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Abstract 
Landslide susceptibility analysis is beneficial information for a wide range of applications. We aimed 
to explore and compare three machine learning (ML) techniques, namely the random forests (RF), 
support vector machine (SVM) and multiple layer neural networks (MLP) for landslide susceptibility 
assessment in the Ahar county of Iran.  To achieve this goal, 10 landslide occurrence-related influencing 
factors were pondered. A sum of 266 locations with landslide potentiality was recognized in the context 
of the study, and the Pearson correlation technique utilized in order to select the influencing factors in 
landslide models. The association between landslides and conditioning factors was also evaluated using 
a probability certainty factor (PCF) model. Three landslide models (SVM, RF, and MLP) were 
structured by the training dataset. Lastly, the receiver operating characteristic (ROC) and statistical 
procedures were employed to validate and contrast the predictive capability of the obtained three 
models. The findings of the study in terms of the Pearson correlation technique method for the 
importance ranking of conditioning factors in the context area uncovered that slope, aspect, normalized 
difference vegetation index (NDVI), and elevation have the highest impact on the occurrence of the 
landslide.  All in all, the MLP model had the utmost rate of prediction capability (85.22 %), after which, 
the SVM model (78.26 %) and the RF model (75.22 %) demonstrated the second and third rates. Besides, 
the study revealed that benefiting the optimal machine with the proper selection of the techniques could 
facilitate landslide susceptibility modeling. 
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1. Introduction 
Landslides are complex natural disasters 

that are frequently initiated several fatalities 
and casualties globally[1]. These occurrences 
have the potential to risk the lives of people 
and infrastructures of the nations in various 
areas around the world with immense social-
economic consequences [2]. To this end, 
pinpointing the zones with landslide 
vulnerability is an effective technique to 
avert and decrease plausible damages. The 
landslide susceptibility modeling is extensively 
acknowledged that prediction accuracy 
outcomes are highly relies on the exploited 
data quality, conditioning factors, environmental 
conditions, topographic features of the 
region, and landslide inventory. Therefore, 
landslide susceptibility mapping (LSM) is 
multi-criteria in nature which requires 

several indicators from different resources to 
be taken into account of spatial modeling 
[3]. 

A review of research background signifies 
that various methods of preparing hazard 
maps and landslide susceptibility have 
recently been established using statistics, 
deterministic, and heuristic Statistical 
models, such as multivariate analysis [4], 
weights of evidence [5], Probabilistic 
models (e.g., FR) [6] evidential belief 
function [7], analytical hierarchy process 
[8], and Certainty factor [9] have been 
exploited by a great deal of the 
aforementioned studies. The heuristic 
method is developed in accordance with 
experts-related ideas and experiences with 
the intention of assigning various weights to 
different influencing factors. Nevertheless, 
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the method would not produce satisfactory 
results due to the limited study area data and 
low rate of reproducibility [6]. The 
deterministic model entails in-depth features 
of slopes [10] and is not appropriate for 
landslide susceptibility appraisals owing to 
the potential complications in the modeling 
and calculation procedure [11]. 

The involvement of judgments with 
subjectivity as well as disability in the 
quantification of each contributing factor is 
among the main shortcomings of the so-
called qualitative or semi-quantitative 
approaches. The outcomes of these 
approaches are sensitive to the exports’ 
knowledge, which makes them subjective to 
some extent. Quantitative methods exploit 
the mathematically-induced models in order 
to measure the landslide occurrence 
plausibility in an area and specify the 
hazardous zone on a continuous scale [12]. 
Studies that are conducted on landslide 
susceptibility have also used machine 
learning (ML) in their modellings due to the 
enhanced processing capability of the ML on 
the data in dynamic conditions or environments 
with uncertainty. For instance, models such 
as Naive Bayes [13],[14], Multi-Layer 
Perceptron [15],[16], Decision Tree [17], 
Neuro-Fuzzy [18], Support Vector Machine 
[19], Logistic Regression [20], and Reduced 
Error Pruning Trees [21] are among the so-
called ML methods. Therefore, ML 
approaches are considered to be promising 
in spatial prediction of landslide. 

Although plenty of methods and models 
have been exploited to create maps of 
landslide susceptibility by geographic 
information systems (GIS), there is not a 
compromised method to be accepted as the 
most appropriate one due to the possible 
limitations of the qualitative techniques 
caused by unplanned occurrences or 
inadequate knowledge upon which the expert 
decisions are centered on. Conversely, 
inaccuracy, and imprecision of data are 
among the shortfalls of quantitative methods 

[22]. As indicated, due to a number of 
methods and techniques, recognizing and 
identifying the most efficient methods and 
techniques are still challenging. Based on 
this statement, the present study, it was of 
interest to investigate the efficiency of all the 
contributing factors in the assessments of 
landslide susceptibility and to contrast 
landslide susceptibility models on the basis 
of SVM, RF, and MLP in East Azerbaijan, 
Iran. 

2. Study area and dataset 
The study area was set to be in Ahar 

county at East Azerbaijan province (EAP) 
located northwest of Iran. This area is an 
important state in terms of housing, and 
human settlement. This area is also critical 
for the economy of the country by hosting a 
high number of industrial and agricultural 
activities [23],[24]. The geological and 
geotechnical structure and setting of EAP 
make this area highly susceptible to natural 
hazards such as earthquakes, mass 
movement, and landslides [25],[26]. 
Landslides are a typical phenomenon in EAP 
and earthquakes, volcanic threats, and 
landslides are caused by the lithological 
units-related complexities of the geological 
structure, which encompassed various 
formations [27],[28],[29]. 

A total number of 26 known landslide 
events are listed as a landslide inventory 
database in this region [30]. The area has 
sophisticated geology and the lithological 
units include numerous formations, which 
cause earthquakes, volcanic threats, and 
landslides. The geophysical characteristics 
of the area developed slops with extensive 
vulnerability to landslides mass movements 
(e.g., flows, creeps, rockfall, topples, and 
landslides) [30],[31]. [30], field 
observations statements, and lithological 
units reported that a great deal of landslide 
events could be reckoned to be of rotational 
landslides (Figure 1). 
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Fig. 1. Research area 

3. Material and Methods 

The assessment process was divided into 
four steps: The first step was establishing the 
spatial database. The second phase was 
choosing the conditioning factors and data 

correlation analysis. The third step was 
considered to generate the landslide 
susceptibility-related maps. Finally, the last 
stage was set to compare and validate the 
three ML methods using MLP, SVM, and 
RF models (Figure 2). 

 
Fig. 2. Flowchart of the study 

3.1 Preparation of data 

3.1.1 Landslide inventory map 

A crucial input for scrutinizing the 
correlation between the locations’ spatial 
distribution and conditioning factors is the 
landslide inventory map [32]. Hence, in the 
present study, a landslide inventory map was 
prepared via historical data on individual 

landslide occurrences, all-embracing field 
surveys corroborated by the Iran National 
Cartographic Center and Geological 
Organization also with handheld GPS 
devices, interpretation of aerial photographs 
and Google Earth images. 

A sum of 266 landslides was finally 
mapped in the study (Figure 3) and 
comprehensive reports on landslides have 
been exploited within a lifespan of > 37 
years (since 1983). The landslides with the 
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smallest and largest sizes found in the study 
were nearly 200 and 3000 (m2) respectively. 
For landslide spatial modelling through the 
so-called amalgamation of models, the 
locations of the landslide were separated into 
two subdivisions (viz., training (70) and 
validating (30) appertaining to a random 
selection scheme [33]. Figure 4 indicates a 
series of recorded landslides in the field 
surveys[34]. 

 
Fig.3. Landslide events map at study area 

 

 
Fig.4. A photograph of landslides in the field 

survey 
 

3.1.2 Preparation of Dataset for spatial modelling 

Along with the landslide inventory map, 
numerous inter-related factors impact the 
landslides [35]. A total of 10 landslide 
influencing factors, 

including slope, aspect, NDVI, elevation, 
distance from fault, land use, plan curvature, 
profile curvature, TWI, and rain were used 
in the proposed framework for spatial 
modeling [36]. 

In the present study, the ESRI ArcGIS 
10.3 software was utilized with the intention 
of producing and displaying the data layers. 
All the layers of data were organized in 
raster format with a pixel size of 30 (m)×30 
(m). The influencing factors were obtained 
from ASTER Global DEM , the geological 
map, and a topographic map with the same 
resolution [37]. Then the geological map 
was used in order to obtain the lithology 
map, which was then converted into a raster 
format. Landsat 8 (OLI images) were used in 
order to derive the NDVI as well as land use 
maps. For further analyses, all the so-called 
factors were standardized by a similar scale 
of 30 ×30 (m2). Besides, the conditioning 
factors that were of continuous data were 
reclassified into distinct subsections with the 
intention of transforming continuous data to 
sections at specific intervals. In order to 
achieve the identical output scaling, the 
other discrete conditioning variables were 
reclassified into groups (Figure 5). For 
training/modelling, 186 (70%) landslide 
locations were utilized in the present 
analysis, and 80 (30%) landslides were 
utilized for validating. A value of "1" was 
allocated to the landslide training instances 
[38]. Moreover, from the landslide-free 
zones, a similar amount of non-landslide 
points (266) was randomly produced, and a 
value of '0' was allocated to these instances, 
which were randomly divided into two 
sections with a ratio of 70/30 as well 
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Figure 5. Ten condition factors map 

3.1.3 Data correlation analysis 

The PCF approach was employed in the 
present analysis to disclose the relationship 
between landslides and conditioning factors. 
Numerous researchers have used the so-
called approach for landslide susceptibility 
mapping due to its suitability at dealing with 
ambiguity in the input data [39]. The PCF 
can be determined using the equation below: 

𝑃𝑃𝑃𝑃𝑃𝑃 =

⎩
⎪
⎨

⎪
⎧ 𝑃𝑃𝑃𝑃𝑐𝑐 − 𝑃𝑃𝑃𝑃𝑠𝑠    
𝑃𝑃𝑃𝑃𝐶𝐶(1 − 𝑝𝑝𝑝𝑝𝑠𝑠) ,      𝑃𝑃𝑃𝑃𝑐𝑐 ≥ 𝑃𝑃𝑃𝑃𝑠𝑠 

𝑃𝑃𝑃𝑃𝑐𝑐 − 𝑃𝑃𝑃𝑃𝑠𝑠
𝑃𝑃𝑃𝑃𝑠𝑠(1 − 𝑃𝑃𝑃𝑃𝑐𝑐) ,        𝑃𝑃𝑃𝑃𝑐𝑐 < 𝑃𝑃𝑃𝑃𝑠𝑠   

   ⎭
⎪
⎬

⎪
⎫

 (1) 

where PPc denotes the conditional 
probability of a landslide in category c, and 
PPs is the preceding probability of 
landslides’ total number in the current 
research regions. The certainty variables 
vary from −1 to 1, with −1 denoting certainly 
false and 1 denoting certainly true. A 
positive value indicates growing confidence 
in the occurrence of a landslide, whereas a 
negative value indicates that the occurrence 
likelihood of a landslide is declining, and a 
value near to 0 indicates that it is challenging 
to deliver data regarding the landslide 
occurrence certainty[40]. 
3.2 Landslide susceptibility modeling 
3.2.1 RF 

 RF is regarded as an ensemble learning 
method that classifies unidentified samples 
predicated on the combined outcomes of a 
series of weak classifications Trees developed 

via bootstrapping techniques [41]. 
Particularly, the learning process includes 
choosing the predictor variable for each 
iteration and resampling the data through 
replacement [42]. By means of this 
approach, an RF model demonstrates a 
higher efficient ability to prevent overfitting 
problems and by and large present a superior 
generalization output [19]. 

In a randomized forest, the best split amid 
a subcategory of predictors, which are 
haphazardly selected by the node is used to 
split each node. Inherently, inside huge 
datasets, it has been a prominent technique 
for identifying beneficial hitherto invisible 
patterns. There are n variables that could be 
selected as random subsections from the 
training data with the intention of 
determining the best possible node to split. 
The best node division could be finalized 
utilizing Gini criteria [43]. The so-called 
criteria gauge the degree of association 
between variables and results. 

The smallest value is regarded to be the 
optimal split for every node in accordance 
with the RF algorithm [44]. The Gini criteria 
are expressed as: 

Gini(k, xi ) = �
ai
ns

m

i=1

 I(kui)  (2 ) 

Where the number of landslides is 
represented by m at each node k, and ns is the 
indicator of training input function vectors. 
The class labels distribution at every node is 
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represented by I(kui). The p-value of node k 
is a feature variable xi ∈ X where xi= {u1, u2, …um} 
and the I(kui) value could be calculated as: 

I(kui) = 1 −�
nci2

ai2

c

i=0

  (3) 
 

where nci are the ci-fitting samples with ui 
values and ai denotes the number of samples 
that have the ui value at node k. 

Through the training data and the n-fold 
cross-validation (n=10), the RF model was 
also developed. The num Iteration’s 
parameter, which is the number of iterations 
to be executed, was differed to obtain the RF 
model's most optimum output. A heuristic 
test was performed, and once num Iterations 
were 1400, the AUC had the largest value. 
Afterwards, the subsequent RF model was 
utilized with the intention of calculating the 
values of LSI for the entire research area. 
These values vary between 0 and 1 and were 
re-categorized into five grades. 
3.2.2 SWM 

SVM is a series of techniques for ML on 
the basis of the notion of an optimum 
hyperplane of separation. In feature space, 
SVM considers the widest margin between 
the two groups. As it could be observed in 
Fig. 5, a standard SVM model could be of a 
two-class or multi-class model (an 
amalgamation of a two-class SVMs chain). 
The most widely used form of ML is the 
two-class SVM [38]. The separating 
hyperplane is among the possible planes, 

which divides two groups during the model 
performance. In Figure 6(a), the squares and 
dots reflect two sample groups, L being the 
in-between classification line, and L1 and L2 
being lines running parallel to L across the 
sample points nearest to the classification 
line. The classification margin is considered 
to be the distance between them. The 
purpose of the optimum hyperplane 
classification is to correctly distinguish 
(although some errors are permitted) 
between the two types of samples while 
maximizing the support vector margin. 
Figure 6(b) shows the function of the kernel 
that aids to map the input samples into high-
dimension space such that they could be 
linearly categorized [45]. In general, there 
are two categories of SVMs on the basis of 
object classification, viz. the two-class and 
multiclass. The multiclass SVM is a 
synthesis of a set of two-class SVMs [46]. 
Presently, pairwise classification and the 
one-to-the-other-class approach are 
prevalent multi-class SVM methods [47]. 
The most commonly used technique is two-
class SVM. Normally, along with grouping, 
SVM could be exploited for regression 
analysis [48]. The results in the current 
analysis indicated that the sigma values and 
support vectors’ number in the SVM model 
were 142 and 0.068, respectively. In 
addition, 0.118 and -91.5624 were 
calculated as the training error values and 
objective function, respectively. 

 

Fig.6. Classification of SVM (a) support line (b) hyperplane 
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3.2.2 Artificial Neural Network 
Artificial neural networks (ANN) are units 

for the processing of computational 
information influenced by the behavior and 
structure of actual biological neurons whose 
architecture attempts to mimic the human 
brain cells' acquisition of knowledge and 
organizational skills. A benefit of ANNs is 
that some of the previously unknown hidden 
information could be utilized in the data. The 
benefits contain the fact that within an entire 
data set, they identify various data sets, they 
do not need any pre-existing experience or 
knowledge, and they do not require a pre-
existing statistical model for training the 
data[49].The MLP was implemented in the 
current analysis. The most prevalent and 
frequently used ANN architecture is MLP, 
which is consisted of an output layer, an 
input layer, and in between hidden layers. In 
a network, each layer includes an adequate 
number of neurons. The output layer 
generates the outcomes of the neural 
network. Hence, the neurons’ number in the 
layers is determined by the problem for 
which the network was developed. The 
inputs are processed by every output and 
hidden neuron layer through multiplying 
each input (xi) with a respective weight (wi), 
summating the product (Eq. (6)), and 
thenceforth processing the total (the neuron 
is subsequently activated if that surpasses 
the threshold of the neuron) by a non-linear 
activation function (Eq. (7)) to generate the 
output node result (yi). 

net = ∑ wi
n
i=0 xi  (4) 

yi = f(net)  (5) 
A three-layer feed-forward ANN has been 

constructed. Following trial and error and 
cogitating the lowest error, the optimal 
network architecture was chosen. Initial 
weights in a limited range were initiated by 
random. Once the stopping error criteria are 
met, the process is terminated. The first 
objective in this analysis was to fulfill the 
stopping criteria of the root mean square 
error (RMSE). If RMSE is not attained, the 
epochs number could then be used as a 

termination criterion, which was set to be 
1000 in the current analysis [16].The 
learning rate and momentum training 
parameters were considered to be 0.4 and 
0.3, respectively. The network training 
activation transition function was considered 
to be hyperbolic tangent for the whole 
layers. Figure. 7 demonstrates the architecture 
of a multi-layered neural network. For every 
cell through n neurons, the landslide 
susceptibility is then estimated in the hidden 
layers as: 

LS = f��wir

n

i=1

f�� vrj

m

j=1

uj + br� + cy� (6) 

Where adjusted weights are wir and vrj, uj 
and y signify m×1 vector layer of input and 
output, br and cy are biases of neuron in the 
output layer and hidden layers. 
3.3 Model performance evaluation 

The validity of the exploited models must 
be checked in the landslide susceptibility 
investigation since, without validation, they 
have little empirical value [50]. The ROC 
curve, which plots the rate of sensitivity on 
the y-axis in contrast to 1-specificity on the 
x-axis, has been utilized with the intention of 
validating the models in the present analysis. 
In order to have a comparison of three 
models, the AUC could be utilized. The 
values of 0 and 1 in AUC denotes a non-
informative and a perfect model 
respectively [51]; and values could be 
labelled as bad, decent, good, very good, and 
exceptional once they fit in the range of (0.5-
0.6), (0.6-0.7), (0.7-0.8), (0.8-0.9), and (0.9-
1), respectively [52]. In Table 1, the so-
called statistical measures were determined 
via the related formulas[53]. 

Table 1 Statistical indexes used in evaluation 
Item Description 

 
MSE 

 
𝑀𝑀𝑀𝑀𝑀𝑀 =

1
𝑛𝑛�(𝑇𝑇𝑖𝑖 − 𝑂𝑂𝑖𝑖)2

𝑛𝑛

𝑖𝑖=1

 

 
RMSE 𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = �1

𝑛𝑛  �(𝑇𝑇𝑖𝑖 − 𝑂𝑂𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

 
AUC 

 
𝐴𝐴𝐴𝐴𝑃𝑃 =

(∑𝑇𝑇𝑃𝑃 + ∑𝑇𝑇𝑇𝑇)
(𝑃𝑃 + 𝑇𝑇)  
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Fig.7. The layers of MLP  

where P and N are the sum of the landslide 
and non-landslide numbers. The number of 
pixels that are correctly categorized are TP 
and TN (true positive and true negative). FP 
and FN (false positive and false negative) are 
the number of pixels that are wrongly 
classified [38]. A higher value implies a 
superior model for the AUC and a value with 
1 index is an indicator of a perfect model 
[54]. 

4. Results 
4.1 Analysis of conditioning factors 

 It is critical to choose appropriate 
variables for landslide modeling in landslide 
susceptibility assessment since conditioning 
factors in the training dataset might not be 
self-regulating of one another, which could 
initiate confusing noise into the model [55]. 
As a result, the conditioning factor's 
predictive capabilities ought to be measured, 
and elements with predictiveness of low or 
null must be eliminated. In order to calculate 
the predictive power of ten influential 

elements in the present study, the Pearson 
correlation test [56] was employed. The 
Pearson test was chosen for its capability in 
feature assortment in data mining [57]. With 
the increase in efficacy of the influencing 
variables in the model, the mean of Pearson 
correlation value and its SD increase 
correspondingly. The average and its 
standard deviation values are calculated 
from the Pearson correlation values by a 10-
fold cross-validation technique (Table 2). 

In correlations to the landslide in the 
sample region, there was a strong distinction 
in the predictive powers of ten influencing 
variables. The slope factor has the maximum 
AM value of 0.417 among these variables, 
indicating its significance compared to the 
others. Between 0.313 and 0.083 are the AM 
values for aspect, NDVI, TWI, distance from 
fault, elevation, land use, profile curvature, 
rain, plan curvature, and slope length. None 
of the factors is omitted in the study due to 
their predictive potential for the landslide. 

Table 2. Landslide factors prediction power of using the Pearson correlation 
factors Average predictive 

power 
Standard deviation 

Slope 0.417 ±0.016 
Aspect 0.313 ±0.015 
NDVI 0.295 ±0.017 
Elevation 0.270 ±0.013 
Distance from fault 0.169 ±0.015 

Land Use 0.123 ±0.007 
Plan curvature 0.113 ±0.002 
Profile curvature 0.101 ±0.002 
TWI 0.087 ±0.003 
Rain 0.083 ±0.002 
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Table 3 also shows the spatial association 
between landslides and influencing variables 
utilizing the PCF model. In line with the 
measured data, the PCF value for the slope 
angle class of >40° (0.742) is the highest, 
indicating the uppermost likelihood of 
landslide occurrence. The findings indicate 
that the slopes facing southeast (0.662) and 
south (0.533) have the maximum PCF 
values. The maximum PCF value of 0.447 is 
found between 1300 and 1600 m(elevation). 
Flat regions have the minimum PCF value, 
while the class of convex holds the 
maximum PCF value of 0.080 in terms of 
plan curvature. The maximum PCF value for 

TWI is contained in groups of >7. The class 
of >13000 m represents the greatest risk of a 
landslide occurrence with the distance to the 
faults (0.717). The flat profile curvature has 
the maximum PCF value, while the convex 
profile curvature holds the lowest PCF 
value. In the case of NDVI, the PCF value 
for the 0.05–0.15 range is the largest (0.502). 
As it comes to rainfall, the class of >310 mm 
holds the strongest relationship with the 
occurrence of landslides (0.682). Once it 
comes to land use, category B4 holds the 
maximum PCF value of 0.368, indicating the 
maximum likelihood of a landslide. 

Table 3 Influencing factors and landslides relationship by PCF method 

Factors Sub-classes Number of 
landslides 

Landslide 
ratio (%) 

Domain 
ratio (%) 

PCF 

1-Elevation <1300 9 3.4 19.2 -0.224 
1300-1600 34 12.8 14.3 0.447 
1600-1900 110 41.3 28.9 0.373 
1900-2200 45 16.9 17.4 0.303 

>2200 68 25.6 20.2 0.260 
2-Slope <10 41 15.4 27.8 0.103 

10-20 86 32.3 29.8 0.507 
20-30 63 23.7 22.3 0.471 
30-40 41 15.4 11.7 0.496 
>40 35 13.2 8.4 0.742 

3-NDVI <0.05 13 4.9 27.1 -0.198 
0.05-0.15 131 49.2 24.9 0.502 
0.15-0.25 105 39.4 30.1 0.467 

>0.25 17 6.4 17.9 -0.236 
4-Aspect Flat 9 3.4 24.8 0.084 

North 17 6.4 9.7 0.226 
Northeast 59 22.1 10.4 0.412 

East 28 10.5 14.5 0.398 
Southeast 64 24.1 10.1 0.662 

South 28 10.5 13.7 0.533 
Southwest 13 4.9 9.5 0.178 

West 14 4.9 5.8 0.218 
Northwest 34 12.8 1.5 0.461 

5-Distance from 
fault 

<4000 31 11.6 34.7 0.170 
4000-7000 69 25.9 30.9 0.248 
7000-10000 5 1.9 7.5 0.104 

10000-13000 41 15.4 12.2 0.496 
>13000 120 45.1 14.7 0.717 

6-Landuse 
 

B2 8 3.0 9.7 0.240 
B3 9 3.4 12.6 0.177 
B4 249 93.6 77.7 0.368 

7-Plan curvature <-2 7 2.6 22.3 -0.170 
-2-0 128 48.1 36.7 -0.462 
0-2 113 42.9 32.4 -0.081 
>2 18 6.8 8.6 0.080 

8-Profile 
curvature 

<-2 14 5.3 31.2 -0.162 
-2-0 109 40.9 35.6 0.268 
0-2 124 4.7 22.9 0.715 
>2 19 7.1 10.3 0.138 

9-TWI <1 43 16.1 20.4 0.107 
1-3 116 43.6 39.1 0.216 
3-5 63 23.7 24.7 0.445 
5-7 25 9.4 9.7 0.481 
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>7 19         7.1 6.1 0.659 
10-Rain 

 
<280 98 36.8 25.8 0.507 

280-290 64 24.1 28.4 0.450 
290-300 21 7.9 15.2 0.157 
300-310 23 8.6 24.5 -0.131 

>310 60 22.5 6.1 0.682 

4.2 Validation and comparison of ML models 
4.2.1 Model results and analysis 

The training dataset was exploited to 
develop MLP Neural Nets, SVM, and RF 
through the fittest conditioning factors, the 
result of which could be observed in Tables 
4 and 5. Regarding classification AUC and 
precision, it can be unearthed that the MLP 
models have the best efficiency. It is 
followed by the SVM and the RF models. 
The Kappa index ranged from 0.601 to 0.718 
for the three models, which suggests a 
considerable compromise between the 
models and the actual situation. 

The uppermost positive predictive value 
(PPV) belongs to the MLP model (94.96%) 
which shows the likelihood of the correct 
classification of the pixels by the model in 
94.96% of the cases in the landslide class. It 
is followed by the SVM model (78.17 %), 
and the RF model (76.31 %). Nonetheless, 
the MLP model demonstrated the minimum 
negative predictive value (NPV) (75.93 
percent), which suggests that the likelihood 

of pixels’ correctly classification to the non-
landslide class is merely 75.93%. The SVM 
(84.14%) model has the maximum value, 
which is followed by the RF (81.90%) along 
with the MLP Neural Networks. The highest 
sensitivity belongs to the SVM model 
(83.13%), which suggests that 83.13% of the 
landslide pixels are appropriately 
categorized into the landslide class that is 
followed by the RF model (80.83%) and the 
MLP model (79.78%). The highest 
specificity belongs to the MLP Neural Nets 
model (93.78%), which suggests that 
93.78% of the non-landslide pixels are 
categorized correctly, which is followed by 
the SVM (79.40 %) and the RF (77.56 %). 
The MLP, SVM, and RF were utilized to 
measure the landslide susceptibility indices 
for the whole pixels available in the study 
context once they were efficaciously trained 
in the testing stage. Landslide susceptibility 
indices have been reclassified into five 
classes of susceptibility through the area 
classification method. 

 

 
Table 4. The performance of ML Models 

  

Item RF MLP  SVM  
PPV (%) 79.91 97.09 81.21 
NPV (%) 83.73 77.17 86.02 

Sensitivity (%) 82.08 82.10 84.96 
Specificity (%) 79.11 94.81 80.83 
Accuracy (%) 81.33 86.96 83.41 

AUC 0.891 0.960 0.924 
Kappa index 0.681 0.744 0.679 

 
Table 5. Evaluation of three ML models on training data 

Item RF MLP  SVM  
PPV(%) 79.03 94.40 80.76 

NPV (%) 83.67 78.09 84.72 
Sensitivity (%) 84.20 80.14 83.05 
Specificity (%) 78.96 85.48 80.70 
Accuracy (%) 81.12 83.14 81.96 

AUC 0.880 0.936 0.892 
Kappa index 0.647 0.720 0.639 
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4.2.2 Model validation 

 Through the validation dataset, the 
Kappa index, the ROC curve, and the 
statistical assessment stages, the prediction 
likelihood of the susceptibility models was 
evaluated. Tables 6 and 7 demonstrate the 
results. It could be observed that for the MLP 
model (AUC=0.907), all of the models 
demonstrated a strong prediction capacity 
for the maximum one. The Kappa index 
ranged from 0.627 to 0.631, which indicates 
a robust compromise between the observed 
landslides and predicted ones (Table 6). 

While the MLP model (85.22%) 
demonstrated the maximum likelihood of 
pixels’ correct classification to the landslide 
class, the RF and SVM models are most 
likely to correctly assign pixels to the non-

landslide classes (Table 7). For the RF 
model, sensitivity possessed the highest 
degree (85.02%), indicating that 85.02% of 
landslide pixels are accurately labeled as 
landslides. The MLP model displays the 
maximum specificity value (83.96%), which 
indicates that 85.38% of non-landslide 
pixels are appropriately grouped into the 
non-landslide class. 

In Figure 8, the final maps of 
susceptibility are depicted. The indices were 
reclassified through the natural breaks 
method [58],[59] into five categories (i.e., 
very high, high, moderate, low, and very 
low) with the intention of enhancing the 
visualization. the validation of the 
susceptibility maps was carried out by 
contrasting them to the currently available 
landslide data. 

 
 

 
Fig.8. LSM using a) RF b) MLP c) SVM

The AUC reflects the model’s strength 
percentage. The 0.9 to 1.0 variance is the 
optimal condition. The entire cells of 100 
LSI values subsections in the study region 
and landslide incidents’ cumulative 
percentage in the all classes determined the 
AUC. Elevated accuracies of susceptibility 
have been achieved using the so-called ML 
methods. For the MLP neural networks, 
SVM and RF methods, the relevant AUC 
values of 0.907, 0.883, and 0.869 were 

attained, which demonstrate that the map, 
which is derived through the MLP, indicated 
a higher accuracy than the one produced out 
of the SVM and RF outcomes. 

On the basis of training and validation 
results, Figure 9 indicates the landslide 
pixels’ ratio (%) for every susceptibility 
class to the sum of landslide pixels for maps 
of landslide sustainability (obtained by the 
methods of SVM, RF, and MLP, 
respectively). 
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Fig.9.Landslide susceptibility pixels ratio 

 
5. Discussion 

The feature selection method is widely 
exploited for landslide spatial prediction to 
evaluate the predictive ability of landslide 
influencing factors to boost landslide model 
output by eliminating redundant or 
extraneous variables before learning 
models[60],[61]. The Pearson correlation 
technique was used as a function selection 
method in the current analysis to test the 
predictive capacity of landslide impacting 
factors to landslide models. Results of the 
feature selection suggest that slope 
demonstrated the best predictive potential 
for landslide models since a great deal of the 
identified landslide locations are on or 
alongside the high slope locations. There are 
other contributing factors in landslide 
models including NDVI, elevation, rainfall, 
aspect, the curvature of the profile, land use, 
TWI, the curvature of the plan, and fault 
distance that have also been used in other 
comparable inquiries [62],[63]. 

In landslide threat and risk evaluation, 
spatial prediction of landslides is believed to 
be among the highly challenging tasks. 
However, a variety of approaches have been 
suggested for modeling shallow landslide 
susceptibility. It is obvious that a landslide 
model's prediction accuracy relies on the 
exploited method. Many novel ML methods 

and techniques were the result of the 
continuing advancement of the ML sector 
and GIS. Thus, novel methods and 
techniques exploration for shallow landslide 
modeling are extensively essential[64],[65]. 

The presented problem in the study was 
discussed by analyzing and comparing three 
machine learning methods, comprising a 
series of highly widespread methods (e.g., 
the RF, the MLP Neural Nets, and the SVM). 
On the basis of a grid search method, SVM, 
MLP, and RF models were tuned to 
approximate the optimal structural 
parameters. The optimization parameter was 
the neurons number in the hidden layer for 
MLP, the cost and gamma parameters for the 
SVM model, and the number of trees for the 
RF model. Overall, in terms of total 
classification accuracy, the MLP Neural 
Nets models significantly produced superior 
results than the other models; nevertheless, 
the SVM model provides more balance with 
respect to PPV and NPV (Table 4,5). 

The goodness-of-fit training data are 
suitable for four of the susceptibility models. 
Although it varies between the models, the 
MLP and SVM models display the maximum 
rate of fitness with AUC values of ROC 
being 0.931 for the MLP Neural Nets model 
and 0.903 for the SVM model. 
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However, merely AUC usage might not 
be the most appropriate method in the 
evaluation of model performance since an 
elevated value for the AUC in certain 
situations might not certify a high spatial 
accuracy of the models [66]. Hence, a 
variety of statistical assessment measures 
should be considered. The MLP 
demonstrated the maximum rate of 
goodness-of-fit on the basis of the model’s 
likelihood of correct classification of pixels 
into the landslide class in 94.96% of the 
instances, which is then closely followed by 
the SVM model. 

The findings of the analysis indicate that 
the implementation of GIS and ML 
techniques at the Landslide Zone township 
level is extremely reliable and applicable. 
Among the utilized methods for the existing 
problem, the MLP has appeared as the map 
with highest accuracy over other maps. 
Overall, these ML models could produce 
susceptibility maps for landslides with high-
quality and aid to establish policies, by 
which it could be possible to diminish the 
burden of landslides [67]. Thus, to seek the 
fittest model in generating landslide 
susceptibility maps, novel ML models and 
state-of-the-art techniques should be opted 
for future modeling. 

The training data of the three ML models 
demonstrated satisfactory goodness of fit 
from the methodological viewpoint. 
Nevertheless, with the MLP model 
displaying the greatest degree of fit, there are 
minor variations between the models. From 
a technical point of view, one explanation 
for the so-called findings could be the fact 
that since the MLP method demonstrates 
several advantages that could enhance its 
efficiency relative to the other two models. 
For instance, a) the MLP model, with its 
superior performance to infer meaning out of 
problematic or imprecise landslide 
occurrence patterns, which are of great 
complications to be construed by humans 
and computer algorithms; b) since ANNs 
belongs to nonlinear classification 

techniques and comprise an artificial neuron 
integrated group, they possess the potential 
to learn sophisticated interactions between 
variables of input and output. 

In comparison, only the points along the 
boundary line that is labeled as the support 
vector, are regarded by the SVM, i.e., merely 
a limited amount of sampling points that 
would impact the classification plane and 
could not directly provide the probability 
results. Moreover, SVM demonstrates low 
success in the speed of training and 
evaluating datasets, and it is not sufficient 
for extremely large datasets. SVM, on the 
basis of statistical learning theory, possesses 
a solid theoretical and mathematical 
foundation relative to other algorithms, 
which allows SVM's structure and design 
procedure to be error-free as well as separate 
from users’ experience [47]. 

In the utilization of SVM to generate 
LSM, there are several benefits: the SVM-
based model could fittingly function with a 
limited group of samples; because of the 
kernel function, nonlinear and high-
dimensional classification cases are simpler 
to solve through the SVM process. 
Nevertheless, for landslide susceptibility 
evaluation, there could even be 
overestimation problems. The SVM is 
consistent with the concept of structural risk 
minimization principle and it provides 
global and distinctive solutions. 

Based on the obtained results, the RF 
demonstrated the potential to work with 
various forms of datasets (continuous and 
discrete), and datasets also do not require 
standardization. It could handle extensively 
high-dimension data. The in-between the 
features’ interaction could be observed 
during the training phase. It could 
demonstrate the value of numerous features 
following the training. The pace of model 
training is high and the cost of computing is 
minimal. The RF algorithm demonstrates a 
decent performance and possesses a limited 
amount of overfitting tendency and 
demonstrates a decent anti-noise potential 
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due to the inclusion of two randomness. This 
method does not entail a beforehand 
correlation between an objective variable 
and the inputs and could manage data at 
various scales [42]. 

A highly significant role is taken by the 
designers of the neural network scheme. If 
they could efficiently utilize their expertise 
and previous knowledge in the process of 
network design, they might obtain further 
optimal network configuration. In the 
present analysis, after trial and error and 
taking the minimal mean square error into 
account, the optimal network design was 
chosen. The input neuron number is in line 
with the number of landslide causative 
factors and following an optimization phase, 
the neuron number in the hidden layer was 
calculated since it demonstrates a significant 
effect on the model performance [68]. 
Following the training phase, both the 
training and validation RMSE values 
congregate to a low-level state, which also 
reveals that the trained MLP demonstrates 
decent generalization and fitting potential. 
Consequently, the over-fitting problem 
could be considerably solved [69]. 

Considering that ANNs could be adapted 
for parallel computing platforms, the 
methodology could significantly take 
advantage of the accelerated growth of 
Graphics Processing Units (GPUs), in which 
an extensive amount of processors run 
training kernels parallelly,  In addition, MLP 
has great versatility in the way that they 
could be trained with diverse input 
parameters across a variety of datasets and 
still have acceptable performance, with the 
only prerequisite being the accessible data 
which is adequately informative [70]. 

6. Conclusion and future works 
To conclude, the present paper offers an 

assessment of the causative factors in Ahar 
county’s landslide susceptibility evaluations 
and leads to a comprehensive comparison 
and assessment of three models of landslide 
susceptibility. There was a total of ten 

conditioning factors which were 
investigated. The landslide inventory 
database had 26 locations which were split 
into two groups: one for training, with 186 
landslides, and another for evaluation of the 
model with 80 landslides. For analyzing the 
associations between landslides and 
landslide conditioning variables, the PCF 
model was exploited as a bivariate statistical 
test. Furthermore, in the present analysis, the 
Pearson correlation test [71] was used to 
measure the predictive strength of ten 
landslide condition variables. The Pearson 
technique was chosen for feature selection in 
machine learning because of its efficiency 
[72]. None of the causes is omitted in the 
present study since they all have predictive 
power for the landslide. Slope, aspect, 
NDVI, height, distance from fault, land 
usage, plan curvature, profile curvature, 
TWI, and rain were found to be the most 
powerful factors causing landslide 
incidence. 

Three common models, MLP, RF, and 
SVM, were used to test and evaluate their 
performance on the same training and 
validation datasets. Comparing the 
performance of the MLP model reveals that 
it has outperformed the SVM, and RF 
models that were utilized as benchmark 
methods. In general, relative to the other 
models, the Neural Network based model 
had a more robust classification efficiency. 
The MLP model, despite its excellent 
efficiency, is primarily affected by the 
structural parameters tuning processes. 

Based on the optioned results, our future 
work will focus on applying the optimized 
ML methods for landslide mapping, part of 
our future work will also take place to apply 
the integrated approach of deep learning 
methods and object-based image analysis 
methods for semi/automate landslide 
detecting and delineation from earth 
observation satellite image. In conclusion, 
the extracted map from the MLP Neural Nets 
method is ideally adapted with the aim of 
aiding land use planning and landslide 
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alleviation. The urbanization progress in this 
area would raise the burden on both the 
economy and population, demonstrates the 
utmost relevance the of present study’s 
findings. It is anticipated that the produced 
landslide susceptibility map would be 
beneficial for urban planners and 
government officials in planning the region's 
development. 
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