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Abstract 
 Magnetic resonance imaging (MRI) is a non-aggressive medical imaging modality that use magnetic 
resonance property of hydrojen atom core in body and can show a wide range of tissues with high 
resolution. The main disadvantage of MRI which limits its application, is the slow data acquisition 
speed. The use of compressed sensing (CS) in MRI, known as CS-MRI, reduces data acquisition time in 
MRI by reducing the required samples. One important challenge in CS-MRI, is to develop a sparsity 
inducing model which can reflect the image priors appropriately and hence yields high quality recovery 
results. In this study, principles of MRI, application of CS in MRI, and CS-MRI reconstruction 
techniques are discussed in brief.  

Keywords Compressed sensing, Image recovery, Magnetic resonance imaging, Reconstruction 
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1. Introduction 
Magnetic resonance imaging (MRI) is a 

non-aggressive medical imaging modality 
that use magnetic resonance property of 
hydrojen atom core in body and can show a 
wide range of tissues with high resolution. 
The main disadvantage of MRI which limits 
its application, is the slow data acquisition 
speed for the long sampling period required 
by the traditional Nyquist sampling Theorem 
[1]. The slow data acquisition speed may 
result in prolongation of imaging time and so 
increase patients discomfort and motion 
artifacts [2]. Therefore, improving the speed 
of MRI is of particular importance. One of the 
methods of increasing the data acquisition 
speed is to upgrade the hardware used for data 
collection. However, the physical (gradient 
amplitude and slew-rate) and physiological 
(nerve stimulation) constraints limit the speed 
at which data can be collected [3]. Thus, the 
only effective method to decrease the imaging 

time is to reduce the amount of acquired data. 
However, decreasing the sampling rate 
violates the Nyquist sampling theorem and 
leads to aliasing artifacts in reconstructed MR 
images. Therefore, many researchers are 
looking for methods to reduce amount of 
acquired data without degrading the image 
quality [3]. Among these methods, there is 
parallel imaging (PMRI) which is hardware-
based and uses redundancy in k-space. 
SENSE [4] and GRAPPA [5] are two 
common parallel imaging methods. A known 
limitation of these methods is that with the 
increase of the acceleration factor, the 
amplitudes of reconstruction artifacts grow 
rapidly [6]. By introducing compressed 
sensing (CS) theory in 2006 by Candès et al. 
[7, 8], and Donoho [9], as a surrogate of 
traditional Nyquist sampling theorem, it is 
provided to reconstruct the MR images 
without artifacts from far fewer data. The 
result of applying CS in MRI, which is known 
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as CS-MRI, is to reduce the time required for 
imaging, reduce costs and patient comfort. A 
successful application of CS has three 
requirements [3, 10]: 
 The image should have a sparse 

representation in a certain transform 
domain. 

 The artifacts in reconstruction caused by 
k-space undersampling should be 
incoherent in the sparsifying transform 
domain. 

 The image should be reconstructed by a 
nonlinear method that enforces both 
sparsity of the image and consistency of 
the reconstruction with the acquired 
samples.   

The rest of the paper is organized as 
follows: In section 2, principles of magnetic 
resonance imaging are briefly presented. In 
section 3, application of CS in MRI are 
explained. In section 4, some of the CS-MRI 
reconstruction methods are reviewed. Finally, 
the conclusions are provided in section 5.  

2. Magnetic Resonance Imaging 
The operation of the MRI system is based 

on the nuclear magnetic resonance (NMR) 
property. The MR signal is generated by 
protons in the body, mostly those in water 
molecules. A strong static magnetic field ܤ଴ 
polarizes the protons and leads to the creation 
of a net magnetic moment in the direction of 
the static magnetic field. Applying a radio 
frequency (RF) excitation field ܤଵ to the 
polarization vector rotates it and produces a 
magnetization component ݉ transverse to the 
static field. This magnetization process takes 
place at a frequency proportional to the static 
field strength. The transverse component of 
the magnetization emits a RF signal that can 
be received by a coil [11]. The transverse 

component at position r is represented by the 
following complex quantity:  

(ݎ)݉   =  ௝∅(௥)                            (1)ି݁	|(ݎ)݉|

The ݉(ݎ) component represents many 
characteristics of the tissue. In fact, the desired 
MR image to be reconstructed is ݉(ݎ), which 
is an image of the spatial distribution of the 
transverse component of magnetization [11].  

It can be shown that the received signal 
equation in MRI is obtained as follows [12]: 

((ݐ)࢑)ܵ   =  (2)                ࢘݀࢘.(௧)࢑௝ଶగି݁(࢘)݉∭

In other words, the received signal ܵ((ݐ)࢑) is 
the Fourier transform of the image ݉(࢘) 
sampled at the spatial frequency [11] (ݐ)࢑. In 
two-dimensional imaging, the received signal 
equation in MRI is simplified as follows:    

ܵ൫݇௫(ݐ),݇௬(ݐ)൯ =
(ݕ,ݔ)݉∬ ݁ି௝ଶగ௞ೣ(௧)௫݁ି௝ଶగ௞೤(௧)௬݀(3)     ݕ݀ݔ 

In general, the frequency domain ൫݇௫ ,݇௬൯ is 
referred to as k-space. The k-space trajectory 
is controlled by gradients. The gradients can 
be chosen in such a way that k-space is 
adequately sampled. In this case, the complete 
MR image can be reconstructed as the inverse 
Fourier transform of the acquired data [12]. 

Traditionally, the k-space sampling pattern 
is designed in such a way that the Nyquist 
conditions are met, which depends on 
resolution and field of view (FOV). Image 
resolution is determined by the sampling area 
of k-space. A larger sampling area results in 
higher resolution. The field of view is 
determined by the sampling density in the 
desired area. Figure 1 shows the relationship 
between image domain and k-space. Violation 
of the Nyquist criterion causes image artifacts 
in linear reconstructions. The appearance of 
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such artifacts depends on the details of the 
sampling pattern [11]. 

In recent years, a variety of techniques 
were proposed to accelerate data acquisition 
in MRI. Due to the physical and physiological 
constraints, the speed of k-space traversal and 
thus the data acquisition speed is limited. 
Therefore, many researchers are looking for 
methods to reduce the amount of acquired data 
without degrading the quality of the image. 
The basic idea behind many of these methods 
is the use of spatial and/or temporal 
redundancy of the MR images [10]. One of the 
effective methods to achieve this goal is the 
compressed sensing, which by taking 
advantage of the sparsity of MR images, 
provides the possibility of complete 
reconstruction of images from a small subset 
of k-space. 

 

 
Fig.1.The relationship between image domain 

and k-space [13] 

3. Compressed Sensing MRI 

Equation (3) shows the mathematical 
model related to MR imaging. The vector 
form of this equation can be written as 
follows:  

ࡿ =  (4)                                               ,࢓۴

where ࢓ ∈ ℂே is the MR image in vectorized 
form, ۴ ∈ ℂே×ே is the Fourier transform 
matrix, and ࡿ ∈ ℂே is the k-space data vector. 

In order to speed up imaging, undersampling 
is done. But when the k-space is 
undersampled, the Nyquist conditions are 
violated, causing image artifacts in the 
reconstruction. Using compressed sensing in 
MRI, only a small subset of k-space data will 
be required. In this case, the equation (4) is 
written as follows: 

ܡ  = ܡ								ܝ۴܅ = ۴௨(5)                       ,ܝ 

where ܅ ∈ ℝெ×ே, with ܯ < ܰ, is a binary 
mask consisting of zeros and ones that selects 
ܡ ;rows of the matrix ۴ ܯ ∈ ℂெ is 
undersampled k-space data (measurement 
vector); ۴௨ ∈ ℂெ×ே is the undersampling 
Fourier operator; and ܝ ∈ ℂே is the desired 
image. Sampling in MRI is a special case of 
compressed sensing where the sampled linear 
combinations are Fourier coefficients. In this 
case, the compressed sensing method is 
claimed to be able to accurately reconstruct 
the original image from a small subset of k-
space. Figure (2) shows the requirements of 
this method. As can be seen from the Figure, 
the CS approach has three requirements: (a) 
the desired image have a sparse 
representation in a known transform domain, 
(b) the aliasing artifacts due to k-space 
undersampling be incoherent in that 
transform domain, (c) a nonlinear 
reconstruction algorithm be used to enforce 
both sparsity of the image and consistency 
with the acquired data [3]. If these 
requirements are met, it is actually possible to 
recover the desired image. The recovery 
problem of the image ܝ from ܡ is formulated 
as the following unconstrained optimization 
problem:  

 min	
ܝ

	ଵ
ଶ
ܡ‖ − ۴௨ܝ‖ଶଶ + (ܝ)                  (6) 
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Fig.2.CS-MRI circuit diagram and 
requirements [3]. 

where (. ) is called sparsity inducing model, 
ܡ‖ − ۴௨ܝ‖ଶ is known as data fidelity model, 
and  is a regularization parameter. The 
sparsity inducing model plays a key role in 
achieving high quality images. Early 
reconstruction methods utilize the sparsity of 
the image in some predefined transform 
domains. In this case, the image ܝ can be 
represented as ܝ = ܠ where  is a transform 
domain or sparsifying basis and ܠ ∈ ℝே is the 
coefficient vector that most entries of which 
are zero or close to zero. This means that 
଴‖ܠ‖ ≪ ܰ, where ‖ܠ‖଴ is the ݈଴ norm of the 
vector and represents the number of its non-
zero components. In other words, the sparsity 
model can be as the ݈଴ norm of transform 
coefficients 	ฮ்ܝฮ

଴
 and or 	ฮ்ܝฮ

ଵ
 as a 

relaxation of the ݈଴ norm. Examples of the 
transform domain can be discrete cosine 

transform (DCT) [3], discrete wavelet 
transform (DWT) [14], EWT [15], contourlet 
transform [16], and finite difference domain 
[17]. Some methods combine sparse 
transforms to exploit the advantage of each 
other. In general, these models are built based 
on the assumption that images are locally 
smooth except at the edges and demonstrate 
high effectiveness in reconstructing smooth 
areas. However, they cannot deal well with 
image details and fine structures, and tend to 
over-smooth images [18]. To improve the 
sparsity, patch-based models were proposed. 
The main idea is to decompose the image into 
overlapped patches and represent each patch 
by a few elements from a basis set called 
dictionary, which is learned from images. The 
learned dictionaries enjoy the advantage of 
being better adapted to image local structures, 
thereby enhancing the sparsity and lead to 
reduce artifacts in CS-MRI. However, in the 
process of dictionary learning and sparse 
coding, each patch is considered 
independently, which ignores the 
relationships between similar patches [19]. 

Recently, it has been shown that nonlocal 
self-similarity based models, called nonlocal 
sparsity models, are effective in preserving 
details and demonstrate great advantages in 
image reconstruction [20]. The nonlocal self-
similarity depicts the repetitiveness of higher 
level patterns (e.g., textures and structures) 
globally positioned in images [18]. To exploit 
the nonlocal self-similarity prior, the image is 
divided into overlapped patches. Then, for 
each patch within the search window, a set of 
similar patches are searched to form a data 
matrix, called a group. The patches in the 
group are correlated; the strong correlations 
allow one to develop a much more accurate 
sparsity inducing model by exploiting 
nonlocal redundancies [21].  
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4. CS-MRI Reconstruction Approaches 

In this section, some techniques proposed 
for CS-MRI reconstruction are reviewed. In 
[22], fast composite splitting algorithm 
(FCSA) for MR image reconstruction was 
presented, which tries to solve the following 
CS-MRI reconstruction problem:  

min	
ܝ

	ଵ
ଶ
‖۴௨ܝ − ฮܝฮ்	ߙ+ଶଶ‖ܡ

ଵ
+ ௏்‖ܝ‖ߚ ,                                                          

(7) 

where  is the wavelet transform matrix, and 
‖. ‖்௏ is denoted total variation (TV) norm 
which is used to induce the sparsity of the 
image in the finite difference domain. In this 
method, the problem (7) is divided into two 
sub-problems of regularizing the ݈ଵ norm and 
regularizing the TV norm. The final 
reconstructed image is obtained from the 
weighted average of the answers of both sub-
problems. Despite using the hybrid sparse 
model in the reconstruction problem in order 
to better reflect the characteristics of the 
image, the reconstructed images have low 
PSNR. The FCSA method is based on the fast 
iterative shrinkage-thresholding algorithm 
(FISTA) and therefore has a good 
convergence speed.  

In order to remove the blocking effects 
caused by TV norm regularization and 
preserve the details of MR images, a 
reconstruction method based on TV and 
NLTV was presented in [17]. In this method, 
the MR image is first reconstructed by 
solving the problem (7). Then, the final image 
is obtained by solving problem (8) in one 
iteration. 

min	
ܝ

	ଵ
ଶ
‖۴௨ܝ− ฮܝฮ்	ߙ+ଶଶ‖ܡ

ଵ
+

ே௅்௏‖ܝ‖ߚ                                                      (8) 

In [23], the use of contourlet as a 
sparsifying transform along with the FISTA 

algorithm was proposed to solve the CS-MRI 
reconstruction problem (9). This method is 
known as fast iterative contourlet 
thresholding algorithm (FICOTA). 
Contourlet transform performs better than 
wavelet transform in displaying edges and 
curved lines of images, but increases the 
amount of computation. 

min	
ܝ

	ଵ
ଶ
‖۴௨ܝ − ฮܝฮ்	ߙ+ଶଶ‖ܡ

ଵ
                     (9)  

In [24], instead of contourlet, discrete 
nonseparable shearlet transform (DNST) was 
used as a sparsifying transform. The use of 
DNST improves the reconstruction quality of 
the FICOTA method and at the same time 
increases its execution time. In [25], an 
algorithm named projected iterative soft 
thresholding algorithm (pISTA) and its 
accelerated version pFISTA were presented 
to solve the CS-MRI reconstruction problem 
(9). These algorithms use the following 
repetition pattern: 

௞ାଵܝ = ∗
ఓܶ((ܝ௞ + ܡ)۴௨்ߤ − ۴௨ܝ௞))),       (10) 

where  is a base or a tight frame (a frame 
that has redundancy). In such frames, the 
dimensions of an image are much smaller 
than its coefficients under the frame. Since 
these algorithms are implemented without 
saving frame coefficients, they greatly reduce 
memory consumption. In [26], an iterative 
algorithm based on p-thresholding was 
proposed to solve the reconstruction problem 
(9). This algorithm uses the following 
repetition pattern: 

௞ାଵܠ = ௞ܠ)ೖ(ఒ,௣)ܩ + ۴௨்ܡ −
۴௨்۴௨ܠ௞),                                               (11) 

where ܩ denotes the thresholding function 
and is defined as ܩ(ఒ,௣)ೖ(ܠ௞) =
,{0	max(௞ܠ)݊݃ݏ |௞ܠ| −  ௞|௣ିଵ}. Anotherܠ|௞ߣ
method was proposed in [27] to reconstruct 
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MR images in the tight frame domain. This 
method uses the following model: 

min	
ܠ

ଵ
ଶ
‖۴௨ܿ݁ݒ(ܠ) − ଶଶ‖ܡ ߣ+ ∑ ௜(ܠ)௜ଶߪ௜ݓ ,       (12) 

where ܠ denotes the image coefficients under 
frame , ܿ݁ݒ(. ) is the vectorization operator 
of a matrix, ߪ௜(ܠ) is the i-th singular value of 
 .(ܠ)௜ߪ ௜ is the weight assigned toݓ and ,ܠ

In [15], the EWT-ISTA method was 
presented to reconstruct MR images, which 
uses the exponential wavelet transform or 
EWT as a sparsifying transform with the aim 
of increasing the sparsity of the images in the 
wavelet domain. MR images are usually 
sparse in the wavelet domain. The rationale of 
EWT to improve sparsity is that if significant 
coefficients are enhanced and non-significant 
coefficients are attenuated, through a 
nonlinear transformation, then sparsity is 
improved. The used nonlinear transformation 
is an exponentiation that has a parameter n. 
The larger n, the higher sparsity degree of 
coefficients will be. Meanwhile, as n 
increases, the non-zero coefficients are 
strongly weakened, which leads to a decrease 
in the reconstruction quality. Also, this 
method has relatively slow convergence due 
to the use of ISTA algorithm. The improved 
version of the method [15] was presented in 
[28], which is a combination of EWT, FISTA 
and SISTA and is known as EWISTA. In fact, 
this method uses the sparsity of EWT, the 
convergence speed of FISTA and the 
parameters adjustment in SISTA to increase 
the reconstruction quality and reduce the 
calculation time. 

Wavelet transform provides a sparse 
representation for smooth images. But if the 
image does not meet this feature, the resulting 
representation may not be optimal. To solve 
this limitation, a graph-based additive 

wavelet transform (GBRWT) was proposed 
in [29] to sparsify MR images. In this method, 
the reference image is first divided into 
several blocks and the corresponding graph is 
formed in such a way that the blocks of the 
image are considered as vertices and their 
difference as edges of the graph. The shortest 
path on the graph will produce a smooth 
image. If the image pixels are arranged 
according to this short path, a sparser 
representation is obtained by applying the 
wavelet transform. Finally, the problem of 
CS-MRI reconstruction (9) is solved by using 
GBRWT and ADMM algorithm. 

In [30], instead of predefined sparsifying 
transforms, block-based adaptive dictionary 
was used to achieve better reconstruction 
performance in CS-MRI. These dictionaries 
are more adaptable to the local structures of 
image, improve the sparsity and lead to the 
reduction of artifacts in CS-MRI. In the 
method [30], which is known as dictionary 
learning MRI (DLMRI), dictionary learning 
and image reconstruction from undersampled 
k-space data are used simultaneously in a 
single model. This model is formulated as 
follows: 

min	
ܠ,۲,ܝ

ଵ
ଶ
‖۴௨ܝ − ଶଶ‖ܡ + ߟ ∑ ௜−ܝ௜܀‖

௜‖ଶଶܠࡰ .ݏ					 ௜‖଴ܠ‖				.ݐ ≤ ଴ܶ,                      (13) 

where ܀௜ is the matrix that extracts block ࢛௜ 
from image ܝ. The problem (13) is solved by 
alternating minimization method at two steps. 
To learn the dictionary ࡰ, K-singular value 
decomposition (K-SVD) algorithm [31] is 
used, which has a high computational 
complexity. 

In [32], a dictionary updating (DU) based 
MR image reconstruction method called 
DUMRI was presented. In dictionary learning 
based MRI, several iterations between sparse 
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coding and dictionary updating in the 
dictionary learning process lead to wasted 
imaging time. To reduce the imaging time 
without degrading the reconstruction quality, 
the authors proposed a dictionary updating 
method that avoids the iterations of the 
dictionary learning process. Also, in order to 
improve the reconstruction quality, the block 
matching and three-dimensional 
collaborative filtering (BM3D) denoising 
method was used. One of the disadvantages 
of this method is the low speed of running and 
the complexity of calculations, which cannot 
be suitable for the practical application of 
MRI. 

In order to provide a sparser representation 
of MR images and thus improve the 
reconstruction results, a patch-based non-
local operator called PANO proposed in [33], 
which uses the similarity of image patches. 
This operator is defined as ࡭௝ = ଷ஽ࡾ௩ೕ܀௜, 
where ܀௜ is the matrix that extracts the patch 
௜࢛ ௜ from the image u (so that࢛ = ௩ೕࡾ ,(ܝ௜܀  
selects the c number of blocks with the most 
similarity to form the ݒ௝th group where ݒ௝ =
{݅ଵ , … , ݅௖}, and ଷ஽ is a three-dimensional 
transform. The MR image is obtained by 
solving the problem (14), taking into account 
the sparsity of the coefficients obtained by 
applying the PANO operator to it: 

min	
ܝ

	ଵ
ଶ
‖۴௨ܝ − ଶଶ‖ܡ + ∑ߙ ฮ࡭௝ܝฮଵ௝             (14) 

But using the similarity of patches requires 
having the original image. Since no ground 
truth image is available for similarity 
learning, the authors proposed to learn the 
similarity from a guide image estimated from 
the measurements and showed that learning 
the similarity is not sensitive to the initial 
guide image. 

In [34], a CS-MRI reconstruction method 
based on group sparse representation and 
statistical estimation, called as group-based 
eigenvalue decomposition and estimation 
(GEDE), was presented. This method 
emphasizes on sparser representation of the 
image and more accurate estimation of sparse 
coefficients. In this method, a sparse 
representation is developed based on the local 
and non-local features of the image; By 
performing SVD on the group as 
[۲௜ ,઻௜,૔௜] =  where ۲௜ denotes ,(೔ீ܃)݀ݒݏ
the dictionary corresponding to local sparsity, 
૔௜ is the dictionary corresponding to nonlocal 
sparsity, and ઻௜ is the vector of sparse 
representation coefficients. Also, linear 
minimization mean square error (LMMSE) 
has been used to accurately estimate sparse 
coefficients. The reconstruction problem is 
formulated as follows: 

  min	
઻,ܝ

ଵ
ଶ
‖۴௨ܝ − ଶଶ‖ܡ + ߟ ∑ {ฮ܀෩ீ೔ܝ −௜

۲௜઻௜૔௜்ฮଶ
ଶ

+  ॷ(઻)},                                  (15)ߣ

where the ॷ(઻) represents the LMMSE, and 
۲௜ and ૔௜் are the left and right dictionaries of 
the group, respectively. 

In [1], a MR image reconstruction method 
based on low-rank structure using non-local 
sparsity of MR images was presented. In this 
method, low-rank regularization becomes a 
nuclear norm minimization problem and is 
solved by SVT and ADMM methods. 

In [35], robust CS-MRI based on the 
combined nonconvex regularization model 
was proposed to enhance the details recovery 
and reduce artifacts. In this framework, the 
bias-based sharpness enhancement prior was 
integrated into smoothed ݈ ଴ (SL0) model. The 
nonconvex optimization problem was solved 
by a two-cycle iterative algorithm.  
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5. Conclusions 

MRI is a non-aggressive medical imaging 
modality that can show a wide range of 
tissues with high resolution. A complete MR 
image is reconstructed using the acquired 
data. In MRI, the data acquisition is done at a 
relatively slow speed. This result in 
prolongation of imaging time and so increase 
patients discomfort and motion artifacts. 
Therefore, improving the speed of MRI is of 
particular importance. Considering the 
physical and physiological constraints, the 
only effective method to decrease the imaging 
time is to reduce the amount of acquired data. 
However, decreasing the sampling rate 
violates the Nyquist sampling theorem and 
leads to aliasing artifacts in reconstructed MR 
images. In order to reduce amount of acquired 
data without degrading the image quality, the 
compressed sensing theorem has been 
proposed. The use of compressed sensing in 
MRI reduces the number of samples and the 
time required for imaging. As a result, it leads 
to a reduction in costs and patient comfort. 
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