
Journal of Artificial Intelligence in Electrical Engineering, Vol. 3, No. 12, March 2015

8

An Evolutionary Method for Improving the Reliability of Safety-
critical Robots against Soft Errors

Mahnaz Mohammadzadeh1, Bahman Arasteh2

1Department of Mechatronic Engineering, Ahar Branch, Islamic Azad University, Ahar, Iran
Email: mmohammadzadeh1989@gmail.com

2Department. of Computer Engineering, Tabriz Branch Islamic Azad University, Tabriz, Iran
Email: b_arasteh@iaut.ac.ir

ABSTRACT
Nowadays, Robots account for most part of our lives in such a way that it is impossible for us
to do many of affairs without them. Increasingly, the application of robots is developing fast
and their functions become more sensitive and complex. One of the important requirements of
Robot use is a reliable software operation. For enhancement of reliability, it is a necessity to
design the fault tolerance system. In this paper, we will present a genetic algorithm and
learning automata with high reliability to evaluate the software designed into the robot
against soft-error with minimum performance over-head. This method relies on experiment;
hence, we use the program sets as criteria in evaluation stages. Indeed, we have used the error
injection method in the execution of experimental processes. Relevant data, regarding
program execution behavior were collected and then analyzed. To evaluate the behavior of
program, errors entered using the simple scalar simulation software.

KEYWORDS: Soft-Error, Fault tolerance, Retrieval Blocks Technique, Evolutionary
Algorithms

1. INTRODUCTION

In the industrial world in which the role of
computer and mechanized systems are too
sensible, appearance and occurrence of robots
are the notable and impressive phenomena in
the automation of the industrial systems [1].
The extent of robot´s application has reached
a climax and can be exploit in the many of
factories and industry products' lines,
especially, the automotive and aviation
industries [2,3]. Also robots play an
important role in the medical field along with

technological advances and the development
of robotic science. Therefore, it is necessity
to access reliable services. The need for safe
and reliable software operations is considered
as an important requirement for modern life
because the software undertakes the main
role in accomplishing functional systems.
Hence, it has a specific importance in
reliability degree of systems. In order to raise
reliability, we should design the system in the
form of fault tolerance. Errors can be divided
into three types: Soft errors, permanent errors
and intermittent errors. In this paper, we

Mahnaz Mohammadzadeh, Bahman Arasteh: An Evolutionary Method for Improving…

9

focus on soft-errors. Soft- errors can occur in
short time and lead to irrecoverable damages.
External events are the cause of soft - errors/
transient – errors occurrence [4].
Generally, with application of two
redundancy techniques: software and
hardware, we can boast reliability of internal
system in robots against soft- errors. Increase
of reliability through hardware requires
hardware changes. The disadvantages of this
method include reduced performance, weight
gain, power consumption and cost [5]. In
contrast, software methods do not need
hardware changes. The main advantage of
software methods is low cost and it´s
flexibility that draws researchers ́ attention.
In this paper we present a genetic algorithm
and learning automata with a high reliability
to evaluate the software designed into the
robot against soft–error with minimum
performance over head.

2. RELATED WORKS

Initially, we briefly review the pervious
works. In reference [6], the authors have used
the fault injection technique to measure the
vulnerability of sections in the program. This
technique needs special hardware and
software tools and it is a time consuming
process. In reference [7], the researchers have
used the failure injection technique to
measure the vulnerability of each instruction
in the program, and using this method for the
large program is very consuming. In [8], the
instructions that affect global variables are
considered as critical instructions. The
proposed method in [9] provides a simple
static analyzing technique where instructions

that affect control flow and memory address
are tagged critical. This method can just
identify small portions of vulnerable
instructions and blocks rather than all of
them. In reference [10], the researchers have
used the statistical analysis and manifested
the error that leads to automatic enhancement
reliability. In reference [11], the researchers
tried to retrieve the transient error. According
to [12], the researchers presented software
method to enhance reliability of the
application program with minimum over-
head. As for [13], the researchers evaluated
the critical data in application software. In
this paper, we used a heuristic method to
extract blocks of a program that derive
inherently soft-errors and the redundancy
techniques used just on the vulnerable blocks.

3. PROPOSED METHODS

In this section, we introduce a heuristic
method to identify soft- error hiding and
masking blocks of programs. The blocks that
hide and mask soft – errors inherently with
high probability are taken into consideration
as invulnerable blocks. After the estimation
of hiding factor for each block, we apply the
redundancy technique just on the vulnerable
blocks. Hence; reducing the amount of
redundancy leads to the reduction of the
performance overhead.

3.1 Background

The positive point is that only a fraction of
soft- errors affect the final result of a program
[14]. There are many points in the system
hierarchy at which soft- errors can be hidden
inherently without altering the program

Journal of Artificial Intelligence in Electrical Engineering, Vol. 3, No. 12, March 2015

10

outputs. A soft- error will be masked at
application level if it alters data or flow of
program and this state doesn t́ affect program
outcome and results. This phenomenon is due
to inherent features and redundancy in the
application level. There are several sources of
inherent features and redundancy at the
application level like algorithm and code, that
improve the resiliency of program against
soft-errors. Logical operations are major
sources of error hiding phenomenon in the
program. These features reduce the
probability of soft-error propagation to the
program output. In fig.1, block 3 shows the
corresponding operation. In this program,
block 3 is a type of non-operational need.
Alterations in data and instructions of this
block don t́ influence final result due to soft-
errors. In other words, soft-errors inherently
hide and mask in the block.

Fig.1. Function of program

It can be argued that soft-errors in some
blocks segment of programs are masked and
don´t propagate to the program output.
Identification of these blocks by a heuristic
method genetic algorithm and learning
automata is the goal of this study.

3.2 Genetic Algorithms and Learner Automata

Genetic algorithms operate based on
evolution idea in the nature and search the
final solutions among the population of
potential solutions. In each generation, it
selects the best generation and generates the
new population of off springs after breeding.
In this process, the adapted people remain in
next generation with high probability. In the
initial algorithm, many of people are selected
randomly and the target function evaluates
each of them. If the condition is not
satisfactory, the next generation would be
selected based on fitness function with
selection of parents and off springs
undergone the mutation and crossover stages.
Then, they compute fitness degree of new
offspring and the new population generated
by means of succession of offspring instead
of parents. This process iterate until the
condition is satisfied. To gain lots of
information about genetic algorithms do refer
to [15]. Next, we will consider the learning
automata.
In learning automata, learning is the selection
of optimization action among the set of
allowed actions. These actions were exerted
on the random environment. The
environment responded to automata action by
a random feedback among the set of allowed
responses. The environmental reaction
depended on automata action statistically.
The environment terms include collection of
all external conditions and their effects on
automata performance. In fig.2. , we showed
the association between learning automata
and environment. For more information about
learner automata refer to [16-19].

Mahnaz Mohammadzadeh, Bahman Arasteh: An Evolutionary Method for Improving…

11

Fig. 2.Connection of LA with random
environment

If learner automata selects i operation in nth
iteration, and it receive a desired response
from the environment, the probability of

)(npi increases and the probability of other
operations decreases. On the contrary, if the
environment responds undesirably, the
probability of i decreases and the
probability of other automata operation

increases. Anyway, the transition exerted
such that the sum of)(npi s is constant and
equal to one. The probability of operations
changes as follows [20,21]:
 desired response from environment

 ij , j a)P(n)-(1=1)+(nP
(n))P-a(1(n)p=1)+(nP

j

iii

 (1)

 undesired response from environment

3.3 Idetification of Error Hiding Blocks by A
Genetic Algorithm and Learner Automata

Evolutionary computation is a field of
machine learning which attempts to mimic
the process of evolution to find solutions for
a certain problem. Genetic algorithm and
learner automata are commonly applied to a
variety of problems involving search and
optimization. These algorithms generate a
sequence of populations by means of
selection, crossover and mutation
mechanisms. GA+LA generate the
population of chromosomes via selection,
crossover and mutation mechanisms.

Agenom in a genetic algorithm shows one
potential solution. In each generation, all of
the chromosomes are evaluated by a fitness
function. The fitness function measures their
suitability within their environment and the
crossover operators exert on parents via
learner automata.
The algorithm will iterate until the population
has evolved into a solution for the problem or
it will iterate till the time the maximum
number of iterations have occurred. Our aim
is the quantification and measurement of the
impact of each block and conditional branch
on the program output and consequently the
identification of the error hiding blocks.

 (n)(n)).P-(1.(n)P
1-r

1
(n).b(n)(n)).P-a.(1- (n)P=1)+(nP

(n)(n).Pb.-(n))P-(n)).(1-a(1(n)P=1)+(nP

 (n)P)1(
1-r

b
=1)+(nP

(n)b)p-(1=1)+(nP

jjjjj

iii

jj

ii

iii

ii

a

b

 (2)

Journal of Artificial Intelligence in Electrical Engineering, Vol. 3, No. 12, March 2015

12

 Fig.3. The flow chart of proposed method

Mahnaz Mohammadzadeh, Bahman Arasteh: An Evolutionary Method for Improving…

13

In order to identify error hiding block, we
propose GA+LA in our developed
GA+LA, every consequence of block
program is considered as a chromosome.
In other word, each chromosome is
represented by a binary string of length M.
Every bit in the corresponding string of a
chromosome is related to a block in the
program.
The initial population is generated
randomly. In each generated chromosome,
the crossover and mutation operator were
exerted on parents. During the evolution
process, the effect of each branch in the
program output is measured. Indeed, we
search for the conditional branches and
succeeding blocks which inherently mask
the effects of soft- errors in the program.
In this paper, we used learning automata,
new cross over methods to combine
parents. in this method, the automata
selects two chromosomes of parents and
selects two genomes ،I, J randomly in one
of two parents' chromosome. Then, this
same two genome are selected into other
parents' chromosome. The set of genome,
number I, j termed transposition set.
Therefore, the genomes with the same
number replaced each other in two
transposition sets that called the off-
springs of two parents automata
terminologically. After computing the
fitness of each chromosome in the current
population, the algorithm selects those
chromosomes which don´t affect the
program results. At the end of the final
population, the generated quantity for each
block shows its average vulnerability.

Fig.3. illustrates the flowchart of proposed
method.

4. THE EXPERIMENTED
EVALUATION SYSTEM

In this section, the experimental approach
has been utilized in order to introduce the
selected programs in proposed method. In
the error injection experiment, we use
seven programs as criteria. The following
work load programs all written in the C
programming language. Our criteria
include:
 Lagrange

 N-graph

 Regression

 Tsp

 Qsort

 Matrix-mult

 compress

In table 1, we describe specifications of
each criterion.
Our experiments were conducted
according to following stages:
 Firstly, the error hiding blocks of each
program were identified by the proposed
method.
 Secondly, the software- based errors
were injected into the source programs
through the error- injection process and
then the programs are compiled by the
GCC in the simple scalar tool set.

Journal of Artificial Intelligence in Electrical Engineering, Vol. 3, No. 12, March 2015

14

 Thirdly, the programs are executed in
simple scalar tool set with the sim-out
order simulator.

 Eventually, we obtain simulation results
and analyze them.

5. EXPERIMENTAL RESULTS

Error coverage arid performance over-
head are the parameters for evaluating this
method. We have done three experiments
as the following.

 A total of 10000 software- based errors
are injected into the code and the data
of the workload programs in the

experiments and the results were
collected.

 40% of random instructions in the
program are protected against soft-
errors and those of modified programs
have been used in error injection
experiments. Similar to pervious state,
10000 errors are injected into the code
and the data of each program were
coded.

 After identifying vulnerable blocks by
proposed method and protecting them,
the error is injected

Table 1: Specifications of criterion

Criteri
on

Description Problem type Entrance variables

description Amplitude
domain

lag Insert of poly-nominal with
lagranges

Numerical
analysis problem

The number of point for
incorporation in any situation of

each point(RND)

N=20

n-
graph

The computation of function
root

Numerical
analysis problem

Replication multitime for
finding function root

N=100

regress
ion

The anticipation value of
numerical variable by linear

regression

Statistical
analysis problem

The number of dependent and
independent variables

N=50

Tsp The solution of problem
TSP

Graph
combination

problem

The number of graph nodes and
graph length

N=100

Qsort The sort of numerical list Combination
problem

The number of random
numbers

N=100

Matrix-
mult

The multiplication of two
matrices

Numerical
problem

Row and column length in any
element

N=5

compre
ss

The compression of one line
randomly

Compressed
text problem

The production of line
randomly and lin. length

N=20

Mahnaz Mohammadzadeh, Bahman Arasteh: An Evolutionary Method for Improving…

15

Table 2.The results of program after error injection
Result classes Description Detection mechanism

Correct Production of correct output by
the program

Checking result of the erroneous
program with golden run

Fail-Silent Data
Corruption

(SDC)

Production of incorrect output
by the program

Checking result of the erroneous
program with golden run

System Exception

Hang: program timeout
Detected by simulator time-out

and the incomplete program will be
killed

Crash: Abnormal program
termination (invalid instruction,

invalid memory address, overflow,
segmentation error)

Detected by simulator exceptions

Table 3: The results of error injection

AV
G

comp
res

Matrix
-m

Qsor
t

TSP regre
ssi

n-
raph

lag
original

14
%

6% 19.54
%

13.8
0%

11.6
0%

8.19
%

23% 14
%

9.3
6%

2.60
%

14% 10.2
0%

8.62
%

5.80
%

15.3
0%

9.3
0%

random

2.4
2%

1.80
%

0.90% 2.30
%

2.90
%

1.72
%

6.90
%

0.4
0%

prposed

In any execution, one bit of data or code in
the program has changed as error. In the
execution of any program, a total of 5000
data based errors and 5000 code- based
errors and one bit are injected in memory
space considering the volume and code of
program. Indeed, any program executed
10000 times and one error was injected in
any execution. Error injection in the
programs are executed in simple scalar tool

sets. After an error is injected, the
following program outcomes are possible
according to Table 2.Based on the result of
the experiments, table 3 demonstrates the
result of error injection experiments in the
various blocks of work load programs.
Failure rate in the proposed method was
approximately decreased three times
regarding random redundancy. So as to
evaluate the performance overhead, we

Table 4: The comparison of performance overhead in proposed method 8th other method

 Method presented in [10,
11]

Method presented in [12,
13]

Proposed
Method

AVG. execution time-
overhead > 20% > 33% < 27%

Journal of Artificial Intelligence in Electrical Engineering, Vol. 3, No. 12, March 2015

16

exploit the sim-out order simulation tool
set. In comparison with other methods, the
proposed method has higher time overhead
in some aspects and had lower time
overhead in other aspects. In table 4, we
compare the performance overhead in the
proposed method with other methods. We
obtain the number of jump instructions,
rate of memory consumption and compute
the performance over head and analyze the
results and compute the performance
overhead of proposed method.

6. CONCLUSIONS

 Due to the inherent features and
redundancy, only a fraction of soft- errors
may lead to system failure. We analyze the
sources of soft- errors hiding and masking
at the program level. This paper presents a
heuristic method to identify and categorize
the inherently error hiding blocks of a
program. Our goal is the identification of
the program blocks and protecting
vulnerable blocks against soft-errors the
error-injection based experiments are used
in order to evaluate the proposed method.
The experimental results show that the
effectiveness of the proposed method is
higher than the previous methods. The
proposed method can be used soft-error
tolerance techniques and had highly
reliability.

REFERENCES
[1] Rajabzadeh, G. Miremadi and M.

Mohandespour (1999). Error detection
enhancement in COTS superscalar processors
with performance monitoring features,Journal
of Electronic Testing: Theory
Application(JETTA), 20(5), pp. 553–67, 2004

[2] Profeta, N. Andrianos, Yu. Bing, B. Johnson,
T.DeLong and D.Guaspart, (1996). Safety-
critical systems built with COTS, Computer,
29(11), pp.54–60.

[3] P. Tso and P. Galaviz, (1999). Improved
aircraft readiness through COTS, In IEEE
systems readiness technology conference
(AUTOTESTCON_99), pp. 451–6.

[4] M.Jafari-Nodoushan, G.Miremadi and A.Ejlali
(2008). Control-Flow Checking Using Branc
Instructions, In Proceeding of the 8th
International Conference on Embedded and
Ubiquitous Computing, 2008.

[5] Yenier, U. (2003). Fault Tolerant Computing
in Space Environment and Software
Implemented Hardware Fault Tolerance
Techniques, Technical Report, Department of
Computer Engineering, Bosphorus University,
Istanbul.

[6] A. Benso, S. Di Carlo, G. Di Natale, P.
Prinetto, L.Tagliaferri, (2003). “Data
Criticality Estimation in SoftwareAppliction”
,INTERNATIONAL TEST CONFERENCE

[7] D. Borodin and B.H.H. Juurlink, (2010). ”
Protective Redundancy Overhead Reduction
Using Instruction Vulnerability Factor”, ACM
,CF’10, Italy

[8] Shuguang Feng, Shantanu Gupta, Amin Ansari
and Scott Mahlke (2010). “Shoestring:
Probabilistic Soft-error Resilience on the
Cheap,” in ASPLOS.

[9] D. Thaker, D. Franklin, J. Oliver, S. Biswas,
D. Lockhart, T. Metodi, and F. T. Chong
(2006). “Characterization ofError-Tolerant
Applications when Protecting Control Data,”In
Proc. of the IEEE Int’l Symp. on Workload
Characterization.

[10] K. pattabiraman, Z. Kalbarczyk, R. Iyer
(2011). “Automated Derivation of Application
Aware Error Detectors Using Static Analysis:
Trusted Approach”, IEEE Transaction on
Dependable and Secure Computing, Volume 8
, Issue 5.

[11] T. Vijaykumar, I. Pomeranz and K. Chen,
(2002). “ Transient Fault Recovery using
Simultance Multithreading” , in 29th
Internationa Symosium on Computer
Architecture (ISCA).

[12] Benso, S. Chiusano, P. Prinetto. L. Tagliaferri
(2000). “C/C++ Source-to-Source Compiler
for Dependable Applications”, in IEEE
International Conference on Dependable
systems and Networks (DSN

Mahnaz Mohammadzadeh, Bahman Arasteh: An Evolutionary Method for Improving…

17

[13] A. Benso, S. Di Carlo, G. Di Natale, P.
Prinetto, L. Tagliaferri, (2003). “Data
Criticality Estimation in Software
Application”, in International Test Conference,
pp. 802-810.

[14] B.Arasteh., A.Rahmani., A.Mansoor,
GH.Miremadi (2012). ” Using Genetic
Algorithm to Identify Soft-Error Derating
Blocks of an Application
Program”,EuromicroConference on Digital
System Design,

[15] D. E. Goldberg, (1989). “Genetic Algorithms
in Search,Optimization and Machine
Learning”, Reading, MA,Addition-Wesley.

[16] P. Mars, K. S. Narendra, and M. Chrystall
(1983). “Learning Automata Control of
ComputerCommunication
Networks”,Proceedings of Third Yale
Workshop on Application of Adaptive
Systems Theory, Yale University

[17] K. S. Narendra, and M. A. L. Thathachar
(1989). “Learning Automata: An
Introduction”, Prentice-hall, Englewood cliffs.

[18] M. R. Meybodi, and S. Lakshmivarhan,
(1983). “A Learning Approach to Priority
Assignment in a Two Class M/M/1Queuing
System with Unknown Parameters”,
Proceedings of Third Yale Workshop on
Applications of Adaptive System Theory, Yale
University, 106-109

[19] B. J. Oommen, and D. C. Y. Ma, (1988).
“Deterministic Learning Automata Solution to
the Keyboard Optimization Problem”,IEEE
Transaction on Computers, Vol. 37, No. 1, 2-3

[20] Narendra, K.S. and Thathachar, M.A.L.
(1989). “Learning Automata: An
Introduction”, Prentice Hall, Inc

[21] M. R. Meybodi, H. Beigy. (2002). Utilizing
Distributed Learning Automata to Solve
Stochastic Shortest Path Problem. Technical
Report, Soft Computing Laboratory, Computer
Engineering Department, Amirkabir
University of Technology.

