Investigation of Sup90-Dota and interaction with Carbon nanotubes; A Semi-empirical study

R. Mohammadi¹, R. Rasoolzadeh^{2*}, A. Esfarjani³

1.2.3 Faculty of Science, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran

Received: 30 May 2018; Accepted: 4 August 2018

ABSTRACT: The investigation of the anticancer drugs will be important because of the proliferation of cancer. We want to take steps to improve public health. The combination of two carbon nanotubes (single wall nanotube and multi-wall nanotube) and Sup90-Dota (an anticancer drug) was investigated based on Molecular Mechanic and Semi-Empirical methods. Our goal is to investigate the transfer of carbon nanotubes by drug Sup90- Dota and the study of structural changes caused by the interaction of this anticancer drug combination with the nanotubes. We study of different parameters such as total energy, potential energy and kinetic energy and time of simulations are 20 ns. Calculation and geometrical optimization in different temperature (295,298,310 and 315 Kelvin) were conducted via Monte Carlo method (Amber, Bio⁺, MM⁺, and OPLS). The semi-empirical calculations such as total energy, binding energy, isolated atomic energy, electronic energy, core–core interaction and heat of formation in AM1, RM1, PM3, MNDO, INDO and CNDO for Sup90- Dota and CNT- Sup90- Dota complex. Analysis of Sup90- Dota and its interaction with CNTs show that this carrier can be applied to improve the activities of this anti-cancer drug.

Keywords: Anticancer; Carbon Nanotube; Molecular Mechanic; Semi-Empirical; Sup90 – Dota.

INTRODUCTION

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer in adults and is the most common cause of death in people with cirrhosis (Forner, *et al.*, 2012). It occurs in the setting of chronic liver inflammation and is most closely linked to chronic viral hepatitis infection (hepatitis B or C) or exposure to toxins such as alcohol or aflatoxin. Certain diseases, such as hemochromatosis and alpha 1-antitrypsin deficiency,

(*) Corresponding Author - e-mail: Reza.Rasoolzadeh@yahoo.com

markedly increase the risk of developing HCC. Metabolic syndrome and NASH are also increasingly recognized as risk factors for HCC (Kumar, *et al.*, 2015). As with any cancer, the treatment and prognosis of HCC vary depending on the specifics of tumor histology, size, how far cancer has spread, and overall health. The vast majority of HCC occurs in Asia and sub-Saharan Africa, in countries where hepatitis B infection is endemic and many are infected from birth. The incidence of HCC in the United States and other developing

Scheme 1. Yttrium-90Y tacatuzumab tetraxetan structure

countries is increasing due to an increase in hepatitis C virus infections. It is more common in male than females for unknown reasons (Kumar, *et al.*, 2015). Yttrium-90, 90Y, is a medically significant isotope of yttrium (Scheme 1) (DeVita, *et al.*, 2008).

Yttrium-90 has a wide and valuable use in radiation therapy to treat cancer (Kheyfits, 2010). Yttrium isotopes are among the most common products of the nuclear fission of uranium in nuclear explosions and nuclear reactors. In the context of nuclear waste management, the most important isotopes of yttrium are 91Y and 90Y, with half-lives of 58.51 days and 64.1 hours, respectively (Sonzogni, 2008). Though 90Y has a short half-life, it exists in secular equilibrium with its long-lived parent isotope, strontium-90 (90Sr) with a half-life of 29 years (Lide, 2007-2008). Yttrium isotopes with mass numbers at or below 88 decay primarily by positron emission (proton \rightarrow neutron) to form strontium (Z = 38) isotopes (Sonzogni, 2008). Yttrium isotopes with mass numbers at or above 90 decay primarily by electron emission (neutron \rightarrow proton) to form zirconium (Z = 40) isotopes (Sonzogni, 2008). Isotopes with mass numbers at or above 97 are also known to have minor decay paths of β - delayed neutron emission (Audi, et al., 2003). 90Y undergoes β - decay to zirconium-90 with a half-life of 64.1 hours (Y-90 Handling Precautions, 2015) and decay energy of 2.28 MeV (Chu, et al., 1999). It also produces 0.01% 1.7 MeV (Rault, et al., 2009) photons along the way. Interaction of the emitted electrons with matter can lead to Bremsstrahlung radiation. Yttrium-90 is a decay product of strontium-90 which makes up about 5% of the nuclear daughter isotopes when uranium is fission (Strontium, Radiation Protection, US EPA. EPA. 2012). Yttrium-90 is produced by

chemical high-purity separation from strontium-90, a fission product of uranium in nuclear reactors (PNNL: Isotope Sciences Program-Yttrium-90 Production. PNNL. 2012). 90Y plays a significant role in the treatment of hepatocellular carcinoma (HCC) and other liver cancers. Trans-arterial radioembolization is a procedure performed by interventional radiologists in which microspheres are impregnated with 90Y and injected into the arteries supplying the tumor (Kallini, *et al.*, 2016). Radioembolization with 90Y significantly increases time-to-progression (TTP) of HCC, (Salem, *et al.*, 2016) has a tolerable adverse event profile and improves patient quality of life more than do similar therapies (Salem, *et al.*, 2013).

COMPUTATIONAL METHODS

Many studies have shown that the carbon nanotubes pos- sess remarkable mechanical and physical properties lead- ing too many potential applications such as fluid trans- port, fluid storage at the nanoscale, and Nano devices for drug delivery (Moghaddam, et al., 2016). We used the methods Molecular Dynamics, Monte Carlo and the force fields are AMBER, BIO, MM+ and OPLS and temperatures are 292, 298, 310, and 315 (Besharati & Rasoolzadeh, 2014). The molecular mechanics method using the MM+ force field, and the Austin Model 1 (AM1) and Parameterized Model number 3 (PM3) semi-empirical method within the Restricted Hartree-Fock (RHF) formalism are sufficient to study carbon systems. In 1989, Stewart improved the techniques of parameterization and published PM3, which gave lower average errors than AM1, are suffi- cient to study carbon systems, mainly for the enthalpies of formation (Moghaddam, et al., 2016). In the first step of the calculations we optimized the geometry and defined Potential Energy of the nanotube structure by performing molecular mechanics calcula- tion using MM+ and other force fields, if too large a time step is used in Monte Carlo simulation, it is possible to have a basic instability in the equations that result in a mol- ecule blowing apart. In the next step, we calculated the Vibrational modes of the tube by applying the semi-empirical molecular orbital method by the Hyperchem-8.0 package

Table 1. Amber force field of sup-90

	Time	mw-sup90-DOTA-Hmn14(Kcal/mol)			sw-sup90	-DOTA-Hmn14	(Kcal/mol)	sup90-D0	OTA-Hmn14(Kcal/mol)		
T(K)	step Ns	Kinetic	Potential	Total	Kinetic	Potential	Total	Kinetic	Potential	Total	
		energy	energy	energy	energy	energy	energy	energy	energy	energy	
	10		11053.95	11373.2		1221.903	1375.891		93.99608	144.6993	
	20		6498.869	6818.111		1029.169	1183.157		91.3849	142.0881	
	30		4945.695	5264.937		867.3067	1021.294		90.10798	140.8112	
315	40		4152.365	4471.607		742.6955	896.683		90.17609	140.8793	
515	50	040 0400	3557.814	3877.056	450 0075	698.2619	852.2494	50 7000	100.8746	151.5778	
	60	319.2423	3046.39	3365.632	153.9875	677.0221	831.0096	50.7032	105.719	156.4222	
	70		2794.597	3113.839		657.8353	811.8227		97.3307	148.0339	
	80		2605.588	2924.831		633.3303	787.3178		98.54313	149.2463	
	90		2464.788	2784.031		629.3676	783.3551		94.05946	144.7627	
	100		2367.383	2686.625		632.6485	786.636		94.5214	145.2246	
	10		11313.57	11627.75		1219.897	1371.44		92.23149	142.1299	
	20		6648.351	6962.526		1020.285	1171.829		89.57556	139.4739	
	30		4983.792	5297.967		842.0329	993.5761		93.68669	143.5851	
310	40		4153.527	4467.702		745.3585	896.9017		90.92374	140.8221	
510	50	044 475	3599.669	3913.844	454 5400	694.3882	845.9314	40,00000	97.00292	146.9013	
	60	314.175	3205.394	3519.569	151.5432	665.7893	817.3325	49.89838	99.80938	149.7078	
	70		2883.74	3197.915		661.9889	813.5321		89.04395	138.9423	
	80		2664.312	2978.487		654.17	805.7133		97.34331	147.2417	
	90		2519.026	2833.201		636.0014	787.5446		101.2334	151.1318	
	100		2373.161	2687.336		621.5661	773.1093		101.3584	151.2568	
	10		11212.08	11514.1		1201.63	1347.307		161.3123	209.2791	
	20		6549.778	6851.791		1006.751	1152.429		145.1065	193.0733	
	30		4881.814	5183.828		821.0075	966.6846		138.1418	186.1086	
298	40		4132.875	4434.888		727.2533	872.9303		139.1833	187.1501	
	50	302 0134	3543.585	3845.598	145 677	66.7075	811.3845	47 06683	132.2639	180.2308	
	60	302.0134	3076.361	3378.374	145.077	645.9385	791.6156	47.90003	125.5808	173.5477	
	70		2807.198	3109.212		636.8341	782.5111		126.5063	17404731	
	80		2607.236	2909.249		646.4644	792.1414		131.1237	179.0905	
	90		2476.781	2778.794		620.7997	766.4768		124.079	172.0464	
	100		2372.72	2674.733		617.7728	763.4499		117.4237	165.3906	
	10		11306.91	11602.84		1221.486	1364.23		92.36795	139.369	
	20		6596.461	6892.393		1037.462	1180.206		95.48578	142.4868	
	30		4969.981	5264.981		886.5372	1029.281		92.14573	139.1468	
292	40		4145.573	4441.505		774.6538	917.3978		86.71645	133.7175	
	50	205 0222	3592.505	3888.437	140 744	699.1268	841.8708	47.00400	89.70063	136.7017	
	60	295.9326	3162.454	3458.386	142.744	658.6013	801.3452	47.00106	93.44842	140.4495	
	70		2876.023	3171.955		635.0841	777.828		85.88815	132.8892	
	80		2630.957	2926.89		626.0259	768.7699		87.99552	134.9966	
	90		2502.195	2798.128		605.8815	748.6255		86.50342	133.5045	
	100		2338.346	2634.279		585.2866	728.0305		88.71257	135.7136	

Fig. 1. potential energy of sup-90-amber method-315 kelvin.

Fig. 2. potential energy of sup-90-amber method-310 kelvin.

Table 2. Bio force field of sup-90

	T :	mw-sup90-DOTA-Hmn14(Kcal/mol)			sw-sup90-	-sup90-DOTA-Hmn14(Kcal/mol)			sup90-DOTA-Hmn14(Kcal/mol)		
T(K)	time	Kinetic	Potential	Total	Kinetic	Potential	Total	Kinetic	Potential	Total	
	316p 113	energy	energy	energy	energy	energy	energy	energy	energy	energy	
	10		5200.743	5437.358		576.1253	730.1128		131.4211	182.1243	
	20		3407.702	3644.317		525.7985	679.786		126.44	177.1432	
	30		2620.194	2856.809		501.3898	655.3772		122.4437	173.1469	
315	40		2190.681	2427.296		455.3535	609.341		130.5071	181.2103	
	50	000 01 10	1886.865	2123.48	150 0075	426.2918	580.2793	50 7000	124.463	175.1662	
	60	236.6149	1675.062	1911.677	153.9875	419.5972	573.5847	50.7032	127.8161	178.5192	
	70		1587.852	1824.467		413.6519	567.6394		121.0168	171.72	
	80		1494.013	1730.628		384.8939	538.8814		125.0728	175.776	
	90		1474.486	1711.101		368.4984	522.4859		120.6005	171.3037	
	100		1440.411	1677.026		385.787	539.7745		125.8001	176.5033	
	10		5590.293	5823.152		583.7134	735.2566		95.5857	145.4841	
	20		3528.038	3760.897		517.2235	668.7668		93.64977	143.5481	
	30		2713.846	2946.705		504.8069	656.3502		95.8878	145.7862	
310	40		2290.172	2523.031		447.3808	598.9241		93.13429	143.0327	
	50	000 0504	1960.75	2193.609	161 6400	427.3493	578.8925	40 00020	94.0752	143.9736	
	60	232.0391	1763.611	1996.47	151.5432	397.5305	549.0737	49.09030	95.90796	145.8063	
	70		1657.928	1890.787		391.5584	543.1016		86.84603	136.7444	
	80		1547.412	1780.272		384.6976	536.2408		98.11166	148.01	
	90		1495.969	1728.828		374.2544	525.7976		93.61631	143.5147	
	100		1470.669	1703.528		386.4156	537.9589		86.63778	136.5362	
	10		5375.414	5599.259		560.5623	706.2394		95.86876	143.8356	
	20		3407.525	3631.37		485.8002	631.4772		95.78199	143.7488	
	30		2645.07	2868.915		478.8794	624.5564		99.01215	146.979	
298	40		2207.36	2431.205		439.7843	585.4614		101.4007	149.3676	
	50	222 8452	1922.547	2146.392	145 677	429.4863	575.1634	47 06683	98.89664	146.8635	
	60	220.0402	1695.532	1919.377	145.077	404.9038	550.5809	47.30003	100.3604	148.3272	
	70		1607.579	1831.425		399.8531	545.5302		94.0802	142.047	
	80		1521.279	1745.124		395.7118	541.3889		93.30536	141.2722	
	90		1468.066	1691.911		377.4242	523.1012		92.88617	140.853	
	100		1418.363	1642.208		373.4531	519.1302		95.43455	143.4014	
	10		5281.936	5501.275		573.2023	715.9462		95.2067	142.2078	
	20		3470.879	3690.217		509.805	652.5489		88.84551	135.8466	
	30		2688.342	2907.681		471.527	614.2709		92.45333	139.4544	
292	40		2221.582	2440.92		419.7306	562.4745		89.21799	136.2191	
	50	210 2282	1905.624	2124.962	142 744	398.4022	541.1462	47 00106	101.2364	148.2375	
	60	219.0000	1707.008	1926.346	142.744	392.5698	535.3138	+1.00100	101.6836	148.6847	
	70		1586.645	1805.983		383.4124	526.1564		97.72719	144.7282	
	80		1482.386	1701.724		371.6894	514.4333		101.8406	148.8417	
	90		1440.734	1660.073		340.4852	483.2291		97.54325	144.5443	
	100		1414.486	1633.824		361.8596	504.6036		95.78306	142.7841	

Fig. 3. potential energy of sup-90-amber method-298 kelvin.

Fig. 4. potential energy of sup-90-amber method-292 kelvin.

Table 3. Mm+ force field of sup-90

	Timo	mw-sup90-DOTA-Hmn14(Kcal/mol)			sw-sup90-	w-sup90-DOTA-Hmn14(Kcal/mol)			0-DOTA-Hmn14(Kcal/mol)		
T(K)	sten Ns	Kinetic	Potential	Total	Kinetic	Potential	Total	Kinetic	Potential	Total	
	5100 110	energy	energy	energy	energy	energy	energy	energy	energy	energy	
	10		4001.685	4320.927		476.8349	630.8224		120.9968	171.7	
	20		2920.591	3239.834		461.2152	615.2027		121.8205	172.5237	
315	30		2429.888	2749.13		429.5299	583.5174		122.243	172.9462	
	40		2167.259	2486.501		408.2566	562.244		121.7494	172.4526	
	50	240 2402	1930.89	2250.132	450.0075	399.5052	553.4927	50 7000	119.7995	170.5027	
	60	319.2423	1800.401	2119.644	153.9875	405.5517	559.5392	50.7032	125.2046	175.9078	
	70		1719.389	2038.631		387.9828	541.9703		126.4247	177.1279	
	80		1679.842	1999.084		376.6615	530.649		119.2487	169.9519	
	90		1645.398	1964.64		381.855	535.8425		121.3022	172.0054	
	100		1582.803	1902.045		380.4397	534.4272		114.5615	165.2647	
	10		2680.914	2995.089		478.3692	629.9125		124.0741	173.9725	
	20		2212.199	2526.374		452.3352	603.8784		125.4202	175.3186	
310	30		1907.981	2222.156		415.8451	567.3883		127.8544	177.7528	
	40		1717.394	2031.569		401.1619	552.7052		128.4171	178.3155	
	50	214 175	1588.847	1903.022	151 5400	403.466	555.0092	40 00020	132.292	182.1903	
	60	314.175	1533.713	1847.888	151.5432	391.3759	542.9191	49.89838	126.6307	176.5291	
	70		1465.702	1779.877		386.8405	538.3837		127.314	177.2124	
	80		1423.377	1737.552		389.2567	540.8		122.1491	172.0475	
	90		1357.85	1672.025		366.2753	517.8186		126.022	175.9203	
	100		1304.561	1618.736		374.4256	525.9688		116.4054	166.3037	
	10		2667.929	2969.942		469.4612	615.1382		126.0384	174.0053	
	20		2195.35	2497.363		434.9642	580.6412		131.5602	179.5271	
298	30		1904.815	2206.828		408.1015	553.7786		117.5919	165.5587	
	40		1704.118	2006.132		394.3995	540.0765		120.6267	168.5936	
	50	202 0124	1571.119	1873.133	145 677	369.0641	514.7412	47.06692	120.8664	168.8332	
	60	302.0134	1470.842	1772.855	145.077	370.9333	516.6104	47.90003	117.2172	165.184	
	70		1423.199	1725.212		356.5528	502.2298		115.8696	163.8364	
	80		1378.303	1680.317		366.8574	512.5345		117.4475	165.4143	
	90		1348.217	1650.231		350.1537	495.8307		114.0635	162.0303	
	100		1286.216	1588.23		357.0942	502.7713		122.6844	170.6513	
	10		2676.93	2972.862		485.7023	628.4462		12304844	170.4855	
	20		2168.294	2464.226		438.1817	580.9256		114.2564	161.2575	
292	30		1928.981	2224.914		433.2593	576.0033		119.534	166.5351	
	40		1751.833	2047.766		380.2508	522.9948		114.0296	161.0307	
	50	205 0226	1608.985	1904.918	140 744	390.7845	533.5285	47.00106	116.1856	163.1867	
	60	293.9320	1515.709	1811.641	142.744	365.138	507.882	47.00106	113.5236	160.5246	
	70		1440.437	1736.37		368.0954	510.8394		115.9632	162.9642	
	80		1400.487	1696.42		358.6442	501.3881		119.8475	166.8486	
	90		1338.921	1634.853		366.1652	508.9091		125.4678	172.4689	
	100		1298.536	1594.469		372.8374	515.5814		118.1542	165.1553	

Fig. 5. potential energy of sup-90-bio method-315 kelvin.

Fig. 6. potential energy of sup-90-bio method-310 kelvin.

Table 4. Opls force field of sup-90

	Timo	mw-sup90-DOTA-Hmn14(Kcal/mol)			sw-sup90)-DOTA-Hmn14	4(Kcal/mol)	sup90-D	OTA-Hmn14(ł	TA-Hmn14(Kcal/mol)		
T(K)	sten Ns	Kinetic	Potential	Total	Kinetic	Potential	Total	Kinetic	Potential	Total		
		energy	energy	energy	energy	energy	energy	energy	energy	energy		
	10		11673.58	11910.2		1090.333	1244.32		90.83673	141.5399		
	20		6730.655	6967.27		873.2247	1027.212		82.64115	133.3443		
	30		4914.399	5151.014		727.5198	881.5073		86.95129	137.6545		
315	40		3976.464	4213.079		611.8653	765.8527		90.90554	141.6087		
	50	226 6140	3325.618	3562.233	152 0075	527.3499	681.3374	50 7022	91.61191	142.3151		
	60	230.0149	2900.378	3136.993	155.9675	494.9106	648.898	50.7032	90.79926	141.5025		
	70		2554.069	2790.684		477.4904	631.4779		92.48832	143.1915		
	80		2347.031	2583.646		445.1411	599.1286		83.36599	134.0692		
	90		2212.07	2448.685		436.1668	590.1542		99.6402	150.3434		
	100		2150.932	2387.547		426.5911	580.5786		87.16982	137.873		
	10		12260.43	12493.29		1073.457	1225		96.76836	146.6667		
20		6756.491	6989.35		886.58	1038.123		90.42548	140.3239			
	30		4882.521	5115.38		686.7781	838.3213		104.5541	154.4525		
310 40	40		3987.404	4220.263		581.2941	732.8373		96.39605	146.2944		
	50	232 8501	3331.15	3564.009	151 5432	512.1762	663.7195	10 90939	96.66811	146.5665		
	60	232.0391	2883.55	3116.409	131.3432	486.4321	637.9754	49.09030	100.4861	150.3845		
	70		2618.153	2851.012		461.8281	613.3713		86.43059	136.329		
	80		2407.249	2640.108		441.5641	593.1074		90.68325	140.5816		
	90		2278.912	2511.771		417.8375	569.3808		87.52301	137.4214		
	100		2179.147	2412.006		407.0963	558.6395		87.17457	137.073		
	10		11569.48	11793.32		1046.905	1192.582		95.86756	143.8344		
	20		6682.805	6906.65		841.9522	987.6293		97.11809	145.0849		
	30		4941.751	5165.597		633.5704	779.2474		88.16172	136.1285		
298	40		3989.928	4213.773		522.8909	668.5679		88.10602	136.0729		
	50	223 8452	3361.072	3584.917	145 677	465.8239	611.5009	47 96683	90.66873	138.6356		
	60	220.0402	2909.944	3133.789	140.077	439.0334	584.7104	47.00000	92.12326	140.0901		
	70		2551.135	2774.98		422.0905	567.7675		92.52257	140.4894		
	80		2331.334	2555.179		402.4818	548.1588		89.55149	137.5183		
	90		2194.531	2418.376		393.936	539.6131		91.97839	139.9452		
	100		2125.701	2349.546		414.4859	560.1629		84.03211	131.9989		
	10		12057.6	12276.93		1031.612	1174.356		107.7123	154.7133		
	20		6764.794	6984.132		826.9286	969.6726		98.86029	145.8613		
	30		4986.652	5205.99		654.9742	797.7181		97.28829	144.2893		
292	40		3974.55	4193.889		545.5147	688.2587		96.5826	143.5837		
	50	219.3383	3367.86	3587.198	142,744	479.9777	622.7217	47.00106	86.51515	133.5162		
	60	1.0.0000	2938.873	3158.211		444.2825	587.0264		83.64954	130.6506		
	70		2582.384	2801.722		443.2612	586.0052		79.92876	126.9298		
	80		2357.444	2576.782		422.8765	565.6205		76.30439	123.3054		
	90		2201.509	2420.847		394.5367	537.2806		78.68877	125.6898		
	100		2101.179	2320.518		398.1613	540.9053	-	77.69116	124.6922		

Fig. 8. potential energy of sup-90-bio method-292 kelvin.

Table 5. Semi	Empirical	method	of sup-90
---------------	-----------	--------	-----------

		AM1		CNDO			
	Mw-sup90	Sw-sup90	Sup90	Mw-sup90	Sw-sup90	Sup90	
Total Energy	3630702.35	1312068.9101712	-130800.303	4083718.394	1825802.7752002	-55539.74686	
Binding energy	4217294.40	1693854.1887432	-5023.48738	4911365.213	2368495.7518763	130960.9268	
Isolated atomic energy	-586592.05	-381785.2785720	-125776.8156	-827646.8191	-542692.9766762	-186500.6737	
Electronic energy	-14579164.71	-6232175.1590821	-1088963.721	-14882589.61	-6055279.4115323	-1082191.015	
Core-core interaction	18209867.06	7544244.0692533	958163.4178	18966308.01	7881082.1867325	1026651.268	
Heat of formation	4251925.06	1715347.1337432	4731761.37	4945995.87	2389988.6968763	136031.7318	

Table 6. Semi Empirical method of sup-90

		INDO		MINDO3			
	Mw-sup90	Sw-sup90	Sup90	Mw-sup90	Sw-sup90	Sup90	
Total Energy	3670623.588	1384918.4529845	60465.03071	3181931.866	1029777.6042889	59332.351	
Binding energy	4467838.802	1907573.4138229	239919.6748	3761408.905	1406273.5657789	182101.9661	
Isolated atomic energy	-797215.2142	-522654.9608384	-179454.6441	-579477.0386	-376495.961490	-122769.6151	
Electronic energy	-15295684.41	-6496163.7337480	-966186.2377	-14860514.01	-6442268.7100817	-885656.9644	
Core-core interaction	18966308.01	7881082.1867325	1026651.268	18042445.87	7472046.3143706	944989.3154	
Heat of formation	4502469.459	1929066.3588229	244990.4798	3796039.562	1427766.5107789	187172.7711	

Table 7. Semi Empirical method of sup-90

		MNDO-d		MNDO			
	Mw-sup90	Sw-sup90	Sup90	Mw-sup90	Sw-sup90	Sup90	
Total Energy	2851061.796	-402147.0269812	-22232.81635	2851061.796	-402147.026981	-131183.773225	
Binding energy	3437393.787	-20286.9615862	104037.3432	3437393.787	-20286.961586	-4913.613640	
Isolated atomic energy	-586331.99	-381860.065395	-126270.1596	-586331.99	-381860.065395	-126270.159585	
Electronic energy	-15364207.77	-7949322.966109	-981103.216	-15364207.77	-7949322.966110	-1090054.172834	
Core-core interaction	18215269.57	7547175.9391286	958870.3996	18215269.57	7547175.939128	958870.39960	
Heat of formation	3472024.444	1205.9834138	109108.1482	3472024.444	1205.9834138	157.1913599	

Table 8. Semi Empirical method of sup-90

		PM3		RM1			
	Mw-sup90	Sw-sup90	Sup90	Mw-sup90	Sw-sup90	Sup90	
Total Energy	3226865.558	-170125.4832216	59473.5432371	3638531.056	1109940.6104115	69069.4975286	
Binding energy	3767021.747	180521.6801004	173234.4247991	4225123.105	1491725.8889835	194846.3131406	
Isolated atomic energy	-540156.1887	-350647.1633220	-113760.881562	-586592.050	-381785.2785720	-125776.815612	
Electronic energy	-14870198.66	-7668151.016393	-892884.022020	-14568700.91	-6433247.130892	-888843.388438	
Core-core interaction	18097064.22	7498025.5331717	952357.5652576	18207231.97	7543187.7413034	957912.8859667	
Heat of formation	3801652.404	202014.6251004	178305.2297991	4259753.762	1513218.8339835	199917.1181406	

cations. These equations are solved iteratively to the point where the results do not vary significantly between two iterations. It is noteworthy that CNDO does not involve knowledge about chemical bonds but instead uses knowledge about quantum wave functions. CNDO can be used for both closed-shell molecules, where the electrons are fully paired in molecular orbitals and open-shell molecules, which are radicals with unpaired electrons. It is also used in solid state and nanostructures calculations (Abdulsattar, 2009).

CNDO is considered to yield good results for partial atomic charges and molecular dipole moment. Total energy and binding energy are calculated. Eigenvalues for calculating the highest occupied molecular orbital and lowest unoccupied molecular orbital are reported from the closed shell approach. INDO stands

		ZINDO1		ZINDOS			
	Mw-sup90	Sw-sup90	Sup90	Mw-sup90	Sw-sup90	Sup90	
Total Energy	3721544.946	1769894.6956324	68216.8680362	2413603.226	1194457.150907	-148362.269873	
Binding energy	4474458.842	2263610.4548459	237934.9561583	3008013.059	1580680.324063	-22372.4225085	
Isolated atomic energy	-752913.8961	-493715.7592135	-169718.088122	-594409.830	-386223.173156	-125989.847364	
Electronic energy	-15244763.06	-6111187.491101	-958434.400415	-14872759.2	-5951219.776331	-998825.736154	
Core-core interaction	18966308.01	7881082.1867325	1026651.268451	17286362.43	7145676.927238	850463.466281	
Heat of formation	4509089.499	2285103.3998459	243005.7611583	3042643.716	1602173.269063	-17301.6175085	

Table 9. Semi Empirical method of sup-90

for Intermediate Neglect of Differential Overlap. It is a semi-empirical quantum chemistry method that is a development of the complete neglect of differential overlap (CNDO/2) method introduced by John Pople. Like CNDO/2 it uses zero-differential overlap for the two-electron integrals but not for integrals that are over orbitals centered on the same atom (Pople, et al., 1967; Pople & Beveridge, 1970). The method is now rarely used in its original form with some exceptions (Abdulsattar & Al-Bayati, 2007), but it is the basis for several other methods, such as MINDO, ZINDO, and SINDO. ZINDO is a semi-empirical quantum chemistry method used in computational chemistry. It is a development of the INDO method. It stands for Zerner's Intermediate Neglect of Differential Overlap, as it was developed by Michael Zerner and his coworkers in the 1970s (Ridley & Zerner, 1973; Zerner, 1991). Unlike INDO, which was really restricted to organic molecules and those containing the atoms B to F, ZINDO covers a wide range of the periodic table, even including the rare-earth elements. There are two distinct versions of the method:

ZINDO/1 used for calculating ground-state properties such as bond lengths and bond angles. It refers to a SCF (RHF or ROHF) calculation with the INDO/1 level as suggested by Pople, which provides the reference state MO coefficients. Ground-state dipole moments and ionization potentials are in general very accurate. Geometry optimizations are erratic, what prompted Zerner's group to improve the performance of the code in the late 1990s (Da Motta Neto & Zerner, 2001). ZINDO/S (sometimes just called INDO/S) – use the INDO/1 molecular orbitals for calculating excited states and hence electronic spectra. It consists of a CI calculation including only the reference state plus a small set of single-electron excitations within a selected active space, typically five HOMOs and five LUMOs. MINDO or Modified Intermediate Neglect of Differential Overlap is a semi-empirical method for the quantum calculation of molecular electronic structure in computational chemistry. It is based on the Intermediate Neglect of Differential Overlap (INDO) method of John Pople. It was developed by the group of Michael Dewar. The method should actually be referred to as MINDO/3. It was later replaced by the MNDO method, which in turn was replaced by the PM3 and AM1 methods (Bingham, *et al.*, 1975). RM1 is a reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I (Rocha, *et al.*, 2006).

RESULT AND DISCUSSION

One of the methods in the Hyperchampel program is the Immersion Method. In this method, we examined 6 forces, which we summarize below, in summary, of the following six forces:

- total energy:

The total energy is a sum of the rest energy and the Newtonian kinetic energy.

Which is obtained from the following formula:

$$E \approx m_0 c^2 + \frac{1}{2} m_0 v^2$$

- binding energy:

Binding energy is the energy required to disassemble a whole system into separate parts. A bound system typically has a lower potential energy than the sum of its constituent parts; this is what keeps the system together.

- isolated atomic energy:

Isolated atomic energy is the energy required to form the isolated atom from its valence electrons.

 $E_{isol}(A) = E_{neutralatom}(A) - E_{nucleus}(A) - E_{valenceelectrons}(A)$

- electronic energy:

Electronics is the science of controlling electrical energy electrically, in which the electrons have a fundamental role.

- core-core interaction:

This energy proves to vary as a function of the valence environment.

- heat of formation:

The heat of formation is defined as the amount of heat absorbed or evolved when one mole of a compound is formed from its constituent elements, each substance being in its normal physical state.

According to the following tables (1-4) we find the following results in examining the Monte Carlo method:

In the study of the Amber force field method at 315k (body temperature), in both nanotubes, single wall and multi-wall potential energy are reduced, But in drug without a nanotube, this energy is reduced (until time step 40) and then increases. Potential energy variations in the combination of the drug with multiwalled nanotubes at the time step of 10 to 100 equal -8686.567. However, this potential energy change in combination with single-walled nanotubes is equal to -589.2545. The total energy in the drug combination with the nanotube has decreased. The kinetic energy has increased in the combination of drug with singlewall nanotubes and this increase has almost doubled in the multi-wall nanotube.

CONCLUSIONS

The kinetic energy for each compound is individually a constant. Therefore, total energy, obtained from the sum of potential energy and kinetic energy, is subject to potential energy changes and is therefore reduced. If stability is greater, the potential difference is less. Sustainability and potential energy are the opposite of each other. If potential changes are compared in each of the three combinations, it shows that wherever the potential difference is negative, the energy is further reduced and more stable. The relation between potential and stability is set out in the table below.

REFERENCES

- Forner, A., Llovet, J.M., Bruix, J., (2012). Hepatocellular carcinoma. The Lancet., 379 (9822): 1245– 1255.
- Kumar, V., Fausto, N., Abbas, A., eds. (2015). Robbins & Cotran Pathologic Basis of Disease (9th Ed.). Saunders.
- DeVita, V.T., Lawrence, T.S., Rosenberg, S.A., Weinberg, R.A., DePinho, R.A., (2008). DeVita, Hellman, and Rosenberg's cancer: principles & practice of oncology. Lippincott Williams & Wilkins. Retrieved 9 June 2011.
- Kheyfits, A., (2010). Yttrium-90 Radioembolization. Radiology Today. Retrieved 2012.
- NNDC contributors (2008). Sonzogni, Alejandro A., (Database Manager), ed. Chart of Nuclides. Upton, New York: National Nuclear Data Center, Brookhaven National Laboratory.
- CRC contributors (2007–2008). Yttrium. In Lide, David R. CRC Handbook of Chemistry and Physics.4. New York: CRC Press.
- Audi, G., Bersillon, O., Blachot, J., Wapstra, A.H., (2003). The NUBASE Evaluation of Nuclear and Decay Properties". Nuclear Physics A. Atomic Mass Data Center. 729: 3–128.
- Y-90 Handling Precautions. Retrieved 2015-07-15.
- Chu, S.Y.F., Ekstrom, L.P., Firestone, R.B., (1999). Table of Isotopes decay data. The Lund/LBNL Nuclear Data Search. Retrieved 2012.
- Rault, E., Vandenberghe, S., Staelens, S., Lemahieu,
 I., (2009). Optimization of Yttrium-90 Bremsstrahlung Imaging with Monte Carlo Simulations.
 4th European Conference of the International Federation for Medical and Biological Engineering.
- Strontium, Radiation Protection, US EPA. EPA. (April 2012).
- PNNL: Isotope Sciences Program Yttrium-90 Production. PNNL. (February 2012).
- Kallini, J.R., Gabr, A., Salem, R., Lewandowski, R.J., (2016). Transarterial Radioembolization with Yttrium-90 for the Treatment of Hepatocellular Carcinoma. Adv Ther. 33 (5): 699-714.
- Salem, R., Gordon, A.C., Mouli, S., Hickey, R., Kallini, J., (2016). Y90 Radioembolization Significantly Prolongs Time to Progression Compared

With Chemoembolization in Patients With Hepatocellular Carcinoma. Gastroenterology, 151: 1155–1163.

- Salem, R., Gilbertsen, M., Butt, Z., Memon, K., Vouche, M., Hickey, R., Baker, T., Abecassis, M.M., Atassi, R., Riaz, A., Cella, D., Burns, J.L., Ganger, D., Benson, A.B., 3rd Mulcahy, M.F., Kulik, L., Lewandowski, R., (2013). Increased quality of life among hepatocellular carcinoma patients treated with radioembolization, compared with chemoembolization. Clin Gastroenterol Hepatol. 11(10): 1358–1365.
- Moghaddam, N.A., Ahmadi, S., Rasoolzadeh, R., (2016). Amino acid binding to nanotube: Simulation of membrane protein channels by computational methods. Biosci. Biotech. Res. Comm., 9 (3): 495-502.
- Besharati vineh, M., Rasoolzadeh, R., (2014). Monte Carlo Investigation of Breast Cancer protein and Effects of Tamoxifen and Gleevec. J. Nano Chemical Agriculture, 1 (3): 100-105.
- Pople, J. and Beveridge, D., (1970). Approximate Molecular Orbital Theory, McGraw-Hill.
- Pople, J.A., Santry D.P. and Segal, G.A., (1965). Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures. J. Chem. Phys., 43: S129-S135.
- Pople, J.A. and Segal, G.A., (1965). Approximate Self-Consistent Molecular Orbital Theory. II. Calculations with Complete Neglect of Differential Overlap. J. Chem. Phys., 43, S136-S151.
- Pople, J.A. and Segal, G.A., (1966). Approximate Selfconsistent Molecular Orbital Theory. III. CNDO results for AB2 and AB3 Systems. J. Chem. Phys., 44, 3289-3296.
- Santry, D.P. and Segal, G.A., (1967). Approximate Self-Consistent Molecular Orbital Theory. IV. Calculations on Molecules Including the Ele-

ments Sodium through Chlorine. J. Chem. Phys., 47: 158-174.

- Abdulsattar, M.A., (2009). Size effects of semiempirical large unit cell method in comparison with nanoclusters properties of diamond-structured covalent semiconductors. Physica E, 41: 1679-1688.
- Pople, J., Beveridge, D.L. and Dobosh, P.A., (1967).Approximate self-consistent molecular-orbital theory. V. Intermediate neglect of differential overlap. J. Chem. Phys., 47, 2026-2033.
- Pople, J.A. and Beveridge, D., (1970). Approximate Molecular Orbital Theory. McGraw-Hill.
- Abdulsattar, M.A. and Al-Bayati, Kh.H., (2007). Corrections and parameterization of semiempirical large unit cell method for covalent semiconductors. Phys. Rev. B, 75: 245201-9.
- Ridley, J. and Zerner, M., (1973). An intermediate neglect of differential overlap technique for spectroscopy: Pyrrole and the azines. Theor. Chim. Acta, 32: 111–134.
- Zerner, M., (1991). Reviews in Computational Chemistry, Volume 2. Semiempirical Molecular Orbital Methods. Lipkowitz, K.B. and Boyd, D.B. Eds., VCH, New York, 313-365.
- Da Motta Neto, J.D. and Zerner, M.C., (2001). New parametrization scheme for the resonance integrals (H $\mu\nu$) within the INDO/1 approximation. Main group elements. Int. J. Quantum Chem., 81: 187–201.
- Bingham, Richard C., Dewar, Michael J.S., Lo, Donald H., (1975). Ground states of molecules. XXV. MINDO/3. Improved version of the MINDO semiempirical SCF-MO method. J. Am. Chem. Soc., 97 (6): 1285-1293.
- Rocha, Gerd B., Freire, Ricardo O., Simas, Alfredo M., Stewart, James J.P., (2006). RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J. Comput. Chem., 27 (10): 1101-11.

AUTHOR (S) BIOSKETCHES

٦Ĵ

Amirhosein Esfarjani, MSc., Faculty of Science, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran

lp

Reza Rasoolzadeh, PhD, Faculty of Science, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran, *Email: reza.rasoolzadeh@yahoo.com*

Rezvan Mohammadi, MSc., Faculty of Science, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran