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ABSTRACT 
Nowadays, Robots account for most part of our lives in such a way that it is impossible for us 
to do many of affairs without them. Increasingly, the application of robots is developing fast 
and their functions become more sensitive and complex. One of the important requirements of 
Robot use is a reliable software operation. For enhancement of reliability, it is a necessity to 
design the fault tolerance system. In this paper, we will present a genetic algorithm and 
learning automata with high reliability to evaluate the software designed into the robot 
against soft-error with minimum performance over-head. This method relies on experiment; 
hence, we use the program sets as criteria in evaluation stages. Indeed, we have used the error 
injection method in the execution of experimental processes. Relevant data, regarding 
program execution behavior were collected and then analyzed. To evaluate the behavior of 
program, errors entered using the simple scalar simulation software. 
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1. INTRODUCTION 

In the industrial world in which the role of 
computer and mechanized systems are too 
sensible, appearance and occurrence of robots 
are the notable and impressive phenomena in 
the automation of the industrial systems [1]. 
The extent of robot´s application has reached 
a climax and can be exploit in the many of 
factories and industry products' lines, 
especially, the automotive and aviation 
industries [2,3]. Also robots play an 
important role in the medical field along with 

technological advances and the development 
of robotic science. Therefore, it is necessity 
to access reliable services. The need for safe 
and reliable software operations is considered 
as an important requirement for modern life 
because the software undertakes the main 
role in accomplishing functional systems. 
Hence, it has a specific importance in 
reliability degree of systems. In order to raise 
reliability, we should design the system in the 
form of fault tolerance. Errors can be divided 
into three types: Soft errors, permanent errors 
and intermittent errors. In this paper, we 
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focus on soft-errors. Soft- errors can occur in 
short time and lead to irrecoverable damages. 
External events are the cause of soft - errors/ 
transient – errors occurrence [4]. 
Generally, with application of two 
redundancy techniques: software and 
hardware, we can boast reliability of internal 
system in robots against soft- errors. Increase 
of reliability through hardware requires 
hardware changes. The disadvantages of this 
method include reduced performance, weight 
gain, power consumption and cost [5]. In 
contrast, software methods do not need 
hardware changes. The main advantage of 
software methods is low cost and it´s 
flexibility that draws researchers  ́ attention. 
In this paper we present a genetic algorithm 
and learning automata with a high reliability 
to evaluate the software designed into the 
robot against soft–error with minimum 
performance over head. 

 
2. RELATED WORKS 

Initially, we briefly review the pervious 
works. In reference [6], the authors have used 
the fault injection technique to measure the 
vulnerability of sections in the program. This 
technique needs special hardware and 
software tools and it is a time consuming 
process. In reference [7], the researchers have 
used the failure injection technique to 
measure the vulnerability of each instruction 
in the program, and using this method for the 
large program is very consuming. In [8], the 
instructions that affect global variables are 
considered as critical instructions.  The 
proposed method in [9] provides a simple 
static analyzing technique where instructions 

that affect control flow and memory address 
are tagged critical. This method can just 
identify small portions of vulnerable 
instructions and blocks rather than all of 
them. In reference [10], the researchers have 
used the statistical analysis and manifested 
the error that leads to automatic enhancement 
reliability. In reference [11], the researchers 
tried to retrieve the transient error. According 
to [12], the researchers presented software 
method to enhance reliability of the 
application program with minimum over-
head. As for [13], the researchers evaluated 
the critical data in application software. In 
this paper, we used a heuristic method to 
extract blocks of a program that derive 
inherently soft-errors and the redundancy 
techniques used just on the vulnerable blocks. 

3. PROPOSED METHODS 

In this section, we introduce a heuristic 
method to identify soft- error hiding and 
masking blocks of programs. The blocks that 
hide and mask soft – errors inherently with 
high probability are taken into consideration 
as invulnerable blocks. After the estimation 
of hiding factor for each block, we apply the 
redundancy technique just on the vulnerable 
blocks. Hence; reducing the amount of 
redundancy leads to the reduction of the 
performance overhead. 
 

3.1 Background 

The positive point is that only a fraction of 
soft- errors affect the final result of a program 
[14]. There are many points in the system 
hierarchy at which soft- errors can be hidden 
inherently without altering the program 
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outputs. A soft- error will be masked at 
application level if it alters data or flow of 
program and this state doesn t́ affect program 
outcome and results. This phenomenon is due 
to inherent features and redundancy in the 
application level. There are several sources of 
inherent features and redundancy at the 
application level like algorithm and code, that 
improve the resiliency of program against 
soft-errors. Logical operations are major 
sources of error hiding phenomenon in the 
program. These features reduce the 
probability of soft-error propagation to the 
program output. In fig.1, block 3 shows the 
corresponding operation. In this program, 
block 3 is a type of non-operational need. 
Alterations in data and instructions of this 
block don t́ influence final result due to soft-
errors. In other words, soft-errors inherently 
hide and mask in the block. 

Fig.1. Function of program 

It can be argued that soft-errors in some 
blocks segment of programs are masked and 
don´t propagate to the program output. 
Identification of these blocks by a heuristic 
method genetic algorithm and learning 
automata is the goal of this study. 

3.2 Genetic Algorithms and Learner Automata 

Genetic algorithms operate based on 
evolution idea in the nature and search the 
final solutions among the population of 
potential solutions. In each generation, it 
selects the best generation and generates the 
new population of off springs after breeding. 
In this process, the adapted people remain in 
next generation with high probability. In the 
initial algorithm, many of people are selected 
randomly and the target function evaluates 
each of them. If the condition is not 
satisfactory, the next generation would be 
selected based on fitness function with 
selection of parents and off springs 
undergone the mutation and crossover stages. 
Then, they compute fitness degree of new 
offspring and the new population generated 
by means of succession of offspring instead 
of parents. This process iterate until the 
condition  is satisfied. To gain lots of 
information about genetic algorithms do refer 
to [15]. Next, we will consider the learning 
automata. 
In learning automata, learning is the selection 
of optimization action among the set of 
allowed actions. These actions were exerted 
on the random environment. The 
environment responded to automata action by 
a random feedback among the set of allowed 
responses. The environmental reaction 
depended on automata action statistically. 
The environment terms include collection of 
all external conditions and their effects on 
automata performance. In fig.2. , we showed 
the association between learning automata 
and environment. For more information about 
learner automata refer to [16-19]. 
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Fig. 2.Connection of LA with random 
environment 

If learner automata selects i  operation in nth 
iteration, and it receive a desired response 
from the environment, the probability of 

)(npi  increases and the probability of other 
operations decreases. On the contrary, if the 
environment responds undesirably, the 
probability of i  decreases and the 
probability of other automata operation 

increases. Anyway, the transition exerted 
such that the sum of )(npi  s is constant and 
equal to one. The probability of operations 
changes as follows [20,21]: 
 desired response from environment 

  ij , j       a)P(n)-(1=1)+(nP
(n))P-a(1(n)p=1)+(nP

j
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 undesired response from environment 

 

 

3.3 Idetification of Error Hiding Blocks by A 
Genetic Algorithm and Learner Automata 

Evolutionary computation is a field of 
machine learning which attempts to mimic 
the process of evolution to find solutions for 
a certain problem. Genetic algorithm and 
learner automata are commonly applied to a 
variety of problems involving search and 
optimization. These algorithms generate a 
sequence of populations by means of 
selection, crossover and mutation 
mechanisms. GA+LA generate the 
population of chromosomes via selection, 
crossover and mutation mechanisms.  
 

 
Agenom in a genetic algorithm shows one 
potential solution. In each generation, all of 
the chromosomes are evaluated by a fitness 
function. The fitness function measures their 
suitability within their environment and the 
crossover operators exert on parents via 
learner automata. 
The algorithm will iterate until the population 
has evolved into a solution for the problem or 
it will iterate till the time the maximum 
number of iterations have occurred. Our aim 
is the quantification and measurement of the 
impact of each block and conditional branch 
on the program output and consequently the 
identification of the error hiding blocks.  
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            Fig.3. The flow chart of proposed method 
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In order to identify error hiding block, we 
propose GA+LA in our developed 
GA+LA, every consequence of block 
program is considered as a chromosome. 
In other word, each chromosome is 
represented by a binary string of length M. 
Every bit in the corresponding string of a 
chromosome is related to a block in the 
program.  
The initial population is generated 
randomly. In each generated chromosome, 
the crossover and mutation operator were 
exerted on parents. During the evolution 
process, the effect of each branch in the 
program output is measured. Indeed, we 
search for the conditional branches and 
succeeding blocks which inherently mask 
the effects of soft- errors in the program. 
In this paper, we used learning automata, 
new cross over methods to combine 
parents. in this method, the automata 
selects two chromosomes of parents and 
selects two genomes ،I, J randomly in one 
of two parents' chromosome. Then, this 
same two genome are selected into other 
parents' chromosome. The set of genome, 
number I, j termed transposition set. 
Therefore, the genomes with the same 
number replaced each other in two 
transposition sets that called the off-
springs of two parents automata 
terminologically. After computing the 
fitness of each chromosome in the current 
population, the algorithm selects those 
chromosomes which don´t affect the 
program results. At the end of the final 
population, the generated quantity for each 
block shows its average vulnerability. 

Fig.3. illustrates the flowchart of proposed 
method. 
 

4. THE EXPERIMENTED 
EVALUATION SYSTEM 

In this section, the experimental approach 
has been utilized in order to introduce the 
selected programs in proposed method. In 
the error injection experiment, we use 
seven programs as criteria. The following 
work load programs all written in the C 
programming language. Our criteria 
include: 
 Lagrange 

 N-graph 

 Regression 

 Tsp 

 Qsort 

 Matrix-mult 

 compress 

In table 1, we describe specifications of 
each criterion. 
Our experiments were conducted 
according to following stages: 
 Firstly, the error hiding blocks of each 
program were identified by the proposed 
method. 
 Secondly, the software- based errors 
were injected into the source programs 
through the error- injection process and 
then the programs are compiled by the 
GCC in the simple scalar tool set. 
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 Thirdly, the programs are executed in 
simple scalar tool set with the sim-out 
order simulator. 

 Eventually, we obtain simulation results 
and analyze them. 

5. EXPERIMENTAL RESULTS 

Error coverage arid performance over-
head are the parameters for evaluating this 
method. We have done three experiments 
as the following. 

 A total of 10000 software- based errors 
are injected into the code and the data 
of the workload programs in the 

experiments and the results were 
collected. 

 40% of random instructions in the 
program are protected against soft-
errors and those of modified programs 
have been used in error injection 
experiments. Similar to pervious state, 
10000 errors are injected into the code 
and the data of each program were 
coded. 

 After identifying vulnerable blocks by 
proposed method and protecting them, 
the error is injected 

 
 

 
 

Table 1: Specifications of criterion 

Criteri
on 

Description Problem type Entrance variables 

description Amplitude 
domain 

lag Insert of poly-nominal with 
lagranges 

Numerical 
analysis problem 

The number of point for 
incorporation in any situation of 

each point(RND) 

N=20 

n-
graph 

The computation of function 
root 

Numerical 
analysis problem 

Replication multitime for 
finding function root 

N=100 

regress
ion 

The anticipation value of 
numerical variable by linear 

regression 

Statistical 
analysis problem 

The number of dependent and 
independent variables 

N=50 

Tsp The solution of problem 
TSP 

Graph 
combination 

problem 

The number of graph nodes and 
graph length 

N=100 

Qsort The sort of numerical list Combination 
problem 

The number of random 
numbers 

N=100 

Matrix-
mult 

The multiplication of two 
matrices 

Numerical 
problem 

Row and column length in any 
element 

N=5 

compre
ss 

The compression of one line 
randomly 

Compressed 
text problem 

The production of line 
randomly and lin. length 

N=20 
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Table 2.The results of program after error injection 
Result classes Description Detection    mechanism 

Correct Production of correct output by 
the program 

Checking result of the erroneous 
program with  golden run 

Fail-Silent Data 
Corruption 

(SDC) 

Production of incorrect output 
by the program 

Checking result of the erroneous 
program with golden run 

System Exception 

Hang: program  timeout 
Detected by simulator time-out 

and the incomplete program will be 
killed 

Crash: Abnormal program 
termination (invalid instruction, 

invalid memory address, overflow, 
segmentation error) 

Detected by simulator exceptions 

 
Table 3: The results of error injection 

AV
G 

comp
res 

Matrix
-m 

Qsor
t 

TSP regre
ssi 

n-
raph 

lag  
original 

14
% 

6% 19.54
% 

13.8
0% 

11.6
0% 

8.19
% 

23% 14
% 

9.3
6% 

2.60
% 

14% 10.2
0% 

8.62
% 

5.80
% 

15.3
0% 

9.3
0% 

random 

2.4
2% 

1.80
% 

0.90% 2.30
% 

2.90
% 

1.72
% 

6.90
% 

0.4
0% 

prposed 

 
In any execution, one bit of data or code in 
the program has changed as error. In the 
execution of any program, a total of 5000 
data based errors and 5000 code- based 
errors and one bit are injected in memory 
space considering the volume and code of 
program. Indeed, any program executed 
10000 times and one error was injected in 
any execution. Error injection in the 
programs are executed in simple scalar tool 

sets. After an error is injected, the 
following program outcomes are possible 
according to Table 2.Based on the result of 
the experiments, table 3 demonstrates the 
result of error injection experiments in the 
various blocks of work load programs. 
Failure rate in the proposed method was 
approximately decreased three times 
regarding random redundancy. So as to 
evaluate the performance overhead, we 

Table 4: The comparison of performance overhead in proposed method 8th other method 

 Method presented in [10, 
11] 

Method presented in [12, 
13] 

Proposed 
Method 

AVG. execution time-
overhead > 20% > 33% < 27% 
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exploit the sim-out order simulation tool 
set. In comparison with other methods, the 
proposed method has higher time overhead 
in some aspects and had lower time 
overhead in other aspects. In table 4, we 
compare the performance overhead in the 
proposed method with other methods. We 
obtain the number of jump instructions, 
rate of memory consumption and compute 
the performance over head and analyze the 
results and compute the performance 
overhead of proposed method. 

6. CONCLUSIONS 

     Due to the inherent features and 
redundancy, only a fraction of soft- errors 
may lead to system failure. We analyze the 
sources of soft- errors hiding and masking 
at the program level. This paper presents a 
heuristic method to identify and categorize 
the inherently error hiding blocks of a 
program. Our goal is the identification of 
the program blocks and protecting 
vulnerable blocks against soft-errors the 
error-injection based experiments are used 
in order to evaluate the proposed method. 
The experimental results show that the 
effectiveness of the proposed method is 
higher than the previous methods. The 
proposed method can be used soft-error 
tolerance techniques and had highly 
reliability. 
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