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Abstract 

In this paper, it is discussed how Zadeh’s extension principle (ZEP) can be used for uncertainty 

analysis of a system. For this end, basic concepts of the fuzzy mathematics including fuzzy sets, fuzzy 

numbers and ZEP are briefly presented. A comparison made among the results obtained by the 

sensitivity analysis, ZEP and Monte Carlo (MC) methods. It is shown that ZEP gives the same outputs 

as the MC method and is in full agreement with the concept of “uncertainty”. The sensitivity analysis 

result is not the same as the uncertainty analysis and, often results in smaller range for the output 

parameters.  

Keywords:Uncertainty, Sensitivity, Fuzzy mathematics, Zadeh’s extension principle, Monte Carlo 
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1. Introduction 

Every system or model includes several 

input parameters. Often, values of these 

parameters directly or indirectly are 

collected from experimental measurements. 

For example, there is tremendous 

information on thermos-physical properties 

of different materials in Handbooks which 

report the experimental data. An important 

point should be considered whenever this 

information is used. That is an inevitable 

uncertainty associated with this information 

[1]. The uncertainty pertains to both the 

conditions in which the experiments have 

been conducted and limited accuracy of the 

measuring instruments.  None of the two 

uncertainty sources can be completely 

removed. A part from the uncertainty 

inherited in the input data of a system, the 

system itself is exposed to some 

uncertainties. Because, often, the real 

conditions of the understudy system, differ 

from the conditions represented in 

Handbooks. Therefore, it is vital to know 

how accurate is the outputs of a study. 

Particularly, whenever more accurate data 

are needed for decision making, the 

importance of the uncertainty increases [2].  

Suppose that a system involves with 

several interval-valued inputs. What will be 

the output interval? The answer of this 

question comes from the uncertainty 

analysis. In a more general definition, the 

uncertainty analysis determines the 

probability of an output variable based on 

the probability of input parameters [3]. 

In engineering investigations, often, the 

uncertainty of a parameter is presented by 

adding and subtracting a value from the main 

magnitude of the parameter. For instance, 

the electrical current is reported as 

5 0.2I A  .This means that, I , would take 

any value in the interval [4.8,5.2]A and there 
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is no difference between the values 

belonging the interval [4.8,5.2]A . However, 

in practice, based on the experience and 

opinion of experts, might it be desired not to 

treat them equally. For this purpose, the 

input parameters should be considered as 

fuzzy numbers [4]. By using the concept of 

fuzzy sets, it is possible to put a difference 

among the authorized values of a parameter 

with the aim of “membership degree 

function”.   

Due to its vital importance, there are a huge 

number of researches in the field of 

uncertainty [1-5]. Depending on the 

problem, there are various approaches for 

uncertainty analysis [6]. Usually, the 

accuracy of these methods are evaluated by 

the Monte Carlo sampling (MCS) method in 

which a random value is chosen for every 

input parameter corresponding to its 

authorized interval. Then the system is run to 

produce the output. This process is done for 

many times (often more than 200 tines) and 

the outputs are determined. 

In this paper, we use the so-called interval 

arithmetic based on the Zadeh’s extension 

principle for the uncertainty analysis of a 

system. This method can be very useful, 

specifically, when an explicit expression is 

available for the output. The results are 

compared with the MC method showing 

very good agreement. Also, it is shown that 

the sensitivity analysis cannot be replaced 

with the uncertainty analysis, the case that 

often occurs in the engineering literature 

[5,7]. 

2. Basic concepts in fuzzy Mathematics 

In this part, some basic and necessary 

definitions are stated in the field of fuzzy 

mathematics. 

2.1. Fuzzy number definition 

Fuzzy numbers are generalizations of 

classical real numbers. Whenever there is an 

uncertainty in a numerical variable, for example, 

an expression like almost 3 or close to 5.5, it 

is desired to use fuzzy numbers. In fact, 

fuzzy numbers are fuzzy subsets of real 

numbers that also have some characteristics.  

A fuzzy set u is called a fuzzy number if it 

holds the following properties [8]: 

1. u  is normal, that is 
0 0, ( ) 1u x    x   , 

2. u  is fuzzy convex, that is for  0 1t   and 

,x y  :

       1 min ,  u u utx t y x y     ,  

3. u  is upper-semicontinuous, that is 

   
0

0 lim supu u
x x

x x 


 , 

4. u  has a compact support. In other phrase: 

  | 0ux x   is a compact set. 

In a simpler way, a fuzzy number u  is a 

upper semicontinuous function (membership 

function) defined on interval [ , ]a d  where 

there exist , [ , ]b c a d  ( b c ) such that u  is 

non-decreasing on [ , ]a b , non-increasing on 

[ , ]c d  and equal to 1 on [ , ]b c . The set of all 

fuzzy numbers is denoted by  The most 

common and applicable fuzzy numbers are 

triangular and trapezoidal fuzzy numbers 

due to their simplicity.  

2.2. Trapezoidal fuzzy number 

 A trapezoidal fuzzy number is denoted the 

by ( , , , )u a b c d  and its membership function 

is:  

 u

x a
a x b

b a

1 b x c
μ x

d x
c x d

d c

0


  


 

 
  

 

 otherwise

 (1) 
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A typical trapezoidal fuzzy number is seen in 

Fig. 1. (a triangular and interval fuzzy 

number can be produced by the trapezoidal 

fuzzy number) 

 
Fig. 1. A typical trapezoidal fuzzy number 

2.3. Triangular fuzzy number. 

 This is the most common fuzzy number 

and has been used in tremendous 

investigations [9]. A triangular fuzzy 

number is denoted by the triple ( , , )u a b c  

and its membership function is: 

 u

x a
a x b

b a

c x
μ x b x c

c b

0 otherwise


  




  






 (2) 

A typical triangular fuzzy number is seen in 

Fig. 2.  

 
Fig. 2. A typical triangular fuzzy number 

2.4. Interval fuzzy number 

 The interval numbers can be considered 

as special case of the trapezoidal fuzzy 

number. Its membership function reads: 

 u

b
μ x

1 a

0

x

otherwise

 
 


 (3) 

A typical interval fuzzy number is seen in Fig. 

3.  

 
Fig. 3. A typical interval fuzzy number 

2.5. Uncertainty of a fuzzy number.  

The uncertainty of a fuzzy number u  is 

denoted by uUn , or u  which is equal to the 

length of its support, that is, if [ , ]Suppu a c , 

then: 

.uUn c a   (4) 

 It is clear that the uncertainty defined by 

Eq. (2) is an absolute quantity with a 

dimension. A dimensionless parameter 

named percentage uncertainty is defined as: 

 % 100%.u
c a

Un
c a


 


 (5) 

2.6. r-cuts. 

 The most important concept related to a 

fuzzy number is r -cut [10]. This concept is 

a key tool for computing with fuzzy 

numbers. In addition to the membership 

function, the fuzzy number u is denoted by 

r-cut, which is equal to the members of the 

universal set P whose degree of membership 

is at least equal to r  and is denoted by ru . 

The r -cut of a fuzzy number is always a 

closed and bounded interval and is given as 

a subscript  



Journal of Artificial Intelligence in Electrical Engineering, Vol. 10 , No. 39, December 2021 

25 

 

  

  

| 0 1

|
,

0u

r r

u

r

x x
u u

x
u

x

  

  

 
           





 

(6) 

3. Extension Principle 

 In the real world, in most cases we deal 

with equations with uncertain parameters, in 

such cases we have to find the fuzzy 

equivalent form of operators that we perform 

on real numbers in the deterministic state. 

For example, assume that we want to find the 

solution of the equation 0ax b   under the 

conditions that ,a b  are uncertain. In such 

cases, the extension principle should be 

used. In fact, the extension principle is an 

important mathematical tool that is used to 

develop theories and operators of classical 

mathematics in fuzzy environments. The 

extension principle allows us to calculate the 

parameters of a function in fuzzy sets.  

3.1. One-dimensional extension principle  

 Assume that :f X Y  is a function where 

X and Y  are classical sets. Then, f  can be 

generalized to a fuzzy function, where the 

domain and range of the function are the set 

of fuzzy subsets of X  and Y  denoted by 

 X  and  Y , respectively, i.e. 

   :F X Y , such that if  u X , then   

   v F u Y   with the membership 

function  

 

      

 

1

1

sup | ,

0

v

u

y

x x X y f x f y

f y



 





   


 

 (7) 

where   is the empty set [11]. 

3.2. Multi-dimensional extension principle 

 Let 
1 2, ,..., nX X X  be n sets and 

1 2 ... nX X X X     

be their Cartesian multiplication and let

:f X Y .   

If 
1 2, ,..., nA A A  are fuzzy subsets of 

1 2, ,..., nX X X , then 
1 2( , ,..., )nB f A A A  is fuzzy 

subset of Y  with the membership function 

      
1

1

1
( ,..., )

sup min ,...,
n

nB n
y f x x

A Ay x x  


  (8) 

where  1f y   otherwise,   0B y   [11]. 

Note that the extension principle, often is 

complicated and tedious to use in general 

cases. Therefore, the following theorems 

commonly called “Neguyen theorems” [12] 

are introduced as an alternative to the 

extension principl. Based on these theorems, 

in the cases dealing with fuzzy numbers, the 

function acts on fuzzy numbers instead of 

fuzzy sets. 

Theorem 1. Let :f   be a continuous 

function. if we show the extension of this 

function by F  , then :F   it means 

that it will take every fuzzy number to a 

fuzzy number, and if u   then 

( )v f u   and for every [0,1]r , 

( )r rv f u . That is, if [v ,v ]r r rv    then 

 

 

v inf ( ) |

v sup ( ) |

r r

r r

f x x u , 

f x x u





 

 
 (9) 

This theorem is also valid in multivariate 

cases. 

Theorem 2. Let :f    be a 

continuous function. if we show the 

extension of this function by F  , then 

:F    it means that if ,u v   

then ( , )w f u v   and for every [0,1]r , 

( , )r r rw f u v that is, if [v ,v ]r r rv    then 

 

 

inf ( , ) | ,

sup ( , ) | ,

r r r

r r r

w f x y x u y v

w f x y x u y v





  

  
 (10) 
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The mentioned two theorems make it easier 

for us to fuzzify functions, so that instead of 

directly using the expansion principle, we 

obtain the expansion of the function by using 

r-cuts and calculating intervals. 

4. Fuzzy binary arithmetic operations 

 Let ,u v   and  . Using Eqs. (9-10) 

presented in the theorem1 and 2, we have 

[12]:  

1. Sum and scalar product: 

[ , ]

[ , ] 0

( ) ,

0
( )

r r

r r

r r r r r

r

u v u v u v

u u
u

u u

  


  
 

 

    
 


 



   

  (11) 

2. Subtraction: 

( ) ,r r r r ru v u v u v    
 

     (12) 

3. Multiplication: 

( . ) ,r r ruv w w  
 

  

Where, 

 

 

min , , ,

max , , ,

r r r r r r r r r

r r r r r r r r r

w u v u v u v u v

w u v u v u v u v

        

        




 (13) 

4. Division: 

,r r
r

u

v
w w        

  (14) 

where, 

min , , ,

max , , ,

r r r r

r r r r

r r r r

r r r r

r

r

u u u u

v v v v

u u u u

v v v v

w

w

   

   

   

   





  
 
  

  
 
  





 (15) 

provided that 0
0 v . 

5. Uncertainty Analysis 

Uncertainty is one of the most important 

subjects in scientific data. In fact, it 

determines the accuracy of a given variable 

or the confidence of a given result. 

Depending on the case, there are different 

methods for assessing the uncertainty. The 

uncertainty of a typical parameter, x, is 

usually denoted by x . Also, percentage 

uncertainty of x is denoted by %xUn  which 

is define d as: 

% 100%.x

x
Un

x


   (16) 

Whenever there is a formula for an output 

parameter, a method called sensitivity 

analysis is probably the most common 

approach for obtaining the uncertainty. In the 

following, a brief description is given for the 

sensitivity analysis 

3.1. sensitivity analysis  

The sensitivity analysis is used to determine 

how the uncertainty of the output parameter 

depends on the uncertainty of all the involving 

parameters in the case understudy [13]. 

From the sensitivity analysis it can be 

realized which parameter or parameters 

mostly affect the output value. Particularly, 

in the experimental studies, it is very 

important and useful to do a robust sensitivity 

analysis before manufacturing the test loop 

to identify the more sensitive variables. 

Assume that T is a variable dependent to 

several parameters as: 

1 2( , ,... ) nT T x x x  

The uncertainty of T depends on the 

uncertainty of ix through the corresponding 

sensitivity coefficient,   iT x ,  

 
1/2

2 2

1 2
1 2

2

. .

... . n
n

T T
x x

x x
T

f
x

x

     
       
     

   
  

   
   

 (17) 
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6. Sensitivity analysis vs Zadeh’s 

Extension Priciple 

In this section a comparision is made 

between the results of the sensitivity method 

and ZEP in terms of the uncertainty.  

Without losing generality, assume T is a 

variable which depends on 1x  and 2x  trough  

1 2
1 2 1 21 2( , )  

m m
T x x a x a x , where, the 

coefficients 1a  and 2a  and the powers 1m  

and 2m  are crisp values. This means that no 

uncertainty is considered for them. Also, 

assume 1x  and 2x  are uncertainty of 1x  

and 2x , respectively. The uncertainty of T

can be calculated based on the sensitivity as 

presented in Eq. (17). Numerical value of T

can be reported by T T which is 

obviously an interval value as seen in Fig. 3. 

Therefore, having the fuzzy mathematics 

concepts in mind, 1 2( , )T x x , would be 

considered as a fuzzy number or fuzzy 

number-valued function. This gives us a clue 

that the uncertainty of T can be achieved by 

the fuzzy arithmetic operations based on 

ZEP. For this end, 1x  and 2x  should be 

considered as two interval fuzzy numbers 

and the relation 1 2
1 2 1 21 2( , )  

m m
T x x a x a x  

should be done according to one of the fuzzy 

calculation methods such as ZEP. Some 

examples are given below for meaningful 

comparison between the results of the two 

above-mentioned approaches. 

7. Numerical Example 

Suppose that it is required to measure the 

dynamic viscosity of a liquid through a 

simple experimet as shown in Fig. 4. For this 

end, a small and smooth ball is slowly dropt 

in a column of the liquid. The ball diameter 

and mass are 5 0.1d mm   and  

0.54 0.04m gr  , respectively. After a while, 

the ball reaches a steady downward motion 

with the velocity 84 2u mm s   . 

Determine the dynamic visosity of the 

liquid. 

Solution: The liquid dynamic viscosity can 

be determind, straforwardly. Ignoring the 

wall effect [14], the steady drag force 

( 3 u d  ) wil balance with the gravity force 

( mg ). Therefore:  

3

3 3

0.54 10 9.81
1.34 .

3 3 84 10 5 10

mg
Pa s

u d


 



 


 
  

   

The uncertainty of m , u  and d  are: 

5

4

0.04 4 10

2 0.002

0.1 10    

m gr kg

u mm s m s

d mm m







   

  

  

 

Using Eq. (17). the uncertainty of   reads: 

   

22 2

2 22

2 2

2 22

. . .

. .

3

9.81
(0.095) 0.031 0.026

3 3.14

0.11 .

     

     

     

m u d
m u d

m ug m m d

u d du u d

Pa s

  









  

      
          

      

      
               

  




 

Therefore, we have 1.34 0.11 .Pa s   or in the 

form of fuzzy interval number [1.23,1.45] .Pa s . 

Now, we can obtain a fuzzy interval value 

for the dynamic viscosity of the fluid,  , by 

using ZEP (Eqs. 11-15). For this end, m , u  

and d  should be rewriten as fuzzy interval 

values. i.e.  

[0.5,0.58] ,

[82,86] ,

[4.9,5.1] .

 

m gr

u mm s

d mm







 

 

Sucequently, 
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2

3 2

[0.082,0.086] [0.0049,0.0051]

[0.082 0.0049,0.086 0.0051]

[0.402,0.439] 10

      

      

u d m s m

m s

m s





 

  

 

 

and, 

3

3 2 2

[0.5,0.58] 10 .
[1.139,1.443]

[0.402,0.439] 10

m kg kg s

u d m s m







 



By subistituding [1.139,1.443]m u d   in the 

formula derived for  , we have: 

  

Fig. 4. Schematic of the numerical example 

2

9.81 .
[1.139,1.443]

3 3 3.14

[1.19,1.5] . 

mg N kg kg s

u d m

Pa s


 

  




 

Let compare the two results: [1.23,1.45] .Pa s

by the sensitivity analysis and [1.19,1.5] .Pa s  

by the Zade’s extension principle. It is clear 

that the second interval is almost 41%  wider 

than the first one. The percentage 

uncertainties based on Eq. (5), are 8.2% and 

11.5% for the Sensitivity and ZEP method, 

respectively. 

Naturally, this quary comes to mind that 

which of them is more correct or more 

acceptable. For this resion, based on Monte 

Carlo sampling methods [15], we calculated 

 , one thousand times based on the random 

inputs for m , d  and u  in their 

corresponding intervals specified in the 

example and, plotted  versus   in Fig. 5. 

As seen, obviously, some of the resulted 

points are out of the interval obtained by the 

sensitivity method (rectangular region in 

Fig. 5), while, all of them are within the 

interval calculated by ZEP. Therefore, this 

 
Fig. 5. Plot of Monte Carlo method results 

for  . 

example shows that the uncertainty obtained 

by the ZEP is more complete and 

consequently more acceptable than the 

sensitivity analysis method. It is worthy to 

note that as pointed out in several references, 

the sensitivity analysis and uncertainty 

analysis are not equivalent [16-17]. A typical 

sensitivity analysis of a system determines 

that how much variation would be occurred 

in a system if an input parameter varies in a 

certain range. While, it is expected that by 

the uncertainty analysis of a system, all 

possible outputs are recognized. However, 

correct or mistake, in engineering literatures, 

often, the results of a sensitivity analysis are 

considered as the uncertainty analysis [5, 7, 

18]. The example shows that the arithmetic 

calculations based on ZEP are more 

compatible with the concept of the 

uncertainty.  
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Conclosions 

In this paper, Zadeh’s extension principle 

(ZEP) was used for uncertainty analysis of 

systems. Results obtained by ZEP, the 

sensitivity analysis and Monte Carlo methods 

are compared. It was demonstrated that ZEP is 

a reliable approach for the uncertainty 

analysis of systems and gives the same 

results as the Monte Carlo sampling method. 

It was emphasized that the sensitivity analysis 

should not be used as an equivalence for the 

uncertainty analysis because, it does not 

include all possible outputs of an uncertain 

system. 
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