. This method is done according
to conversions at the level of source code. In
this method, the first aim is realized by
duplicating each variable and adding

compatibility investigations after each
reading action. However, conversions
focusing on code repeat the commands of the
program. Then, after the main operations are
done and the program is repeated, the
compatibility of the executed commands is
investigated [6]. In [28], researchers
proposed a method for enhancing the
automatic reliability by revealing errors
through statistical analysis. Time overhead of
this method was more than 33%. In [30],
another software-based method was proposed
in 2000 which was aimed at enhancing the
reliability of software for application
programs; it had less than 20% time
overhead. In [31], researchers conducted
experiments on sensitive data in application
software and managed to increase reliability
with less than 20% time overhead.

A significant feature of software is that
about % of soft errors at the level of software
are covered without any impact on the output
of the program. The results of different
experiments in [22] revealed that different
methods of implementing a program have
significantly different impacts on the amount
of covering inherent errors by the software.
Hence, it can be maintained that by
investigating the structures and different
methods of implementing software, we can
identify methods which can inherently cover
more errors. Thus, the inherent reliability of a
program is a function of the implementation
method of it. As a case in point, by changing
data structures, algorithm and the
programming method, we can modify the
inherent reliability of a program with regard
to soft errors. In this paper, we focused on the
programming methods and studied their

Journal of Artificial Intelligence in Electrical Engineering, Vol. 5, No. 18, September 2016

13

impact on the inherent reliability of the
program [7].

3- Method

As argued above, different methods of
programming, different data definitions,
memory classes and the way of using data are
of high significance in the amount of covering
errors in a program and the inherent reliability
of program. In this study, the researchers
intended to enhance the inherent reliability of
program by only following simple principles.
It should be pointed out that redundancy was
not used in this study. Along this purpose, we
firstly investigated the degree of the impact of
different implementation methods by
carrying out an extensive set of experiments.
The method of defining data and memory
classes were examined. Indeed, the chief
objective was to enhance the inherent
reliability of program by properly defining
data and memory classes. The experiments
were conducted according to the following
stages:

Stage one: a program was implemented as
A benchmark on four different
implementation methods. In each method,
program data are defined based on a specific
method by using a memory class. Each
method describes the memory class. In the
first implementation, program data were
implemented by automatic memory class. In
the second method, the global memory class
was used for implementing program data. In
the third method, static memory class was
used. In the fourth method, register memory
class was used for implementing program
data. Indeed, five different programs were
implemented by means of four

implementation methods. A total of twenty
programs were used as benchmarks in the
experiments.

Stage two: the degree of the vulnerability
of each memory class was investigated. In
fact, by carrying out certain experiments, we
examined the impact of each memory class on
error coverage. In this way, we investigated
the reliability of each program. It should be
noted that the vulnerability of a program to
error refers to the impact of an error on the
output and behavior of the program. In a
program with high vulnerability, errors are
more likely to result in program failure.
Hence, reducing program vulnerability to
error can produce a condition where more
percentage of errors are covered in the
program. Consequently, it can be argued that
a program with low vulnerability can have
high reliability.

In this study, extensive experiments were
conducted for determining the vulnerability
of memory classes. It can be argued that in
case a program uses more hardware blocks at
the execution time which are vulnerable to
error, it will have low reliability. For instance,
registers and the queue of commands within
the processor are highly vulnerable to soft
errors. The executed commands were used as
benchmarks. Five programs were used in the
experimental environment and each program
included about 45% of the errors. This set of
experiments was defined from distributed
programs for vulnerable structure. In each of
these programs, memory classes were
designed via four methods and each of them
was produced by different behavior of the
parameters. These memory classes were
designed and implemented by vulnerable

R.Solhi: Proposing an efficient software-based method for enhancing …

14

classes. One of them is the memory class for
defining variable locally, globally, statically
and register. Variable definition is compared
in different methods for reducing vulnerable
structures in each program with different
parameters. The structure with the lowest
vulnerability can be used as the benchmark.
The first method was defined as the memory
class; the memory class of variables was
automatically allocated to the program
function. As the program exits the memory
filed, the respective variable is automatically
freed and its space is given back to the
system. In this class, for the sake of
comparison, the intended parameters are
used. In the global memory class which is
used in all functions, by comparing this
memory class with other memory classes,
parameters with different values are
produced. Then, the produced commands in
each program are selected. After that, the
commands are compared with one another
and their degrees of vulnerability are
compared with one another. [8, 9]

Static memory class is defined in an
accessible function and is used in the same
function. In this program, this memory class
was used without taking initial values. This
type of class is defined for local memory
class. Moreover, register memory class is
located within CPU registers and the speed of
doing operations is high which results in the
enhancement of the operation of program
speed. Also, this memory class is
implemented for local variables. For
comparing these programs, vulnerable
structure at the program level is reduced with
the lowest amount of memory class. The
behavior of each program with different

memory classes is different in the simple-
scalar environment. In this study, the
designed commands were compared with
each type of memory class at the program
output and diagrams were created for the
produced commands [23].

3.1. Benchmarks

The programs which were introduced as
benchmarks included the programs which
were written in C programming language.
These programs were designed for
benchmarking in the simple-scalar
environment with specific commands.
Desirable output in these programs included
five benchmarks which are described in the
following table.

Table .1. The specification of the benchmarks
used in the present study

Benchmark Specification Input variables
description range

Bubble sort Bubble
sorting of a

list of
numbers

Bubble sorting N=100

Factorial Factorial
calculation of

a number

Factorial of a
number

N=100

Tower of
Hanoi

Doing tower
of Hanoi

game

Calculating Hanoi
Tower

N=50

Fibonacci Calculating
Fibonacci

series

The sum of two
numbers produces
the next number

N=100

Matrix Matrix
multiplication

The size of each
row and column
of each element

N=10

3.2. Experimental instrument

The experiments were carried out in the
Simple-Scalar software for analyzing the
software reliability of the benchmarks.
Simple-Scalar is considered to be a functional

Journal of Artificial Intelligence in Electrical Engineering, Vol. 5, No. 18, September 2016

15

and practical instrument for simulating
programs. It was designed and established by
Todd Austin in 1994 which was expanded
later. Simple-Scalar consists of a set of robust
computer systems for simulation. Indeed,
Simple-Scalar software can simulate
functional programs with significantly high
precision and efficiency which can be used
for investigating the systemic structure and
architecture of modern processors.

In the present study, all the programs were
compiled in the Simple-Scalar software with
the benchmark of GCC. In other words, it can
be maintained that this software was used for
evaluating the performance of the proposed
method. The experiments were conducted
according to the following steps:

 At first, error-reduction blocks of each
program were detected by the proposed
method.

 Secondly, software-based errors were
injected into the programs via error
injection process. Then, the programs
were compiled in the simple-scalar
instrument by GCC.

 The programs were executed in the
simple-scalar instrument in the
simoutorder environment.

 Finally, the results of simulations were
obtained and analyzed.[10]

At the execution time, the vulnerability of a
program is stated based on the machine
commands and commands. It should be noted
that one of the main factors which reduces the
reliability of a software is its complexity. By
producing different software algorithms, the
reliability of a program can be enhanced.

4- Results

The results of experiments indicate the
impact of memory class of data on the
vulnerability of commands. It should be
noted that the proposed method was
investigated with regard to program
vulnerability in terms of soft error. Figure 1
illustrates load command in different
programs at the execution time.

Fig. 1. The rate of load commands in different
programs implemented with different memory

classes
The investigation of behaviors of different

executed programs in the simprofile
environment revealed that the programs
implemented with automatic and static
memory classes have the lowest degrees of
load commands, respectively. Figure 2
depicts the amount of store command in
different programs at the execution time.

0

5

10

15

20

25

30

Lo
ad

 R
at

e
(%

)

Benchmark

Automatic Global Static Register

R.Solhi: Proposing an efficient software-based method for enhancing …

16

Fig.2. Store command rate in different
implemented programs with different memory

classes
Investigating the behavior of the

implemented store command in the
simprofile indicated that the degree of
vulnerability of implemented programs to
soft error in local and global memory classes
were minimal. Hence, as the degree of
vulnerability decreases, the reliability of the
program to soft errors increases.

Different programs in the uncod branch
command for implementation are illustrated
in figure 3. As mentioned above, the lower
the degree of vulnerability to soft error, the
higher the reliability of implemented
programs in automatic and static memory
classes which have the lowest data,
respectively. For executing programs in these
two parameters, provided that memory
amount is low, the vulnerability decreases
and reliability increases.

Different programs in simprofile
environment with cond branch were
simulated for testing the reduction of
vulnerability to soft errors.

Fig. 3. Rate of uncond branch rate in different
implemented programs with different memory

classes

Fig.4. Cond branch command in different

implemented programs with different memory
classes

The vulnerability of the program in local
and global memory classes was lower than
other classes. Hence, it can be argued that the
degree of vulnerability to soft errors was
reduced and, consequently, reliability was
enhanced.

0

2

4

6

8

10

12

St
or

e
Ra

te
(%

)

Benchmarks

Automatic Global Static Register

0

1

2

3

4

5

6

7

un
co

nd
 b

ra
nc

h
Ra

te
I%

)

Benchmarks

Automatic Global Static Register

0

5

10

15

20

25

co
nd

 b
ra

nc
h

Ra
te

I(%
)

Benchmarks

Automatic Global Static Register

Journal of Artificial Intelligence in Electrical Engineering, Vol. 5, No. 18, September 2016

17

Fig.5. The rate of call diet in different programs
implemented with different memory classes

The comparison of figures 4 and 5 reveals
that simprofile command can reduce
vulnerability of the program to soft errors
more than call direct in the case of automatic
and static memory classes. As reliability of a
program decreases, its vulnerability to soft
errors increases. In other words, high rate of
call direct resulted in more vulnerability to
soft errors. The following figure depicts call
indirect command in different programs at the
execution time.

Fig.6. The rate of call indirect in different

programs implemented by different memory
classes

This figure shows the output of the
programs. The value of parameter in these
programs is low which means that reliability
has increased and vulnerability has
decreased. As shown in this figure, other
memory classes increase vulnerability to soft
errors; hence, reliability decreases. Also, the
following figure depicts heap segment
command in different programs.

Fig.7. The rate of heap segment rate in different

programs implemented by different memory
classes

Fig.8. Sim_ipb rate in different programs
implemented by different memory classes

0

2

4

6

8

10

Ca
ll

di
re

ct
 R

at
e(

%
)

Benchmarks

Automatic Global Static Register

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Ca
ll

in
di

re
ct

 R
at

e(
%

)

Automatic Global Static Register

0
0.5

1
1.5

2
2.5

3
3.5

4

he
ap

 se
gm

en
t R

at
e(

%
)

Bebchmarks

Automatic Global Static Register

0
1
2
3
4
5
6
7
8
9

Si
m

_i
pb

 R
at

e(
%

)

Bebchmarks

Automatic Global Static Register

R.Solhi: Proposing an efficient software-based method for enhancing …

18

In general, the results of the conducted
experiments indicate that using the above-
mentioned memory classes reduces the
degree of vulnerability to soft errors.
Consequently, reliability is inherently
enhanced. This figure reveals that automatic
and static memory classes with different
parameters in sim_ipb command reduces
vulnerability and inherently enhances
reliability better.

Fig.9. The rate of ifq-occupancy command in
different programs implemented by different

memory classes

Fig.10. The rate of Ruu_occupancy in different
programs implemented by different memory

classes

Fig.11. The rate of Lsq_occupancy in different

programs implemented by different memory
classes

In sum, the obtained results indicated that
using the automatic memory class can
inherently reduce vulnerability more than
other memory classes. As a result, reliability
is inherently enhanced. In contrast, global
memory class has more vulnerability; hence,
more use of this class in memory leads to
vulnerability enhancement which results in
the inherent reduction of reliability.

5- Discussion and Conclusion

In this study, different experiments and
simulations were carried out for the four
different versions of benchmarks. The
differences among benchmark versions were
related to the memory class applied for the
data. The present study analyzed the impact
of different memory classes on vulnerability
to soft errors. Indeed, the researchers found
that the programs implemented with the
automatic memory class have less
vulnerability and the programs implemented
with register memory class and global
memory class have more vulnerability. Thus,

0

0.5

1

1.5

2

2.5

3

ifq
_o

cc
up

an
cy

 R
at

e(
%

)

Bebchmarks

Automatic Global Static Register

0

2

4

6

8

10

12

14

Ru
u_

oc
cu

pa
nc

y
Ra

te
(%

)

Bebchmarks

Automatic Global Static Register

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Ls
q_

oc
cu

pa
nc

y
Ra

te
(%

)

Bebchmarks

Automatic Global Static Register

Journal of Artificial Intelligence in Electrical Engineering, Vol. 5, No. 18, September 2016

19

it can be maintained that the programs
executed with register and global memory
classes have less inherent reliability. It should
be noticed that defining memory classes
regardless of reliability redundancy can
enhance program reliability against soft
errors.

As a direction for further research, the
impact of different compilers on vulnerable
commands and reliability can be investigated
by interested researchers in future.
Furthermore, future studies can investigate
the effect of different implementation
methods, designing and software architecture
on the rate of vulnerable commands and
program reliability.

References

[1] Baumann, R., “Soft Errors in Commercial
Semiconductor Technology: Overview and
Scaling Trends,” Proceedings of the IEEE
Reliability Physics Tutorial Notes, Reliability
Fundamentals, 2002, pp. 121-01.1–121-04.

[2] Shirvani, P.P., Oh, N., McCluskey, E.J., and
Wood,D.L.,“SoftwareImplemented Hardware
Fault Tolerance Experiments COTS in Space,”
Proceedings of the International Conference on
Dependable Systems and Network, New York,
NY, 2000, 25-28.

[3] Yenier, U., Fault Tolerant Computing in Space
Environment and Software Implemented
Hardware Fault Tolerance Techniques, Technical
Report, Department of Computer Engineering,
Bosphorus University, Istanbul, 2003.

[4] Zhu and H. Aydin, Reliability Effects of Process
and Thread Redundancy on Chip
Multiprocessors,In Proceeding of the 36th
Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2006.

[5] P.Kongetira, K.Aingaran and K.Olukotun,
Niagara: A 32-Way Multithreaded Sparc
Processor, IEEE Micro, 2005.

[6] Baumann, R., “Soft Errors in
CommercialSemiconductorTechnology:Overvie
w and Scaling Trends,” Proceedings of the IEEE
Reliability Physics Tutorial Notes, Reliability
Fundamentals, 2002, pp. 121-01.1–121-04.

[7] J.H.and Harper, R.E Lala,”Architectural
principles for safety-critical real-tim,”in
proceedings of the IEEE,82(1),1994,PP.25-40.

[8] Stefanidis, V. K., and Margarits, K. J.,
“Algorithm Based Fault Tolerance: Review and
Study,” Proceedings of the2004 International
Conference of Numerical Analysis and Applied
Mathematics (ICNAAM'04), 2004, pp. 1-8.

[9] Rebaudengo, M., SonzaReorda, M. and Violante,
M., “A Source-to-Source Compiler for
Generating Dependable Software,” Proceedings
of the First IEEE International Workshop on
Source Code Analysis and Manipulation,
Florence, Italy, 2001, pp. 33-42.

[10] G. Miremadi, J. Karlsson, U. Gunneflo, J. Torin,
"Two SoftwareTechniquesfor Online Error
Detection", the Twenty-Second International
Symposium on Fault-Tolerant Computing, July
1992, pp. 328 – 335.

[11] Araste,b., Rahmani,a., Mansoor,a.,
Miremadi,gh,.” Using Genetic Algorithm to
Identify Soft-Error Derating Blocks of an
Application Program”,EuromicroConference on
Digital System Design, 2012. 15.

[12] Lisboa, C.A.L,Carro,L., Reorda, M., Violante,
M., “OnlineHardeningofPrograms Against SEUs
and SETs,” Proceedings of the 21stInternational
Symposium on Defect and Fault Tolerance in
VLSI Systems, 2006.

[13] Jing, Y., Garzaran, M. J., and Snir, M., “Efficient
Software Checking for Fault Tolerance,”
Proceedings of the IEEE International
Symposium on Parallel and Distributed
Processing,Miami,FL,April 14-18,2008, pp.1-5.

[14] Rebaudengo, M., SonzaReorda, M., Torchiano,
M., and Violante, M., “Soft-error Detection
Through Software Fault-Tolerance Techniques”,
Proceedings of the IEEE International
Symposium on Defect and Fault Tolerance in
VLSI Systems, Albuquerque, NM, USA, Nov
1999, pp. 210-218.

R.Solhi: Proposing an efficient software-based method for enhancing …

20

[15] Randell, B., “System Structure for Software Fault
Tolerant,” IEEE Transaction on Software
Engineering, Vol. 1, No. 2, 1975, pp. 220-232.

[16] Alkhalifa, Z., Nair, V.S.S., Krishnamurthy, N.
and Abraham, J. A., “Design and Evaluation of
System-Level Checks for on-Line Control Flow
Error Detection,” IEEE Transactionon Parallel
and Distributed Systems, Vol. 10, No.6, 1999, pp.
627-641.

[17] N. Oh, P.P. Shirvani,E.J. McCluskey,"Error
Detection by Duplicated Instructions, In Super-
scalar Processors", IEEE Transactions on
Reliability, Vol. 51, No. 1, 2002, pp. 63-75.

[18] J.-S. Lu, F. Li, V. Degalahal, M. Kandemir, N.
Vijaykrishnan, M.J. Irwin, "Compiler-directed
instruction duplication for soft error detection".
Proceedings of Design, Automation and Test in
Europe, 2005, pp. 1056-1057.

[19] Oh, N., Shirvani, P. P. and McCluskey, E. J.,
“Control- Flow Checking by Software
Signatures,” IEEE Transactions on Reliability,
Vol. 51, No. 1, 2002, pp. 111-122.

[20] Reis, G., Chang, J., Vachharajani, N., Rangan, R.
and August I., “SWIFT: Software Implemented
Fault Tolerance”, Proceeding of the CGO’05,
2005, pp. 243-254.

[21] Li, Aiguo , and bingrong Hong. “Software
Implemented Transient Fault Detection in Space
computer.” Aerospace science and technology
11.2-3(2007):245-255

