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Abstract:  

In sliding mode control, the sliding movement can be divided into two phases: reaching phase and 

sliding phase. In each phase, we face a series of problems. In the sliding phase, switching leads to the 

occurrence of undesirable chattering phenomenon, so that such high frequency oscillations stimulate 

the unmodeled dynamics of the system and may cause damage to the controlled device. In this paper, a 

fuzzy-sliding model controller (FSMC) is presented to solve this problem. On the other hand, during the 

reaching phase, SMC is sensitive to parameter uncertainty and external disturbance. In the continuation 

of the paper, a sliding mode fuzzy controller (SMFC) with a moving sliding surface to minimize or even 

eliminate the reaching phase is introduced.    
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1. Introduction  

The dynamic equations of the robot 

manipulator are non-linear and interdependent. 

In addition, these equations include structural 

and non-structural uncertainties. Sliding mode 

control (SMC) was investigated as an 

efficient and robust method in controlling 

system uncertainties and external disturbances 

by Utkin in 1978 [1]. Sliding mode control is 

one type of variable-structure control scheme. 

Normally, two steps, namely the reaching and 

sliding phases, are necessary in the design of 

sliding mode controller. Therefore, the 

sliding mode controller usually consists of an 

equivalent law and a switching law. The 

equivalent law is given so that the states can 

stay on sliding surface. The switching law is 

used to drive the state trajectory to the sliding 

manifold [2]. Despite its good robust 

properties, this controller has some problems 

that we use intelligent control techniques to 

solve in this paper. 

In the past three decades, fuzzy systems 

have replaced conventional technologies in 

many applications, especially in control 

systems. One major feature of fuzzy logic is 

its ability to express the amount of ambiguity 

in human thinking. Thus, when the 

mathematical model of one process does not 

exist, or exists but with uncertainties, fuzzy 

logic is an alternative way to deal with the 

unknown process [3]. But, the huge amounts 

of fuzzy rules for a high-order system makes 

the analysis complex. 

One of the problems of sliding mode 

control is the occurrence of chattering 

phenomenon. Various methods have been 

proposed to eliminate this problem, including 

defining a boundary layer around the sliding 

surface. It can be reduced and even eliminated 

in some cases, but this is at the cost of 

increasing the permanent error. The use of a 

fuzzy sliding mode controller (FSMC) can 

minimize the mentioned problem in such a 

way that near the sliding surface of a fuzzy 

controller comes into action [4]. 

Another disadvantage of sliding mode 

control is that the system is sensitive to 
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uncertainties in the reaching phase. One of the 

methods to minimize or completely eliminate 

the reaching phase is to use a moving sliding 

surface (MSS) [5-7]. The design of this 

moving surface is done using fuzzy 

knowledge. In the second part of this paper, 

the dynamic equations of a robot manipulator 

are examined and in the third part, a fuzzy 

sliding mode controller is designed. In the 

fourth section, a moving sliding surface has 

been designed using the fuzzy technique. 

Finally, the simulation results on the system 

are given in the fifth section. 

2. Preliminaries and Problem Formulation  

We consider a robot manipulator, described 

by the following equation [8,9].  

𝑀(𝑞) 𝑞 ̈ + 𝐶(𝑞, 𝑞 ̇ ) + 𝐺(𝑞) + 𝐹(𝑞 ̇, 𝜏) = 𝜏 (1)  

 

where 𝑀(𝑞) ∊ 𝐑𝐧×𝐧  is the inertial matrix 

which is a symmetric positive definite matrix, 

𝐶(𝑞, �̇�)) ∊ 𝐑𝐧×𝐧  is the Coriolis matrix and 

𝐺(𝑞) ∊ 𝐑𝐧 is the gravity vector. 𝑞, �̇�, �̈� ∊ 𝐑𝐧 

are the position, velocity and angular 

acceleration vectors of the robot joints. 𝜏 ∊

𝐑𝐧 is the torque vector applied to the joints. 

Also, 𝐹(�̇�, 𝜏)  represents the friction vector 

whose i-th component is in the following 

form: 

𝑓𝑖(�̇�, 𝜏𝑖) =   𝑏𝑖�̇�𝑖 + 𝑓𝑐𝑖𝑠𝑔𝑛(�̇�𝑖) + 

 [1 − 𝑠𝑔𝑛(𝑞 ̇_𝑖 )]𝑠𝑎𝑡(𝜏_𝑖; 𝑓_𝑠𝑖 ) 

)

(2)  

𝑏i, 𝑓ciand 𝑓si are adhesion, coulomb and static 

friction models, respectively. The function 

𝑠𝑎𝑡(. ; . ) is defined as follows: 

𝑠𝑎𝑡(𝜏; 𝑓𝑠𝑖) = {

𝑓𝑠𝑖                                      𝜏𝑖 > 𝑓𝑠𝑖

𝜏𝑖                         −𝑓𝑠𝑖 ≤ 𝜏𝑖 ≤ 𝑓𝑠𝑖

−𝑓𝑠𝑖                                 𝜏𝑖 < −𝑓𝑠𝑖

 

The robot manipulator has the following 

properties: 

Property 1: The matrix �̇�(𝑞) − 2𝐶(𝑞, �̇�) 

is an antisymmetric matrix, that is, it satisfies 

the following condition for every non-zero 

vector 𝑥: 

𝑞T (�̇�(𝑞) − 2𝐶(𝑞, �̇�)) 𝑞 = 0 )3( 

Property 2: �̇�𝑇𝐹(�̇�, 𝜏) > 0  ∀𝜏 ∈ 𝑅𝑛 

Property 3: The components of the gravity 

torque vector G(q) have an upper limit so that: 

𝑠𝑢𝑝{|𝑔𝑖(𝑞)|} ≤ �̅�𝑖                        �̅�𝑖 ≥ 0    

where 𝑔𝑖is the 𝑖-th component of vector 𝐺. 

The maximum torque that the joint actuator 

can provide is 𝜏𝑚𝑎𝑥, as a result: 

|τ𝑖| ≤ 𝜏𝑚𝑎𝑥  , 𝑖 = 1,2, … , 𝑛 

                               𝜏𝑚𝑎𝑥 > �̅�𝑖 + 𝑓𝑠𝑖
 

(4)   

In most cases, the matrices M and G can be 

easily determined, but it is difficult to 

accurately determine C. Therefore, the 

matrix C is considered as follows: 

𝐶 = �̂� + ∆𝐶 )5( 

In this paper, our goal is to design a fuzzy 

sliding model control that tracks the position 

vector 𝑞 of the desired state vector 𝑞𝑑in the 

presence of uncertainty and disturbance. 

3. fuzzy Sliding-Mode Control   

In order to design a sliding mode 

controller, two essential steps should be 

carefully investigated, namely, the selection 

of sliding mode surface and the design of 

control law. 

The selection of sliding mode surface is 

based on desired motion of the system. 

considering the simplicity of design, we 

define a sliding surface as: 

s=e  +λe     (6) 

where 𝑒 = −�̃� = 𝑞 − 𝑞𝑑_d and λ is a positive 

definite matrix. By defining the reference 

velocity vector as �̇�𝑟 = �̇�𝑑 − 𝜆𝑒, the sliding 

surface can be defined as follows: 

𝑠 = �̇� − �̇�𝑟 (7) 

In order for the states of the system to reach 

the sliding surface and remain on it, the 

following condition, which is known as the 

sliding condition, must be satisfied [1,10]: 
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1

2

d

dt
[𝑠𝑇𝑀𝑠] < −𝜂(𝑠𝑇𝑠)

1
2⁄  

)8) 

where η is a positive definite matrix. 

By stating the following lemma, we design 

a sliding mode controller for a robot 

manipulator. 

Lemma 1: By defining the sliding surface 

(6) and the following control law for the 

system (1), the sliding condition (8) is 

satisfied. 

τ = τ̂ − 𝐾𝑠𝑔𝑛(𝑠) (9)  

Where 

 

τ̂ = 𝑀�̈�𝑟 + �̂��̇�𝑟 + 𝐺 )10( 

 

𝐾𝑖 ≥ ‖∆𝐶�̇�𝑟‖ + Γ𝑖 (11)  

 

 

Γ ∈ 𝑹𝑛 is a design parameter and should be 

designed in such a way that: 

Γ_i≥F_up+η_i (12) 

 

Proof 1: Consider the following Lyapunov function: 

   𝑉 =
1

2
𝑠𝑇𝑀𝑠 )13) 

 

Considering that the matrix M is a positive definite 

matrix, therefore, if 𝑠 ≠ 0, 𝑉 > 0, and deriving from 

𝑉, we will have: 

  �̇� = 𝑠𝑇𝑀�̇� +
1

2
𝑠𝑇�̇�𝑠 (14 (  

 

Using relation (7), we have: 

�̇� = 𝑠𝑇(𝑀�̈� − 𝑀�̈�𝑟) +
1

2
𝑠𝑇�̇�𝑠 

(15) 

 

By putting relation (1) in (15) and property 1, 

the following result is obtained: 

�̇� = 𝑠𝑇(𝜏 − 𝐶�̇�𝑟 − 𝐺 − 𝐹 − 𝑀�̈�𝑟) (16) 

 

By putting relations (9) and (10) in the above 

relation, it is obtained: 

   �̇� = −𝑠𝑇(∆𝐶�̇�𝑟 + 𝐹) − ∑ 𝐾𝑖|𝑠𝑖|
𝑛
𝑖=1  (17) 

 

 

The above relation shows that the derivative 

of the Lyapunov function satisfies the sliding 

condition (8). 

In order to reduce the phenomenon of 

chattering, we define a boundary layer with 

thickness 𝜑  around the sliding surface. For 

this purpose, we replace the saturation 

function 𝑠𝑎𝑡 , which is defined as follows, 

with 𝑠𝑔𝑛 in equation (9). 

𝑠𝑎𝑡 (
𝑠

𝜑
)

= {

𝑠𝑔𝑛 (
𝑠

𝜑
)        |𝑠| ≥ |𝜑|  

𝑠

𝜑
                   |𝑠| < |𝜑|

           
(18) 

  

In the following, we will design a simple 

Sugeno type fuzzy controller. The fuzzy rule 

base includes the rules if then two inputs one 

output as follows: 

IF 𝑥1 is 𝐴1
𝑙1  and 𝑥2 is 𝐴2

𝑙2THEN 𝑦 is 

𝐵𝑙1𝑙2    

(19) 

For each input fuzzy set 𝐴
𝑗

𝑙𝑗
 and output fuzzy 

set 𝐵𝑙1𝑙2 exist an input membership function 

𝜇
𝐴

𝑗

𝑙𝑗(𝑥𝑗) and output membership function 

𝜇𝐵𝑙1𝑙2 (𝑥𝑗) , respectively. 𝑙𝑗 = −(𝑁1 − 1)/

2, … . , −(𝑁𝑗 − 1)/2  and 𝑁𝑗 is the individual 

number of membership functions 

corresponding to input j. The output variable 

of the fuzzy controller can also have an 

individual number, N, of membership 

functions 𝜇𝐵𝑙(𝑦)  with 𝑙 = −(𝑁 − 1)/

2, … . , −(𝑁 − 1)/2. 

In the following, we consider an SFC with 

a single fuzzifier, the number 𝑁𝑗of triangular 

membership functions for each input with 

j=1,2 (Figure 1), the number N of single 

membership functions for the output (Figure 

2), the fuzzy rule base defined by (19) (Table 

1), inferring the product of the average 

centers and de-fuzzifier. 
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Fig.1. Membership functions for inputs �̃� and �̇̃� 

 

 
Fig.2. Individual membership functions for 

output 𝜱(�̃�, �̃�)̇ 
 

Table1. Rule base 

 

In order to use the advantages of sliding 

mode and fuzzy controllers simultaneously 

and to minimize the disadvantages of each of 

them, we propose the following collaborative 

controller: 
 

𝜏 = {
�̂� − 𝐾𝑠𝑔𝑛(𝑠)                  |�̃�𝑖| ≥ 𝛼

𝜱(�̃�, �̃�)̇ + 𝐺(𝑞)              |�̃�𝑖| < 𝛼
 (20) 

where α is a positive parameter. If the error is 

greater than α, the sliding mode controller 

will operate, and if the error is less than this 

value, the fuzzy controller will operate. In the 

vicinity of the sliding surface, the phenomenon 

of chattering occurs, which stimulates both 

unmodeled high-frequency dynamics and 

increases the input torque, so by using a fuzzy 

controller in relation (20) Overcame these 

problems. In addition, the overall structure of 

fuzzy sliding mode control technique in the 

robot manipulator can be shown in Figure 3. 

 

Fig. 3. Overall fuzzy sliding mode control scheme 

4. Moving Sliding Surface Design 

One of the problems of the classic sliding 

mode controller is that it is robust only in the 

sliding phase of the uncertainty and the 

disturbance, and it is not robust in the 

reaching phase. One of the proposed solutions 

is to minimize the reaching phase by rotating 

or shifting the sliding surface, which is called 

the moving sliding surface (MSS) [11,12]. 

For the robot with dynamic equation (1), 

the moving sliding surface is considered as 

follows: 

𝑠(𝑒, �̇�, 𝑡) = �̇� + 𝜆𝑒 − 𝛾 (21) 
 

The rotation of the surface is done by 

changing 𝜆, which is the slope of the surface, 

and the displacement is done by changing the 

value of 𝛾 . In second-order systems, if the 

initial condition is in quadrant one or three, 

we will shift the sliding surface, and if it is in 

quadrant two or four, we will rotate it.  

Based on the above statements, the control 

law of the sliding mode with a boundary layer 

and a moving sliding surface is as follows: 
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𝜏 = �̂� − 𝐾  𝑠𝑎𝑡(
�̇� + 𝜆𝑒 − 𝛾   

𝜑
) 

)22) 

We will use fuzzy logic to adjust the values 

of 𝜆 and 𝛾 and adjust them based on the error 

and error changes. With two inputs and two 

outputs, the fuzzy rules in the simple Sugeno 

method are as follows: 

𝑰𝑭 �̃� 𝑖𝑠 𝐴𝑖 𝑎𝑛𝑑 �̇̃� 𝑖𝑠 𝐵𝑖   THEN  

𝜏 = �̂� − 𝐾  𝑠𝑎𝑡(
�̇� + 𝜆𝑖𝑒 − 𝛾𝑖    

𝜑
) 

(23)  

First, for each of the inputs �̃� and �̇̃�, we define 

six membership functions 

{𝑁𝐿, 𝑁𝑆, 𝑁𝑍, 𝑃𝑍, 𝑃𝑆, 𝑃𝐿} according to Figure 4, 

then the Sugeno fuzzy rule base to obtain 𝜆𝑖 

and 𝛾𝑖as Tables 2 and 3 is considered. 
 

 

Fig. 4. Membership functions for inputs �̃� and �̇̃� 

 

 

Table 2: Rule base forλ_i 

 
 

 

Table 3: Rule base for γ_i 

 
 

5. Simulation Results 

The proposed methods in this article are 

implemented on a robot with the following 

parameters: 

𝑚1 = 10  m̂2 = 5  l1 = 1  𝑙2 = 0.5  𝑙𝑐1
= 0.5  𝑙𝑐2

= 0.25 

𝐼1 = 10
12⁄   𝐼2 = 5

12⁄  
0 ≤ ∆𝑚2 ≤ 2  0 ≤ ∆𝑙𝑐2

≤ 0.25  0 ≤ ∆𝐼2 ≤ 0.5 

The desired state vector is considered as 

𝑞𝑑 = [𝜋 − 𝜋]𝑇 and the design parameters of 

the sliding mode controller considered as 𝜆 =

[
2 0
0 4

]  ,   𝐾 = [
75 0
0 110

]. 

 

Due to the fact that if the input torques 

exceed a certain limit, the problem of 

saturation of the actuator of the joint will 

arise, so we are facing a limitation in the 

application of input torques. For the robot 

model that we have simulated, the maximum 

torque applied to the first joint is 150 and for 

the second joint is 15. 

Figures 5, 6, and 7 show the results of 

classic sliding model control simulations, and 

figures 8, 9, and 10 show the results of fuzzy-

sliding model cooperative controller 

simulations. Finally, figures 11, 12, and 13 

show the controller simulation results with a 

moving sliding surface. As can be seen from 

the figures, the problem of chattering around 

the sliding surface has been solved in the 

cooperative controller, and the sliding surface 

is much smoother than the sliding surface of 

the classical sliding mode controller. Figures 

11 and 12 clearly show that the sliding phase 

in the controller with the moving sliding 

surface has reached its minimum possible. 
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Fig.5. Classic sliding mode control tracking error 

 
Fig. 6. Control inputs of classical sliding mode 

control 

 

Fig.7. Close-up view of classic sliding mode control 

sliding surfaces 

 

 

Fig.8. Tracking error of fuzzy-sliding mode 

cooperative control 

 
Fig. 9. Control inputs of fuzzy-sliding mode 

cooperative control 

 

Fig. 10. Close-up view of fuzzy-sliding 

cooperative control sliding surface 

 

Fig. 11. Tracking error of sliding mode control 

with moving surface 

 

 
Fig.12. Control inputs of sliding mode control with 

moving surface 
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Fig. 13. Close-up view of the moving sliding 

surface 

Conclusions 

In this paper, by using fuzzy knowledge, 

we solved two major problems of classical 

sliding model control. The first problem was 

the chattering around the sliding surface, 

which we minimized by using a sliding 

mode-fuzzy cooperative controller. In this 

method, the sliding mode control works 

first, and the proximity of the sliding surface 

of the fuzzy control is implemented. The 

second problem was that the sliding model 

control was not robust in the reaching phase, 

and by defining a moving sliding surface, 

we were able to minimize the sliding phase. 
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