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Abstract 
In this work, we calculate optimum thickness of bulk active layer for 𝐺𝐺𝐺𝐺 𝐴𝐴𝐴𝐴/𝐴𝐴𝐴𝐴𝑥𝑥  𝐺𝐺𝐺𝐺1−𝑥𝑥𝐴𝐴𝐴𝐴 laser 
diodes. We have done these calculations for fundamental oscillation mode of laser with different 
aluminium contents (fractional percents) in confinement layers. Our calculations were based on 
the analytical solution of Maxwell equations. The results indicate that the optimum thickness for 
fundamental mode is dependent on difference of refractive indices of active and confinement 
layers. The results reveal that the best active layer thicknesses for fundamental mode of laser are 
𝑑𝑑0 = 0.63, 0.44, 0.36 𝐺𝐺𝑎𝑎𝑑𝑑 0.32 𝜇𝜇𝜇𝜇 for 𝑥𝑥 = 0.1, 0.2, 0.3 𝐺𝐺𝑎𝑎𝑑𝑑 0.4 aluminium percents in separate 
confinement heterostructure (SCH) layers respectively. 

Keywords: Optimum active layer thickness, Maxwell equations, Separate Confinement 
Heterostructure (SCH). 

  
1. Introduction 

Double heterostructure (DH) lasers have 
been studied by many researchers [1-4]. It is 
desirable to use low threshold current density 
operation of broad area laser diodes, 
therefore it is helpful to optimize the laser 
cavity. In this work we present an analytical 
approximation for calculation of the best 
thickness of active layer for 𝐺𝐺𝐺𝐺 𝐴𝐴𝐴𝐴/
𝐴𝐴𝐴𝐴𝑥𝑥  𝐺𝐺𝐺𝐺1−𝑥𝑥𝐴𝐴𝐴𝐴 broad area lasers. Our 
calculation is based on solution of Maxwell’s 
equations in a rectangular cavity [5-10-8-9-
11].  

2. Theory and Calculation 

The optical cavity of a laser diode is a three 
dimensional structure. There are three 
limitations in this resonant cavity (Fig. 1) 
[6,9,11,12]:  

 
 

 
Fig. 1. Three layer of  Ga As/

Alx  Ga1−xAs laser diode 
 

First, the direction of light propagation is 
limited by a pair of optical mirrors 
perpendicular to the plane of as shown in 
[Figs. 1, 3], second, the direction of 
perpendicular to the plane of a p-n junction is 
limited by the stripe structure [6, 12].The 
electromagnetic wave in optical resonant 
cavity may be divided into two polarization 
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modes [5, 6, 11, 12]: Transvers electric (TE) 
wave mode and transverse magnetic (TM) 
wave mode. Because of TM wave 
reflectivities are much lower than these of TE 
wave at the resonant cavity faces, the energy 
losses are very large [5]. So there are almost 
TE wave oscillations in DH lasers. TE waves 
may be described by three cases [5, 12]: TEM 
qms, here q is longitudinal wave order, m is 
transverse wave order, and s is lateral wave 
order. In ordinary, ‘O’ presents fundamental 
mode. Longitudinal modes are determined by 
cavity length and material of active layer. 
Condition for osculation of longitudinal 
mode along cavity is [5]: 

𝐿𝐿 = 𝑞𝑞
𝜆𝜆
2

= 𝑞𝑞 
𝜆𝜆0

2𝑎𝑎𝑎𝑎
         (1)  

 
Where  𝜆𝜆0, and 𝑎𝑎𝑎𝑎 are wavelength in the 
vacuum. cavity transverse modes of 
perpendicular to p-n junction plane are 
determined by active region thicknesses and 
the index steps of heterostructure boundaries. 
The modes of parallel to p-n junction planes 
are determined by the stripe structures and 
introduced by lateral modes [1,2]. 
In this paper we calculate thicknesses of 
active layer that a laser diode operates in 
fundamental mode. Our structure is an index 
guided waveguide, [6,12] that confined with 
refractive index step. 

Determination of optimum active layer 
thickness by mode analysis 

 The difference between laser and common 
light sources is high spatial and temporal 
coherence of lasers [12]. Electric and 
Magnetic fields of coherent light along z 
direction are defined as [6]: 

𝐸𝐸 = 𝐸𝐸0(𝑥𝑥,𝑦𝑦)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝛾𝛾𝛾𝛾     (2) 

𝐻𝐻 = 𝐻𝐻0(𝑥𝑥,𝑦𝑦)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖−𝛾𝛾𝛾𝛾       (3) 

Where 𝐸𝐸0,𝐸𝐸0,𝜔𝜔,𝐺𝐺𝑎𝑎𝑑𝑑 𝛾𝛾 are amplitude of 
electric field, amplitude of magnetic field, 
radial frequency, and propagation constant 

𝛾𝛾 = 𝛼𝛼 + 𝑖𝑖𝑖𝑖       (4)  
Two different cases are introduced. 

1) For net propagative wave without loss, 𝛼𝛼 
is zero  and electric field is defined as 

𝐸𝐸 = 𝐸𝐸0(𝑥𝑥, 𝑦𝑦)𝑒𝑒𝑖𝑖(𝑖𝑖𝑖𝑖−𝛽𝛽𝛾𝛾)        (5)  

2) For net loss wave without propagation 𝑖𝑖 
is zero  

𝐸𝐸 = 𝐸𝐸0(𝑥𝑥, 𝑦𝑦)𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒−𝛼𝛼𝛾𝛾    (6) 
In this equation electric field increases with 
exponential function. Analysis of mode is 
going to determine electric field distribution 
in the cavity. We obtain the relation of field 
constants from Maxwell equations [5-7, 11-13]: 

∇��⃗ × 𝐸𝐸�⃗ =
−𝜕𝜕𝐵𝐵�⃗
𝜕𝜕𝜕𝜕

 
  (7) 

𝐵𝐵�⃗ = 𝜇𝜇𝐻𝐻��⃗          (8) 

∇��⃗ × 𝐻𝐻��⃗ =
−𝜕𝜕𝐷𝐷��⃗
𝜕𝜕𝜕𝜕

         (9)  

𝐷𝐷��⃗ = 𝜀𝜀𝐸𝐸�⃗    (10) 
Where 𝐻𝐻��⃗ ,𝐷𝐷��⃗ , 𝜇𝜇, and  𝜀𝜀 are magnetic intensity, 
displacement vector, magnetic permeability 
and permittivity of the matrial. 
With inserting Eq. (8) in Eq. (7) and Eq. (10) 
in Eq. (9) and expansion of curl of 𝐸𝐸�⃗  and 𝐻𝐻��⃗  
we obtain: 
𝜕𝜕𝐸𝐸𝛾𝛾
𝜕𝜕𝑦𝑦

+  𝛾𝛾𝐸𝐸𝑦𝑦 = 𝑖𝑖𝜔𝜔𝜇𝜇𝐻𝐻𝑥𝑥 
       (11)  

 
𝜕𝜕𝐸𝐸𝛾𝛾
𝜕𝜕𝑥𝑥

+  𝛾𝛾𝐸𝐸𝑥𝑥 = 𝑖𝑖𝜔𝜔𝜇𝜇𝐻𝐻𝑦𝑦       (12)  
 

𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝑦𝑦

= −𝑖𝑖𝜔𝜔𝜇𝜇𝐻𝐻𝛾𝛾 
       (13)  

 
𝜕𝜕𝐸𝐸𝛾𝛾
𝜕𝜕𝑦𝑦

+ 𝛾𝛾𝐻𝐻𝑦𝑦 = 𝑖𝑖𝜔𝜔𝜀𝜀𝐸𝐸𝛾𝛾 
       (14)  

 

−
𝜕𝜕𝐻𝐻𝛾𝛾
𝜕𝜕𝑥𝑥

− 𝛾𝛾𝐻𝐻𝑥𝑥 = 𝑖𝑖𝜔𝜔𝜀𝜀𝐸𝐸𝑦𝑦     (15)  
 

𝜕𝜕𝐸𝐸𝑦𝑦
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝐻𝐻𝑥𝑥
𝜕𝜕𝑦𝑦

= 𝑖𝑖𝜔𝜔𝜀𝜀𝐸𝐸𝛾𝛾         (16)   
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From Eq. (11) and Eq.(15) to eliminate 𝐸𝐸𝑦𝑦 we 
find 

𝐻𝐻𝑥𝑥 =
1

𝑘𝑘2 + 𝛾𝛾2
�𝑖𝑖𝜔𝜔𝜀𝜀

𝜕𝜕𝐸𝐸𝛾𝛾
𝜕𝜕𝑦𝑦

− 𝛾𝛾
𝜕𝜕𝐻𝐻𝛾𝛾
𝜕𝜕𝑥𝑥

�      (17) 

Where 

𝑘𝑘2 = 𝜔𝜔2𝜇𝜇𝜀𝜀 =
𝜔𝜔2

𝑐𝑐2
      (18)  

 
Also substitution of Eq. (12) into Eq. (14) to 
eliminate 𝐸𝐸𝑥𝑥 gives  

𝐻𝐻𝑦𝑦 =
−1

𝑘𝑘2 + 𝛾𝛾2
�𝑖𝑖𝜔𝜔𝜀𝜀

𝜕𝜕𝐸𝐸𝛾𝛾
𝜕𝜕𝑥𝑥

− 𝛾𝛾
𝜕𝜕𝐻𝐻𝛾𝛾
𝜕𝜕𝑦𝑦

�        (19)  
 

In similarly process we obtain 

𝐸𝐸𝑥𝑥 =
−1

𝑘𝑘2 + 𝜆𝜆2
�𝑖𝑖𝜔𝜔𝜇𝜇

𝜕𝜕𝐻𝐻𝛾𝛾
𝜕𝜕𝑦𝑦

+ 𝛾𝛾
𝜕𝜕𝐸𝐸𝛾𝛾
𝜕𝜕𝑥𝑥

� (20) 

𝐸𝐸𝑦𝑦 =
−1

𝑘𝑘2 + 𝜆𝜆2
�𝑖𝑖𝜔𝜔𝜇𝜇

𝜕𝜕𝐻𝐻𝛾𝛾
𝜕𝜕𝑥𝑥

+ 𝛾𝛾
𝜕𝜕𝐸𝐸𝛾𝛾
𝜕𝜕𝑦𝑦

�            (21)  

 

All of above fields should satisfy the wave 
equation: 

∇2𝜓𝜓 + 𝑘𝑘2𝜓𝜓 = 0      (22)  
𝜓𝜓 is an arbitrary wave. In our structure we 
assume index of active region is 𝑎𝑎𝑎𝑎 and 
indices of both confined regions are 𝑎𝑎1 and 
𝑎𝑎2 respectively. Propagation direction of 
wave is z axis and we have not any variation 
in y direction. With above assumptions 
equations (15), (17), (18), and (19) yields to: 

𝐸𝐸𝑥𝑥 =
−𝛾𝛾

𝑘𝑘2 + 𝛾𝛾2
𝜕𝜕𝐸𝐸𝛾𝛾
𝜕𝜕𝑥𝑥

      (21)   

     𝐸𝐸𝑦𝑦 =
−𝑖𝑖𝜔𝜔𝜇𝜇
𝑘𝑘2 + 𝛾𝛾2

𝜕𝜕𝐻𝐻𝛾𝛾
𝜕𝜕𝑥𝑥

     (22) 

𝐻𝐻𝑥𝑥 =
−𝛾𝛾

𝑘𝑘2 + 𝛾𝛾2
𝜕𝜕𝐻𝐻𝛾𝛾
𝜕𝜕𝑥𝑥

    (23) 

   𝐻𝐻𝑦𝑦 =
−𝑖𝑖𝜔𝜔𝜇𝜇
𝑘𝑘2 + 𝛾𝛾2

𝜕𝜕𝐸𝐸𝛾𝛾
𝜕𝜕𝑥𝑥

 (24) 

For a TE polarization wave 𝐸𝐸𝛾𝛾 = 0 so that, 
𝐸𝐸𝑥𝑥 = 0 and 𝐻𝐻𝑦𝑦 = 0, therefore there are 𝐸𝐸𝑦𝑦, 
𝐻𝐻𝑥𝑥 and 𝐻𝐻𝛾𝛾 only. For a TM mode wave, 𝐻𝐻𝛾𝛾 =
0 so that, 𝐸𝐸𝑦𝑦 = 0 and 𝐻𝐻𝑥𝑥 = 0, therefore there 
are 𝐻𝐻𝑦𝑦, 𝐸𝐸𝑥𝑥 and 𝐸𝐸𝛾𝛾 only. There are almost TE 

wave oscillations in DH lasers because of 
high energy losses for TM waves low 
reflectivity on cavity mirrors. TE wave 
equation with omission of variation in y 
direction (because of broad area laser case): 

�
𝜕𝜕2

𝜕𝜕𝑥𝑥2
+

𝜕𝜕2

𝜕𝜕𝑦𝑦2
� 𝐸𝐸𝑦𝑦 + 𝑘𝑘2𝐸𝐸𝑦𝑦 = 0        (25)  

 
With inserting  

𝐸𝐸𝑦𝑦 = 𝐸𝐸𝑦𝑦0𝑒𝑒
𝑖𝑖𝑖𝑖𝑖𝑖−𝛾𝛾𝛾𝛾        (26)  

 
We obtain 

𝜕𝜕2𝐸𝐸𝑦𝑦
𝜕𝜕𝑥𝑥2

+ (𝑘𝑘2+𝛾𝛾2)𝐸𝐸𝑦𝑦 = 0 
       (27)  
 

With solution of this differential equation for 
active region and confinement layers (Fig. 1). 

We have obtained: 

𝐸𝐸𝑦𝑦1 = 𝐴𝐴1𝑒𝑒𝑥𝑥𝑒𝑒 �𝑃𝑃1 �
𝑑𝑑
2
− 𝑥𝑥��        𝑥𝑥 >

𝑑𝑑
2

          (28) 

𝐸𝐸𝑦𝑦𝑎𝑎 = (𝐴𝐴2 cos(ℎ𝑥𝑥) + 𝐵𝐵2 sin (h 𝑥𝑥)   

   |𝑥𝑥| <
𝑑𝑑
2      

   (29) 

𝐸𝐸𝑦𝑦3 = 𝐴𝐴3𝑒𝑒𝑥𝑥𝑒𝑒 �𝑃𝑃3 �
𝑑𝑑
2 + 𝑥𝑥��        𝑥𝑥 <

−𝑑𝑑
2           (30) 

Where 𝑃𝑃1, h, and 𝑃𝑃3 are propagation 
constants in regions with 𝑎𝑎1, 𝑎𝑎𝑎𝑎, and 𝑎𝑎3 
respectively.  

With inserting 𝐸𝐸𝑦𝑦1and 𝛾𝛾 = 𝑖𝑖𝑖𝑖 (net 
propagation wave) in Eq. (27) we obtain 

𝑃𝑃12 = 𝑖𝑖2 − 𝑘𝑘1
2          (31)

𝑃𝑃12 = 𝑖𝑖2 − (𝑘𝑘0𝑎𝑎1)2  (32)
�      

Where 𝑘𝑘0 is wave number in vacuum. By 
inserting of 𝐸𝐸𝑦𝑦𝑎𝑎and 𝐸𝐸𝑦𝑦3 we yields to: 

ℎ2 = (𝑘𝑘0𝑎𝑎𝑎𝑎)2 − 𝑖𝑖2     (33) 

𝑃𝑃32 = 𝑖𝑖2 − (𝑘𝑘0𝑎𝑎3)2           (34) 
With following boundary conditions: 
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𝐸𝐸𝑦𝑦1 = 𝐸𝐸𝑦𝑦𝑎𝑎 �𝑥𝑥 =
𝑑𝑑
2

       ,    𝐸𝐸𝑦𝑦𝑎𝑎 = 𝐸𝐸3 �𝑥𝑥 =
−𝑑𝑑
2

 
   
(35) 

𝑑𝑑𝐸𝐸𝑦𝑦1
𝑑𝑑𝑥𝑥 =

𝑑𝑑𝐸𝐸𝑦𝑦𝑎𝑎
𝑑𝑑𝑥𝑥 �𝑥𝑥 =

𝑑𝑑
2

       ,   

  
𝑑𝑑𝐸𝐸𝑦𝑦𝑎𝑎
𝑑𝑑𝑥𝑥 =

𝑑𝑑𝐸𝐸𝑦𝑦3
𝑑𝑑𝑥𝑥 �𝑥𝑥 =

−𝑑𝑑
2

 

  
(36) 
 

For identical confinement layers, 𝑃𝑃1 = 𝑃𝑃3 
and we obtained: 

𝜕𝜕𝑡𝑡(ℎ𝑑𝑑) =
2𝑃𝑃ℎ

ℎ2 − 𝑃𝑃2
          (37)  

 
ℎ is dependent on active layer refractive 
index and P is dependent on refractive index 
of confinement layers therefore thickness of 
active layer, d is related to refractive index 
(Eqs. 32, 37). The solution of (37) in special 
case 𝑃𝑃 = 0 that wave do not penetrate to the 
confinement layers for all modes is 
ℎ𝑑𝑑 = 𝜇𝜇𝑚𝑚 + tan−1 2𝑃𝑃ℎ

ℎ2−𝑃𝑃2
    (38) 

For fundamental mode of layer (m=0) in the 
case of P=0 and inserting 𝑃𝑃1 = 0 in Eq. (32) 
we obtain: 
𝑑𝑑0 = 𝜋𝜋

ℎ
= 𝜋𝜋

�𝑘𝑘𝑎𝑎2+𝛽𝛽2
= 𝜋𝜋

�𝑘𝑘02𝑛𝑛𝑎𝑎2−𝑘𝑘02𝑛𝑛12
  

𝑑𝑑0 = 𝜋𝜋
𝑘𝑘0�𝑛𝑛𝑎𝑎2−𝑛𝑛12

    

       
(39) 
 

But 𝑘𝑘0 = 2𝜋𝜋
𝜆𝜆0

  so 

𝑑𝑑0 =
𝜆𝜆0

2�𝑎𝑎𝑎𝑎2 − 𝑎𝑎12
 

(40) 

𝜆𝜆0 is wavelength of light in vacuum for 𝐺𝐺𝐺𝐺𝐴𝐴𝐴𝐴 
energy, and 𝑑𝑑0 is maximum thickness of 
active layer that fundamental mode can 
propagate. If the condition 𝑑𝑑 < 𝑑𝑑0 was 
satisfied the fundamental mode will oscillate 
along cavity. Refractive index as a function 
of x for 𝐴𝐴𝐴𝐴𝑥𝑥𝐺𝐺𝐺𝐺1−𝑥𝑥𝐴𝐴𝐴𝐴 system is defined as [2]: 

𝑎𝑎(𝑥𝑥) = 3.59 − 0.71𝑥𝑥 + 0.091𝑥𝑥2 (41) 

We have calculated refractive indices of 
active and confinement layers and according 
optimum thickness for different aluminium 
fractional concentrations in confinement 
layers. Our results collected in Tab. I.  

Tab. I. Optimum thicknesses of active layer 

 
Aluminium 
mole fraction 

 
Refractive 
Index 

Optimum 
thickness for 
fundamental 
mode 
oscillation 

x n(x) 𝑑𝑑0 
0 3.59 - 

0.1 3.52 0.63 
0.2 3.45 0.44 
0.3 3.38 0.36 
0.4 3.32 0.32 

3. Discussion 

The light intensity distribution in the 
direction perpendicular to p-n junction plane 
may be obtained by Eq. (36) to integrate 𝐸𝐸𝑦𝑦 
with x direction specified region Fig. 2 is the 
light intensity distribution while the 
composition of cladding layers is varied with 
constant active layer thickness. It is readily 
seen that refractive index steps at 
heterostructure boundary increases when x 
increase and light intensity is more 
concentrated (Fig. 2). The distribution of 
light intensity varies as of with the 
composition of cladding layers being 
constant. As the thickness of active layer 
becomes smaller, the light spreads further, 
the reason is that effective refractive index 
decreases when d is smaller and index 
difference between active and cladding layers 
becomes small. 

 
Fig. 2. The light intensity distribution while the 
composition of cladding layers is varied with 

constant active layer thickness. 
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Fig. 3. Structure of a typical laser diode 

4. Conclusion 

We calculated optimum thickness of active 
layer in GaAs/AlxGa1−xAs broad area laser 
diode for fundamental oscillation mode with 
different aluminum contents (fractional 
percents) in confinement layers. Our 
calculation was based on the analytical 
solution of Maxwell equations. The results 
indicate that the optimum thickness for 
fundamental mode is dependent on difference 
of refractive indices of active and 
confinement layers. The best thicknesses are: 

𝑑𝑑0 = 𝜆𝜆0
2�𝑛𝑛𝑎𝑎2−𝑛𝑛12
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