
Journal of Artificial Intelligence in Electrical Engineering, Vol. 11, No.42  , September 2022
 

23 

 

Using Feature and Cluster Weighted FCM for Reducing ANFIS Rules 

Solmaz Abdollahizad 

Department of Computer Engineering, Sardroud Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran 

Email: Solmaz.abdollahizad@iau.ac.ir 

Receive Date: 10 June 2022, Revise Date: 15 July 2022, Accept Date: 20 August 2022 

Abstract 

  Fuzzy c-means (FCM) is assumed that all the features are of equal importance. In real applications, 

however, the importance of the features is different and there exist some features that are more 

important than the others. These important features should basically have more effects than the other 

features in the forming of optimal clusters. The basic FCM algorithm does not support this idea. Also, 

the FCM algorithm suffers from another problem; the algorithm is very sensitive to initialization, 

whereas a bad initialization leads to a poor local optimum. In this paper, motivated by these weaknesses 

of the FCM, the goal is to solve the two problems at the same time. In doing so, an automatic local 

feature weighting scheme is proposed to properly weight the features of each clusters. And, a cluster 

weighting process is performed to mitigate the initialization sensitivity of the FCM. Feature weighting 

and cluster weighting are performed simultaneously and automatically during the clustering process 

resulting in high quality clusters, regardless of the initial centers. Extensive experiments conducted on 

a synthetic dataset and 16 real world datasets indicate that the proposed algorithm outperforms the 

state-of-the-arts algorithms. The convergence proof of the proposed algorithm is also provided 

Keywords: Fuzzy c-means, Clustering, Feature, ANFIS

1. Introduction 

Automatic data partitioning-clustering is 

one of the most important tools in data 

mining, and the related areas such as 

machine learning, machine vision and 

pattern recognition [1,2]. The goal is to 

divide a set of samples into homogeneous 

partitions (clusters) based on an objective 

function, so as to increase intra cluster 

similarity and decrease inter-cluster similarity. 

In recent decades, various algorithms have 

been introduced for clustering of which k-

means [3] and fuzzy c-means (FCM) [4] are 

the most well-known algorithms among the 

rest. Some other versions of these algorithms 

have also been proposed (more details and 

evaluations can be found in [5–9]). However, 

these two algorithms have always drawn the 

interest of researchers due to some key ideas 

that they possess; simple structure, easy 

implementation, fast convergence, and need 

for low storage capacity to name. 

When the boundaries among the clusters 

are vague, FCM demonstrates a better 

performance than k-means [10,11] and has 

shown successful results in various 

applications such as [12–20]. This is due to 

the fuzzy nature of this method and thus, it 

applies soft-clustering in contrast to k-means 

that does hard clustering. Furthermore, the 

fuzzy membership matrix in this method 

provides us a better understanding of the 

complicated relationships between the 

clusters and the samples [21]. In most real 

world applications, obviously, some of the 

extracted features are irrelevant to the target 

problem or are less important than the 

others. FCM and k-means algorithms 

however,do not take the importance of the 

features into account, and therefore, their 

performances drop markedly in some 

applications [22]. 
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 In addition, these algorithms are sensitive 

to the initial cluster points, whereas a bad 

initialization may lead to a poor local 

optimum [23,24]. 

In order to take the advantages of the 

important features over the others in the 

clusters formation, one may apply a 

weighting scheme on the features [9,25,26]. 

There are two groups of methods for doing 

so. The first group includes the algorithms 

that assign weights to the features globally. 

That is, a given feature is assigned with only 

one weight along all the clusters. The 

methods in the second group assign local 

weights to the features, and thus, a given 

feature has different weights in different 

clusters. This scheme has shown a better 

performance than the global weighting [9]. 

For example, the performance of a global 

weighting method presented in [27] was 

improved by Chan et al. [28] employing a 

local weight scheme. For handling the 

sensitivity of FCM to initialization, there are 

also two groups of approaches. In the first 

group, the policy is to systematically prevent 

the formation of poor-quality clusters during 

the algorithm restarts (repeats). While in the 

second group, the policy is to make the 

algorithms independent of a random 

initialization, hence they do not need any 

restarting procedure. For example, in global 

k-means algorithm [29] and some of its 

modifications such as methods in [30,31] the 

process starts from a single cluster, and 

incrementally other clusters are added 

according to a criterion. In fact, at each step 

of algorithm run, a new cluster is added to 

the solution. Despite the fact that these 

algorithms are somehow able to mitigate the 

sensitivity of the algorithms to the 

initialization, their computational cost in 

general is very high. 

In this paper, in order to overcome the 

above mentioned problems simultaneously, 

we propose a new FCM clustering algorithm 

based on a combination of feature weighting 

and cluster weighting. Feature weighting is 

carried out locally and automatically during 

the clustering procedure. At the same time, 

in order to deal with the problem of 

initialization, we apply cluster weighting as 

well. The weights of the clusters are 

calculated at each restart based on the sum of 

their members’ intra-cluster distances and 

member’s current features’ weights. 

Calculating the weights of the clusters in this 

way prevents the creation of clusters that 

have a large sum of intra-cluster weighted-

feature distances (SIWD). And consequently, 

allows high quality clusters to be formed 

regardless of the initial centers. In addition 

to the combination of feature weighting and 

cluster weighting, an objective function 

based on a non-Euclidean distance metric is 

used in the proposed method. The advantage 

of using this distance metric is that the noise 

and outliers cannot affect the feature 

weighting process very much [32,33]. The 

contributions of this work are threefold: 

(1) Feature weighting is carried out locally 

in a way that the features have different 

weights depending on their importance in 

the clusters, thus increasing the quality of 

clustering; 

(2) The weight of the clusters is calculated 

dynamically while taking the importance 

of the features in each cluster into 

consideration; 

(3) Feature weighting and cluster weighting 

are performed simultaneously and 

automatically during the clustering process 

resulting in high quality clusters 

regardless of the initial centers. 
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The performance of the proposed 

algorithm is evaluated over a large number 

of standard datasets and extensive 

experiments are performed to examine the 

effectiveness of each solution proposed for 

feature weighting and initialization problem. 

The results show that our algorithm achieves 

a higher performance compared to the 

existing competitors. The rest of the paper is 

organized as follows: Section 2, gives a brief 

review to the related work; in Section 3, the 

proposed algorithm, its convergence proof 

and its complexity analysis are provided; 

Section 4 presents the results of 

experiments; and finally, Section 5 deals 

with conclusion and ideas for future work. 

2. Related Work 

In this section, we review the existing 

clustering methods that have been proposed 

to improve the clustering performance of the 

basic FCM and k-means algorithms; Section 

2.1 reviews the related work based on 

feature weighting scheme, and Section 2.2 

reviews the methods against initialization 

sensitivity. 

2.1. Global and local feature weighting 

   There are two groups of methods for 

weighting the features in the clustering 

approaches. As a pioneering work (in 1984), 

SYNCLUS algorithm used global feature 

weighting technique in order to determine 

the importance of different features in the 

clustering process [34]. This algorithm starts 

by an initial set of feature weights and uses 

the k-means algorithm to cluster the data into 

k clusters. Then, it tries to find optimal 

weights by optimizing a weighted mean-

square cost function. These steps are iterated 

until the procedure converges to an optimal 

set of weights. Although SYNCLUS 

Algorithm computes the feature weights 

automatically, the feature group weights 

should be given manually. Moreover, this 

algorithm is very time-consuming [35], so it 

may not be efficiently used for large 

datasets. 

In 2004, Wang et al. [36] also used 

global feature weighting scheme for FCM. To 

weight the features, their method utilized a 

learning based approach and an evolutionary 

fitness function. The gradient descent 

algorithm was employed to find proper 

weights. The reported results showed 

improvements on the original FCM. 

However, the evolutionary function and the 

similarity measure used in this method were 

very complicated. The complexity of this 

method is high. This is due to a traditional 

way of feature-weight learning process that 

depends on a high number of iterations. 

Also, this method is based on an assumption 

that the distribution of the data is uniform 

which is not the case in most of the real 

world datasets. 

Huang et al. [27] in 2005 proposed W-k-

means clustering algorithm. They added an 

additional step to the basic k-means 

algorithm in order to determine the weights 

of features at each iteration. The weight of 

each feature was estimated based on the sum 

of the within-cluster variances of the feature. 

As such, noise features can be identified and 

their effects on the clustering result can be 

reduced. However, their method requires 

users to subjectively specify an additional 

parameter, so-called the exponent of feature 

weights. Hence, it is laborious for users to 

determine a proper value for this parameter 

to obtain a high clustering quality result [37]. 

In addition, feature weights generated using 

this method might not highlight the 

representative features (or dim irrelevant 
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features) well. It is also observed that the 

weight differences among features are 

somehow unobvious when the number of 

features is high [37]. 

In 2008, Hung et al. [38] presented a 

FCM-based algorithm for image 

segmentation that was carried out through 

global feature weighting. They estimated the 

feature weights using the bootstrap 

technique. Although their method has high 

computational complexity, their proposed 

approach has shown a good effectiveness 

and performance and it performed better 

than the aforementioned FWL [36] approach. 

However, the feature weights calculated by 

this algorithm may be unsuitable for some 

extreme cases [39]. In other words, in some 

datasets, the weight of the features does not 

properly represent the importance of the 

features [39]. 

In 2014, Xing et al. [40] presented two 

methods to improve the performance of FCM 

algorithm. In their basic method, they 

introduced a global feature weighting 

algorithm, namely IFWFCM. IFWFCM 

automatically computed feature weights in 

the clustering process. They then 

generalized the proposed method to a 

kernelized version by utilizing a kernelized 

distance measure (IFWFCM_KD). Experimental 

results revealed that the performance of 

IFWFCM is better than IFWFCM_KD on certain 

datasets. Recently, in contrast to the global 

feature weighting methods, local feature 

weighting methods have gained more 

attentions. For example, the method 

proposed by Frigui et al. [9] determines the 

weights of features for each cluster 

independently through an optimization 

procedure during the clustering process. 

Compared to a global weighting method 

proposed in [38], their method showed a 

higher accuracy. They applied their 

algorithm for image 

segmentation and achieved interesting 

results. Frigui et al. [9] introduced two local 

feature weighting methods based on 

simultaneous clustering and attribute 

discrimination techniques (SCAD1 and 

SCAD2). In the second version of their 

algorithm (SCAD2), a central weighting 

scheme was used that can make the 

algorithm very sensitive to the initialization 

of centers. Also, in these two algorithms, in 

some situations, the obtained weights of the 

features do not properly represent the 

importance of features in the clusters [41]. 

Jing et al. [42] extended k-means 

algorithm to determine feature weights in 

each clusters, and used the weights’ values 

to find the important features. To this end, 

they defined an objective function using the 

weight entropy for their clustering 

algorithm. Although their algorithm was 

sensitive to initial centers, in the case of 

proper selection of initial centers, it was able 

to improve the clustering performance. In 

2014, Zhi et al. [33] presented a hard c-

means based clustering method which 

automatically assigned local weights for 

features during the clustering process. They 

used new distance metric that reduced the 

effect of noise and outliers in the clustering 

process. In fact, it was an improved version 

of the method presented in [28]. Although 

the proposed method was not sensitive to 

noise and outliers, it was sensitive to the 

selection of the initial points. 

In 2014, Ferreira et al. [43] carried out 

extensive researches on feature weighting 

both locally and globally. Using basic FCM 

and kernel distance, they introduced a 

clustering method which was able to 

improve the clustering qualities by utilizing 
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adaptive distances. According to the 

experimental analysis of these algorithms, 

the method using local adaptive distance are 

superior to the method using global adaptive 

distance in most cases [44]. Although these 

methods can produce better results than 

traditional FCM, they are unsuitable for 

clustering large datasets [44]. 

In 2016, a maximum-entropy-regularized 

weighted fuzzy c-means (EWFCM) method 

was introduced in [22]. In this method, in 

order to find the optimal feature weights, the 

feature-weight entropy regularization 

technique was introduced to be included in 

the objective function of the clustering 

process. Also, the kernel based EWFCM 

(KEWFCM) method was proposed for 

clustering the data that includes non-

spherical shaped clusters. 

In 2016, in [45], two techniques were 

proposed for weighting a multivariate FCM 

method. In the first technique, each sample, 

feature and cluster has a proper weight. The 

aim is to determine the relevance of each 

feature when calculating the degree of 

membership for a sample regarding a cluster. 

The second one introduced a weighted 

distance which was used to consider the 

variability of each feature and cluster. The 

weights were computed at each iteration of 

algorithm. These adaptive distances allow 

the clustering algorithm to find clusters with 

different sizes and shapes. 

In a recently proposed algorithm [46], a 

new objective function based on a kernel 

metric is proposed. They used local feature 

weighting scheme to find those clusters that 

have linearly non-separable patterns or non-

hyper-spherical shapes. In their work, a 

multi-objective optimization method was 

proposed to be used in a feature weighted 

clustering process. Two separate objective 

functions, taking into account the inter 

cluster separation and intra cluster 

compactness, were optimized simultaneously. 

In conclusion, algorithms that utilize the 

local feature weighting are highly accurate 

and perform better than global feature 

weighting algorithms. On the other hand, 

both types of feature weighting algorithms 

are highly sensitive to the selection of initial 

centers. If the initial centers are not 

appropriately selected, the algorithm’s 

efficiency drops sharply. Moreover, some of 

the existing local feature weighting methods 

are not able to accurately weigh the features 

based on their real importance in some 

situations, so the accuracy of the clustering 

is reduced. 

2.2. Methods against initialization sensitivity 

    In this section, a review of the methods 

that have been proposed to solve bad 

initialization problem are provided. These 

methods can be categorized into two groups. 

In the first group, the policy is to 

automatically prevent the formation of poor-

quality clusters during the algorithm restarts 

(repeats). For example, in [47], the initial 

centers were determined using a stochastic 

function to cover the entire data space. k-

means++ method [47] initializes the centers 

in k-means algorithm by choosing the 

samples that are further far from each other. 

The main drawback of this method from the 

scalability point of view is its inherent 

sequential nature. That is, the choice of the 

next center depends on the current set of 

centers [48]. Accordingly, k-means++ can 

be only applied on datasets of moderate size 

and only for modest values of k [48]. 

Methods in [49,50] randomly select initial 

centers, and during the clustering process, 

penalize the clusters with respect to the 
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winning frequency of their representatives. 

Method in [49] was combined with a 

frequency sensitive competitive learning as 

a counter mechanism that penalizes the 

assignment of a data point to a crowded 

cluster. The principle is intuitively 

appealing, but it was approached without the 

emphasis on efficiency or quality. Also, 

complexity analysis and the corresponding 

empirical comparisons were not provided 

[51]. Method in [50] is suitable for clustering 

linearly non-separable patterns or non-

hyper-spherical datasets, as it uses kernel 

distances. However, this method has 

difficulties in finding a suitable kernel 

function to map the data points from the 

input space to the linear kernel space. 

Method in [52] introduced a technique 

to refine the initial point to a point probably 

to be close to the modes of the joint 

probability density of the samples. The main 

goal of this method was to cope with large 

datasets. The authors of this method argued 

that their algorithm leads to a refined starting 

seed that is not corrupted by outliers or other 

influential data points. However, the main 

problem with random methods is that they 

do not guarantee obtaining an optimal 

solution [53]. A study in [54] introduced 

Min-Max k-means method to deal with the 

sensitivity of k-means algorithm to the initial 

points by modifying k-means objective. This 

method starts using arbitrary centers and 

then, at sum of squared error. This method 

has a good performance for balanced 

datasets, however, it does not work well for 

imbalanced databases. 

In the second group, the policy is to 

make the algorithms independent of a 

random initialization; hence, they do not 

need any restarting procedure. A global 

kernel k-means method was presented in 

[55], which utilized a kernel based clustering 

technique to incrementally identify nonlinearly 

separable clusters. This method is an 

incremental approach, where at each stage, 

one cluster is added through a global search 

process consisting of several repetitions of 

kernel k-means from proper initializations. 

Another incremental and deterministic 

clustering algorithm was presented in [56] to 

deal with the bad initialization problem. In 

this algorithm, a kernel function is used to 

map data samples from the input space to a 

higher dimensional feature space. Then, the 

clustering error is optimized using the data 

points in new space. Both methods presented 

in [57] and [58] have a high computational 

complexity. We can conclude that although 

the aforementioned algorithms are not 

sensitive to the selection of the initial points, 

they suffer from three shortcomings. First, 

they assume that all the features have the 

equal importance. Second, their 

computational complexities are relatively 

high [54]. Three, as most of these algorithms 

use Euclidean distance, they are sensitive to 

noise and outliers [33]. 

Considering the all above described 

limitations of existing methods, we propose 

a FCM clustering method that is able to 

perform feature weighting and cluster 

weighting, simultaneously. Feature weighting 

is done locally and at the same time, cluster 

weighting is applied to cope with the 

problem of initialization. Carrying out these 

two operation in a concurrent manner during 

the clustering process, form high quality 

clusters regardless of the initial centers. 

Also, a non-Euclidean distance metric is 

used in our objective function which makes 

the algorithm more robust against the effects 

of outliers in the feature weighting process. 
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3. Proposed Algorithm 

    In this section, we introduce our clustering 

algorithm. First, an overview of the 

proposed algorithm is presented. Then, the 

steps of the algorithm are described in detail, 

and finally, convergence proof of the 

algorithm and the analysis of its complexity 

are provided. 

3.1. Algorithm overview 

    Motivated by the problems of standard 

FCM clustering algorithm, we aim to design 

an approach that employs a local feature 

weighting scheme to increase the accuracy 

of the clustering, and a cluster weighting 

technique to alleviate the sensitivity of the 

clustering to bad initialization as well. In 

addition, since the Euclidean distance metric 

is sensitive to noise and outliers [32], we 

define a new objective function based on a 

non-Euclidean distance metric. This distance 

metric is introduced in [33] and is not 

sensitive to noise and outliers  

 
In Eq. (1), N refers to the number of data 

samples, M is the number of features, K is 

the number of clusters, U = [unk] is a K by N 

matrix in which unk indicates the degree of 

nth sample’s membership to the center of kth 

cluster, C = [ckm] is a K by M matrix, where 

ckm indicates the center of kth cluster and is 

defined by unk. Also, in this equation, W = 

[wkm] is a K by M matrix, where wkm refers 

to the weight of mth feature in kth cluster, z 

= [zk] is a vector with the length of K, where 

zk refers to kth cluster weight, and the term 

d2(xnm − ckm) indicates a non-Euclidean 

distance metric and is defined as follows: 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 1 − exp⁡(−𝛾𝑚(𝑥𝑛𝑚 − 𝑐𝑘𝑚)⁡
2)        (2) 

𝛾𝑚 =
1

𝑣𝑎𝑟𝑚
⁡⁡⁡           (3) 

𝑣𝑎𝑟𝑚 = ∑
(𝑥𝑛𝑚−𝑥𝑚)2

𝑁

𝑁
𝑛=1           (4) 

 

And α is the fuzzification coefficient (α > 1) 

(fuzzifier). It is commonly used by fuzzy 

clustering methods to determine the level of 

fuzziness in the formed clusters. A large α 

results in smaller membership values, and 

thus, fuzzier clusters are formed. In the limit 

α= 1, the memberships converge to 0 or 1 

implying a hard partitioning. In the absence 

of domain knowledge, α is commonly set to 

2 [22,45]. 

Similar to the method presented in [54], 

the appropriate value of parameter p (0 ≤ p < 

1) is found during the operation of the 

proposed clustering algorithm. This 

parameter controls the sensitivity of the 

cluster weight updating to the relative 

difference of the SIWDs (sum of the intra-

cluster weighted-feature distance). This 

parameter prevents the formation of clusters 

with big SIWDs and thus, makes them 

balanced in terms of the total SIWDs. This 

metric indicates the quality of clustering 

[54]. Following to the method presented in 

[27], the principle that should be considered 

for weighting features in each cluster is as 

follows: assign a larger weight to a feature 

that has a smaller variance in the related 

cluster, and a smaller weight to a feature that 

has a larger variance. In this paper, we refer 

to this principle as the ‘‘feature weighting 

principle’’. Inspired by the research carried 

out in [33], in order to be able to implement 

this principle, we employ parameter q in Eq. 

(1) (in range q > 1 and q < 0). Further details 

on how to calculate proper values for p and 

q, and study their influences on the 

performance of the method are discussed in 

Section 3.2. 
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    As stated in introduction, k-partitioning 

algorithms are sensitive to initialization. 

This sensitivity exists in both algorithms 

with and without feature weighting. In fact, 

feature weighting is necessary but not 

enough. After a bad initialization, it is 

possible that some clusters with large SIWDs 

are merged together, and those with low 

SIWD are broken into smaller clusters. 

Therefore, even if there are some clusters 

with balanced SIWDs in the dataset, after 

running the algorithm, it is possible that 

some clusters with unbalanced SIWDs are 

formed. This is the case that happens in k-

means based algorithms. Cluster weighting 

solves this problem to a large extent. The 

principle that is used for weighting clusters 

is as follows: assign a larger weight to a 

cluster that has a larger SIWD, and a smaller 

weight to a cluster that has a smaller SIWD. 

We call this principle the ‘‘cluster weighting 

principle’’. By assigning a higher weight to 

a cluster with a big SIWD, we can prevent 

formation of clusters with an unbalanced 

SIWD. Considering the criterion drawn from 

SIWD, cluster weighting has the best 

efficiency on the datasets where there are 

groups (clusters) having a nearly balanced 

SIWD. This is due to emergence of the 

clusters with a balanced SIWD during the 

algorithm restart. However, in practice, there 

are not always such balanced groups 

(clusters) in the datasets. To solve this 

problem, feature weighting is implemented 

along with the cluster weighting. In this way, 

one can achieve the best efficiency of a 

clustering algorithm irrespective of the 

structure of the data and the initialization.  

3.2. Algorithm description 

   Details of the proposed algorithm are 

presented in Fig. 1. According to the 

explanations given in Section 3.2, the 

performance of the proposed algorithm with 

the simultaneous weighting of the clusters 

and the features is based on the optimal 

adjustment of parameters p and q, that is 

discussed in next subsection. 

3.2.1. Parameter tuning 

    Similar to the method presented in [54], a 

repeat-based algorithm is used to find the 

optimal value for p. Three values pinit, pstep 

and pmax are defined and the algorithm starts 

with a small value for p(pinit ). In each 

iteration, the value of p is increased by pstep 

until the maximum value pmax is reached. If 

an empty cluster or a cluster with only one 

sample appears, the value of p is reduced by 

pstep, regardless of whether p is equal to pmax 

or not. In this step, we select the values of 

unk, wkm and zkm based on the previous p. The 

algorithm continues until the difference 

between the two successive values of the 

objective function is smaller than the 

threshold ε, or the number of iterations 

reaches a maximum. Considering the 

explanation presented in the previous 

section, pmax should not be chosen very large 

or close to 1. To improve the stability of the 

algorithm, similar to the method proposed in 

[54], we add a memory effect parameter to 

the weights. By using this parameter, 

smoother transitions of the values are 

performed between consecutive iterations. 

In other words, the influence of the weights 

from the previous iteration to the current 

update is controlled. Weighting the clusters 

and the features simultaneously may slow 

down the convergence speed of the 

algorithm. However, we will show (Section 

4.3) that choosing the value of β carefully 

will eliminate this drawback. 
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3.2.2. Proposed method vs. bad initialization 

    In this section we aim to illustrate the 

performance of the proposed method against 

the bad initialization of cluster centers. To 

this end, we design a test that shows how our 

proposed algorithm alternates between the 

U, C, W and z optimization steps to get a 

local optimum of F. As illustrated in Fig. 

2(a), we run the algorithm on a synthetic 

dataset, including some samples in four 

clusters in a two-dimensional feature space. 

Then, we track the path of the initial centers 

to the final centers of the clusters obtained 

by the algorithm. The obtained centers for 

four clusters along the first seven restarts of 

algorithm are depicted in Fig. 2(a) using 

different colors. The arrows show the path 

between obtained consecutive cluster 

centers. As it is evident in this figure, 

although inappropriate initial centers are 

deliberately selected, the algorithm can 

easily achieve a good local optimum. As 

shown in Fig. 2(b), the value obtained for the 

objective function is reduced in the second 

iteration markedly. The obtained centers in 

the second iteration are the reason of such 

behavior. The value of the objective function 

has been significantly reduced from second 

to seventh iterations, and there are, however, 

slight decreases from iterations 7 to 52. This 

shows that the proposed algorithm achieves 

nearly optimal solution in the seventh 

iteration. By performing the feature 

weighting along with the cluster weighting 

in a concurrent manner, the algorithm 

achieves an optimal solution very fast 

irrespective of the initialization. 

4. Methods 

    In this section, the performance of the 

proposed algorithm is evaluated, and the 

results are compared with state-of-the art 

algorithms, namely the standard k-means (k-

means) [3], the standard FCM [4], 

simultaneous clustering and attribute 

discrimination (SCAD2) [9], k-means++ [47], 

the hard c-means clustering with local 

weighting (RLFWHCM) [33], fuzzy c-means 

clustering with the entropy of feature weight 

(EWFCM) [22], and the improved version of k-

means with Min–Max method (MMKMC) [54]. 

Threshold value ε and the maximum number 

of restarts are the common parameters in all 

the algorithms. In the experiments, we set 

them to 10−5 and t = 200, respectively. 

Parameter α is common between other fuzzy 

algorithms and our method and is set to 2 in 

all algorithms. Additionally, we adjust pstep 

=0.01, pinit = 0 and pmax = 0.5, and for each 

test dataset, we consider the number of 

clusters equal to the number of labeled 

classes. 

4.1 Preparation of data 

     A crucial input for scrutinizing the 

correlation between the locations’ spatial 

distribution and conditioning factors is the 

landslide inventory map (Lee et al. 2013). 

Hence, in the present study, a landslide 

inventory map was prepared via historical 

data on individual landslide occurrences, all-

embracing field surveys corroborated by the 

Iran National Cartographic Center and 

Geological Organization also with handheld 

GPS devices, interpretation of aerial 

photographs and Google Earth images.  

A sum of 766 landslides was finally 

mapped in the study and comprehensive 

reports on landslides have been exploited 

within a lifespan of > 37 years (since 1983). 

The landslides with the smallest and largest 

sizes found in the study were nearly 200 and 

3000 (m2) respectively. For landslide spatial 

modelling through the so-called amalgamation 
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of models, the locations of the landslide 

were separated into two subdivisions (viz., 

training (70) and validating (30) 

appertaining to a random selection scheme. 

Fig. 3 indicates a series of recorded 

landslides in the field surveys. 

Along with the landslide inventory map, 

numerous inter-related factors impact the 

landslides. A total of 10 landslide 

influencing factors, including slope, aspect, 

NDVI, elevation, distance from fault, land 

use, plan curvature, profile curvature, TWI, 

and rain were used in the proposed 

framework for spatial modeling [17-19]. 

In the present study, the ESRI ArcGIS 

10.3 software was utilized with the intention 

of producing and displaying the data layers. 

All the layers of data were organized in 

raster format with a pixel size of 30 (m)×30 

(m). The influencing factors were obtained 

from ASTER Global DEM, the geological 

map, and a topographic map with the same 

resolution [22]. Then the geological map 

was used in order to obtain the lithology 

map, which was then converted into a raster 

format. Landsat 8 (OLI images) were used in 

order to derive the NDVI as well as land use 

maps. For further analyses, all the so-called 

factors were standardized by a similar scale 

of 30 ×30 (m2). Besides, the conditioning 

factors that were of continuous data were 

reclassified into distinct subsections with the 

intention of transforming continuous data to 

sections at specific intervals. In order to 

achieve the identical output scaling, the 

other discrete conditioning variables were 

reclassified into groups (Fig. 4). For 

training/modelling, 536 (70%) landslide 

locations were utilized in the present 

analysis, and 230 (30%) landslides were 

utilized for validating. A value of "1" was 

allocated to the landslide training instances 

[28]. Moreover, from the landslide-free 

zones, a similar amount of non-landslide 

points (766) was randomly produced, and a 

value of '0' was allocated to these instances, 

which were randomly divided into two 

sections with a ratio of 70/30 as well. 

 

 

Table 1. Sample of Dataset 

 

 
 

 

 

 

. 
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4.2 Neuro-Fuzzy Model 

    To create a fuzzy-neural system, a type of 

clustering was used to limit the rules in 

Anfis, and then three optimization 

algorithms were used to optimize the 

parameters of the input and output 

membership functions of Anfis. 

1.1 Creating infinite initial conditions by 

clustering data 

Two data clustering methods were used 

to create the initial structure of Anfis. 

 It is a clustering method where each data is 

assigned to each cluster with different 

degrees of membership. This is done by 

minimizing the following relation: 

The number of possible rules in a fuzzy 

system is equal to the product of the number 

of membership functions, so in an infinite 

with 10 inputs, each of which has 5 

membership functions, the number of 

possible rules will be equal to 510. A large 

number of rules will greatly increase the 

parameters of Anfis. 

𝑖𝑓⁡𝑥1⁡𝑖𝑠⁡ {

𝑀𝐹1′1
.
.

𝑀𝐹5′1

𝐴𝑁𝐷⁡⁡⁡𝑥2⁡⁡𝑖𝑠⁡⁡⁡ {

𝑀𝐹1′2
.
.

𝑀𝐹5′2

⁡𝐴𝑁𝐷……⁡⁡𝑥10⁡⁡ 

 

𝑖𝑠⁡⁡⁡ {

𝑀𝐹1′10
.
.

𝑀𝐹5′10

⁡⁡𝑡ℎ𝑒𝑛⁡𝑜𝑢𝑡𝑝𝑢𝑡⁡𝑖𝑠⁡⁡⁡ {
𝐿𝑚𝑓𝑖1′𝑖2′…..𝑖10
𝑖𝑘 = 1…5

⁡ 

𝑥1 = 𝑠𝑙𝑜𝑝𝑒⁡⁡⁡⁡𝑥2 = 𝑎𝑠𝑝𝑒𝑐𝑡 ………𝑥10 = 𝑟𝑎𝑖𝑛⁡ 
 

This increase makes it practically 

impossible to optimize parameters by 

optimization algorithms. Fig 3. shows 

binary clustering. The possible states in this 

diagram are four areas, only areas one and 

four have data. Anfis considers all possible 

states as a rule, while two of them are 

redundant and cause the addition of Anfis 

parameters. The coordinates of the 

dimensions of the center of each cluster are 

considered as the center of the Gaussian 

function in the membership function. 

 

 
Fig 1. The effect of clustering on the elimination of redundant rules 

 

 

o, by using c-means fuzzy clustering 

method, one rule can be considered for each 

cluster. Therefore, the number of rules is 

significantly reduced and accordingly the 

number of parameters is also reduced and 

the speed of convergence of optimization 

algorithms increases exponentially. 

     
𝑖𝑓⁡⁡𝑥1⁡𝑖𝑠⁡𝑀𝐹𝑗′1⁡⁡𝐴𝑁𝐷⁡⁡𝑥2⁡𝑖𝑠⁡𝑀𝐹𝑗′2⁡⁡𝐴𝑁𝐷….⁡⁡𝑥10⁡𝑖𝑠⁡𝑀𝐹𝑗′10⁡⁡ 

𝑡ℎ𝑒𝑛⁡𝑜𝑢𝑡𝑝𝑢𝑡⁡𝑖𝑠⁡𝐿𝑚𝑓𝑗⁡(𝑗 = 1⁡𝑡𝑜⁡12) 

 

 

𝑀𝐹(𝑥) = 𝑒
−
(𝑥−𝐶)2

22  

 

𝐿𝑚𝑓𝑗 = 𝑃0′j + 𝑃1′j𝑥1 +𝑃2′j𝑥2 +⋯+ 𝑃10′j𝑥10 
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In this research, the number of fuzzy 

clustering output clusters is equal to 12. 

This number of clusters is obtained from the 

number of 10 to 15 clusters (less than the 

square root of the number of data) and by 

comparing the output results. 

The two main drawbacks of FCM clustering 

are: 

A) Being sensitive to the initial conditions 

that make the result of clustering not stable 

and sometimes divergent.  

b) Sensitive to noisy and outlier data 

because features and clusters have the same 

weight. The strengths of this method are its 

simple structure, easy implementation, fast 

convergence, and the need for less storage 

capacity. In a research conducted in [32], a 

developed method for FCM was proposed, 

which, unlike before, solved both forms of 

FCM at the same time. This new method, 

called FCMWFWC, has the following cost 

function. 

 

⁡⁡⁡⁡𝐹(𝑈; 𝐶;𝑊; 𝑧) = ∑∑ ∑ 𝑢𝑛𝑘
𝛼

𝑀

𝑚=1

𝐾

𝑘=1

𝑁

𝑛=1

𝑤𝑘𝑚
𝑞
𝑧𝑘
𝑃𝑑2(𝑥𝑛𝑚

− 𝑐𝑘𝑚) 
(0 ≤ 𝑃 ≤ 1⁡⁡; ⁡0 ≤ 𝑞 ≤ 10⁡⁡; 𝛼 ≥ 2) 

 

The output of the FCMWFCM was used 

in three steps to create initial conditions in 

the hybrid models for the input and output 

membership functions of anfis. 

a) The cluster centers (µ) with a range of 

±5% were used to create the initial 

population in parameter C, using the 

Gaussian membership function. 

b) The parameter of standard deviation of 

each cluster with coefficient (0.2, 0.4, 0.6) 

K was used for parameter  of Gaussian 

membership function. 

c) The parameters P_1~P_10 in each rule 

were randomly selected in the range of zero 

to one, and then the parameter P_0 was 

calculated according to the equation (3-3) 

(taking into account that each rule must give 

an output of one for the center of each 

cluster). 

 

(a) 

 
(b) 

 
Fig 2. Using mean and std. as initial condition 

of anfis. 

𝑀𝐹(𝑥) = 𝑒
−
(𝑥−𝜇)2

22  

𝑀𝐹𝑖𝑗 = {
𝜇𝑖𝑗 = 𝜇𝑖𝑗 ±%5𝜇𝑖𝑗

 = 𝑘𝑖𝑗{𝑘 = 0.2 − 0.4 − 0.6⁡}
 

𝑅𝑢𝑙𝑒1: 𝑃01 + 𝑃11𝑥1⁡+𝑃21𝑥2 +⋯+ 𝑃101𝑥10 

𝑅𝑢𝑙𝑒2: 𝑃02 + 𝑃12𝑥1⁡+𝑃21𝑥2 +⋯+ 𝑃102𝑥10 

… 

𝑅𝑢𝑙𝑒12: 𝑃012 + 𝑃112𝑥1⁡+𝑃212𝑥2 +⋯+ 𝑃1012𝑥10 

𝑅𝑢𝑙𝑒1: 𝑃01 + 𝑃11𝜇11⁡+𝑃21𝜇12 +⋯+ 𝑃101𝜇110 = 1 

𝑅𝑢𝑙𝑒2: 𝑃02 + 𝑃12𝜇21⁡+𝑃21𝜇22 +⋯+ 𝑃102𝜇210 = 1 

… 

𝑅𝑢𝑙𝑒12: 𝑃012 + 𝑃112𝜇121⁡+𝑃212𝜇122 +⋯
+ 𝑃1012𝜇1210 = 1 

 

∀⁡⁡𝑃𝑖𝑗(𝑖 = 1⁡⁡⁡𝑡𝑜⁡10⁡; ⁡𝑗 = 1⁡⁡⁡𝑡𝑜⁡12)

∈ [0; 1]⁡(𝑅𝑎𝑛𝑑𝑜𝑚) 

𝑃0𝑗(⁡𝑗 = 1⁡⁡⁡𝑡𝑜⁡12)

= 1 − (𝑃1𝑗𝜇𝑗1 + 𝑃2𝑗𝜇𝑗2 +⋯

+ 𝑃10𝑗𝜇𝑗10) 
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The membership function of ANFIS-

SFLA before and after optimization were 

shown in Fig 4. Fig 5. shows the Sugeno 

inference method for ANFIS-PSO with 12 

rules and 10 inputs.  

The status of membership functions of 

ANFIS-SFLA inputs as an example for the 

first rule, before and after applying the 

optimization algorithm is shown in Fig 6. 

Figure (a) shows the membership functions 

of the first input obtained from FCM and 

Figure (b) shows the same functions after 

applying the SFLA algorithm. Figure (c) 

shows the membership functions of the first 

input obtained from FCMWFWC and 

Figure (t) shows the same functions after 

applying the SFLA algorithm. As it is 

known, the latter two forms are similar, 

unlike the previous two forms, and this 

means that FCMWFWC provides close to 

optimal initial conditions for ANFIS-SFLA. 

 

 

 

 

 

 
 

Fig 3. Initial conditions of 1’st membership function  
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In this section, we investigate the 

performance of the proposed algorithm 

regarding the local weighting of the 

features. That is, we aim to examine 

whether the proposed algorithm and its 

competitors, EWFCM [61], RLFWHCM 

[60] and SCAD2 [59] properly assign 

weights to features or not. To this end, we 

use the synthetic dataset. To demonstrate 

the importance of each feature in this 

dataset, we visualize the data in different 2D 

subspaces. Fig. 6 presents the result of this 

visualization. From this figure, it is 

understood that Cluster1 and Cluster2 are 

mostly formed based on Feature1 and 

Feature2, and Cluster3 and Cluster4 are 

mostly formed based on Feature2 and 

Feature3. This means that the first and the 

second features in Cluster1 and Cluster2 are 

more important than the third and the fourth 

features. Similarly, the second and the third 

features in Cluster3 and Cluster4 are more 

important than the first and the second 

features. We run the proposed algorithm 

and the other three algorithms. After the 

completion of the clustering process, we 

evaluate the weights of the features found 

by each algorithm. Table 2. compares the 

values of the weights obtained for each of 

the features in different clusters using 

different algorithms. As shown in this 

figure, the proposed algorithm compared to 

the other algorithms, assigns more weight to 

the first and the second features in Cluster1 

and Cluster2, and to the second and the third 

features in Cluster3 and Cluster4. The 

differences in the weights found for the 

various features are fully consistent with the 

prediction made based on the data 

visualization in Fig. 6. This clearly shows 

that our algorithm does local feature 

weighting properly. The SCAD2 algorithm 

correctly performed weighting of the 

features in Cluster1 and Cluster3. 

However, in Cluster2 and Cluster4, the 

weighting of the features was not done 

correctly. This is due to the fact that the 

importance of the features in those clusters 

was not properly recognized. So in SCAD2, 

the weight of the features does not properly 

represent the importance of each feature in 

each cluster. 
 

 

 

Fig 4. Visualization of synthetic dataset in various subspaces of 2D features. 
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Fig 5. The performance of different algorithms using the selected initial points 

 

 

 

 

 

Table 2. The performances of the proposed algorithm and EWFCM on the dataset. 
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Conclusion 

    So far, numerous researches have been 

conducted in designing clustering 

algorithms that can benefit from feature 

weighting. Extensive researches have also 

been proposed to reduce the sensitivity of 

the fuzzy c-means algorithm with respect to 

initialization. Till now, however, feature 

weighting in a local manner and not being 

sensitive with respect to initialization has 

not yet been applied simultaneously. In this 

research, a clustering algorithm was 

proposed. The algorithm assigns weights to 

the clusters based on their intra cluster 

distances, and also, it takes the importance 

of the features in each cluster into account 

(sum of the intra-cluster weighted feature 

distance). The results of the experiments on 

a large real world dataset as well as a 

synthetic dataset confirmed that the 

proposed algorithm has a very promising 

performance, and it is not sensitive to the 

initialization of the cluster centers, even for 

bad initialization, and demonstrated better 

clustering results than the competitors. 

According to the nature of the algorithm 

designed in the proposed method and the 

results of extensive experiments on various 

datasets, it seems that the proposed method 

can be efficiently used as an online feature 

weighting and cluster weighting-based 

clustering method on big data clustering 

and co-clustering applications. As a future 

direction, we are interested in improving the 

proposed algorithm using Kernel-based 

clustering approach [62] which allows the 

algorithm to distinguish the clusters that 

have linearly non-separable patterns or non-

hyper-spherical shapes. 
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