Cobalt(II) macrocycle complexes based synthesis of Co₃O₄ nanoparticles: structural and spectral characterization

A. Dehno Khalaji^{1,2*}; R. Rahdari¹

¹Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran ²Cubane Chemistry of Hircan (CCH) Co, Gorgan, Iran

Received: 8 August 2015; Accepted: 11 October 2015

ABSTRACT: In this paper, macrocyclic cobalt(II) complexes $[CoL^{1}](NO_{3})_{2}.4H_{2}O$ (1) and $[CoL^{2}](NO_{3})_{2}.2H_{2}O$ (2) have been synthesized from the reaction of dialdehydes 1,2-bis(2-formylphenyl)ethane and 1,3-bis(2-formylphenyl)propane, $Co(NO_{3})_{2}.6H_{2}O$ and 1,2-cyclohexanediamine with molar ration 1:1:1 in methanole and characterized by elemental analyses and FT-IR spectroscopy. Then used as precursors for preparation of $Co_{3}O_{4}$ nanoparticles via solid-state thermal decomposition without the need a catalyst, employing toxic solvent, template or surfactant and complicated equipment, which makes it efficient, one-step, simple and environment-friendly. The structure and morphology of the $Co_{3}O_{4}$ products were characterized by FT-IR spectroscopy, XRD and TEM. The XRD result shows that the $Co_{3}O_{4}$ products are pure, single phase and crystalline. The TEM result shows $Co_{3}O_{4}$ nanoparticles with the size between <100 nm. On the basis of the above results, other transition metal macrocyclic Schiff base complexes are therefore potentially capable of forming other transition metal oxide nanoparticles.

Keywords: Co₃O₄; Cobalt(II) complexes; Characterized; Metal oxide; Nanoparticles; Thermal decomposition

INTRODUCTION

The interest in exploring new macrocyclic Schiff base compounds containing nitrogen and oxygen donor atoms has been increasing (Borisova, *et al.*, 2007), because they play key role in the coordination chemistry of transition metals (Khandar, *et al.*, 2010, Ilhan, *et al.*, 2007a,b,c, Singh, *et al.*, 2011). Also, macrocyclic complexes have been received much attention because of their antibacterial properties (Keypour, et al, 2013, Khanmohammadi, *et al.*, 2009). Recently, Ilhan, *et al.* synthesized and characterized transition metal complexes with different size, number and donor atoms of macrocyclic Schiff base (Ilhan, *et al.*, 2007a,b,c, 2010, Ilhan, 2008).

Spinel Co_3O_4 is an important magnetic p-type semiconductor with a normal spinel structure, is an active metal oxides with wide applications and properties, such as catalytic oxidation of CO (Lv, *et al.*, 2013) and lithium ion batteries (Xu, *et al.*, 2009). Recently, several groups used cobalt complexes as new precursor for preparation of cobalt oxide nanoparticles by various methods (Hosseinian, *et al.*, 2012, Khalaji, *et al.*, 2014, Farhadi and Pourzare, 2012). Although considerable effort has been dedicated to control the shape- and

^(*) Corresponding Author - e-mail: alidkhalaji@yahoo.com

size-controlled synthesized by different methods such as hydrothermal synthesis (Li, et al., 2012, Teng, et al., 2010), microwave (Kumar Meher and Rao, 2011, Chen et al., 2013), chemical precipitation (Makhlouf, et al., 2013) and the solid-state thermal decomposition (Farhadi, et al., 2014a,b, Farhadi and Safabakhsh, 2012) methods. Among various techniques for preparation of cobalt oxide nanoparticles, solid-state thermal decomposition of transition metal complexes is one of the best method to preparation of Co₂O₄ (Hosseinian, et al., 2012, Khalaji, et al., 2014, Farhadi and Pourzare, 2012, Farhadi, et al., 2014a,b, Farhadi and Safabakhsh, 2012), because it is inexpensive (economical) and doesn't use toxic solvent (pollution free) and surfactant route and is much faster where as process conditions, particle size and purity can be easily controlled. Up to now, many efforts have been made to develop a simple, economical and large scale synthetic method for the preparation of Co₃O₄ nanoparticles with different morphologies (Lv, et al., 2013, Khalaji, et al., 2015, Li, et al., 2012).

Recently, we have been fascinated in the synthesis of Co_3O_4 , utilizing new precursors (Khalaji, *et al.*, 2014 and 2015). Herein, we report the synthesis and characterization of Co_3O_4 nanoparticles by solid-state thermal decomposition of macrocyclic cobalt(II) complexes [CoL¹](NO₃)₂.4H₂O (1) and [CoL²] (NO₃)₂.2H₂O (2) (Scheme 1).

EXPERIMENTAL

Materials and characterization

All reagents and solvents for synthesis and analysis were commercially available and used as received without further purifications. Elemental analyses were carried out using a Heraeus CHN-O-Rapid analyzer, and results agreed with calculated values. X-ray powder diffraction (XRD) pattern of the complex was recorded on a Bruker AXS diffractometer D8 AD-VANCE with Cu-K α radiation with nickel beta filter in the range $2\theta = 100^{\circ}-70^{\circ}$. Fourier Transform Infrared spectra were recorded as a KBr disk on a FT-IR Perkin–Elmer spectrophotometer. The transmission electron microscopy (TEM) images were obtained from a JEOL JEM 1400 transmission electron microscope with an accelerating voltage of 120 kV.

Preparation of Co(II) complexes

The macrocyclic cobalt(II) complexes 1 and 2 used in the paper were prepared according to the literature (Yilmaz, *et al.*, 2009). Anal. calcd for $C_{22}H_{24}N_4CoO_8.4H_2O$ (1): C, 43.78; H, 5.34; N, 9.28%; Found C, 43.89; H, 5.52; N, 9.57%. FT-IR (KBr, cm⁻¹): 1631 (C=N), 1384 (NO₃). Anal. calcd for $C_{23}H_{26}N_4CoO_8.2H_2O$: C, 47.51; H, 5.16; N, 9.63%; Found C, 47.66; H, 5.27; N, 9.51%. FT-IR (KBr, cm⁻¹): 1627 (C=N), 1383 (NO₃).

RESULTS AND DISCUSSION

Complexes

The macrocyclic cobalt(II) complexes (1) and (2) are insoluble in most common organic solvents such as methanol, chloroform, ethanol and acetonitrile. Then, the suitable crystals of the complexes could not be obtained for single-crystal X-ray structure determination. In the FT-IR spectra of the complexes a sharp band appear at 1631 and 1627 cm⁻¹, respectively, are corresponding to the frequency vibrations of C=N group of macrocyclic ligand indicating coordination

Scheme 1: The chemical structures of a) (1) and b) (2).

Fig. 1: FT-IR spectra of the Co_3O_4 nanoparticles prepared from a) (1) and b) (2).

of the azomethine nitrogen to cobalt ion. The stretching frequencies at 1384 and 1383 cm⁻¹, respectively, are corresponding to NO₃ counter ion (Yilmaz *et al.*, 2009).

Co₃O₄ nanoparticles

The Co_3O_4 nanoparticles were obtained by calcinations of complexes in an air atmosphere at 600°C for 3 h. The FT-IR spectra of the as-prepared Co_3O_4 nanoparticles are represented in Fig. 1 and shows two absorption bands at about 664 and 570 cm⁻¹, that are assigned to the CoIII-O and CoII-O vibration in octahedral and tetrahedral sites of Co_3O_4 lattice, respectively (Hosseinian, *et al.*, 2012, Farhadi and Pourzare, 2012).

Fig. 2: XRD patterns of the Co_3O_4 nanoparticles prepared from a) 1 and b) 2.

Fig. 3: TEM images of the Co_3O_4 nanoparticles prepared from a) 1 and b) 2.

The XRD patterns of Co_3O_4 nanoparticles prepared from 1 and 2 are shown in Fig. 2. The XRD patterns reveals diffraction peaks with 2 theta values of 19, 31, 37, 38, 45, 56, 59 and 65 that are assigned to the 111, 220, 311, 222, 400, 422, 511 and 440 crystal planes of the crystalline phase of Co_3O_4 , respectively. All of the diffraction peaks are in good agreement with the cubic Co_3O_4 phase (Makhlouf, *et al.*, 2013), confirms that the macrocyclic cobalt(II) complexes 1 and 2 are decomposed completely into the cubic Co_3O_4 phase and is in good agreement with the FT-IR results. The crystal sizes of the Co_3O_4 nanoparticles based on the FWHM of the all diffraction peaks are in the range of 20 to 40 nm.

The morphology of the Co_3O_4 products was investigated by TEM (Fig. 3). The TEM samples were prepared by dispersing the powder in ethanol by ultrasonic vibration. From the TEM images, it was observed that the nanoparticles were approximately similar shapes and uniform sizes with weak agglomeration.

CONCLUSIONS

In this work, it was demonstrated that Co_3O_4 nanoparticles can be obtained by a simple solid-state thermal decomposition route of cobalt(II) macrocyclic Schiff base complexes, $[\text{CoL}^1](\text{NO}_3)_2.4\text{H}_2\text{O}$ (1) and $[\text{CoL}^2]$ $(\text{NO}_3)_2.2\text{H}_2\text{O}$ (2), as new precursors for the first time in air at 600°C for 3 h. The synthesis method is simple, mild and can also be extended to other transition metal oxides.

ACKNOWLEDGMENT

The financial support from the Golestan University and CCH are gratefully acknowledged.

REFERENCES

- Borisova, N.E.; Reshetova, M.D.; Ustynyuk, Y.A.; (2007). Metal-Free Method in the Synthesis of Macrocyclic Schiff bases. Chem. Rev., 107: 46-79.
- Chen, G.; Fu, E.; Zhou, M.; Xy, Y.; Fei, L.; Deng, S.;
 Chaitanya, V.; Wang, Y.; Luo, H.; (2013). A Facile Microwave-Assisted Route to Co(OH)₂ and Co₃O₄ Nanosheet for Li-ion Battery. J. All. Compd., 578: 349-354.
- Farhadi, S.; Pourzare, K.; (2012). Simple and Low-Temperature Preparation of Co₃O₄ Sphere-Like Nanoparticles via Solid-State Thermolysis of the [Co(NH3)6](NO3)3 Complex. Mater. Res. Bull., 47: 1550-1556.
- Farhadi, S.; Pourzare, K.; Bazgir, S.; (2014). Co₃O₄
 Nanoplates: Synthesis, Characterization and Study of Optical and Magnetic Properties. J. All. Compd., 587:632-637.
- Farhadi, S.; Pourzare, K.; Sadeghinejad, S.; (2014). Synthesis and Characterization of Co₃O₄ Nanoplates by Simple Thermolysis of the [Co(NH₃)₆]₂(C₂O₄)₃.4H₂O Complex. Polyhedron, 67: 104-110.
- Farhadi, S.; Safabakhsh, J.; (2012). Solid-State
 Thermal Decomposition of the [Co(NH₃)₅CO₃]
 NO₃₀:5H₂O Complex: A Simple, Rapid and Low-

Temperature Synthetic Route of Co₃O₄ Nanoparticles. J. All. Compd., 515: 180-185.

- Hosseinian, A.; Jabbari, S.; Rahinipour, H.; Mahjoub,
 A.R.; (2012). Synthesis and Characterization of Nano-Scale of a New Azido Co(II) Complex as Single and Nano-Scale Crystals: Bithiazole Precursor for the Preparation of Co₃O₄ Nano-Structures. J. Mol. Struct., 1028: 215-221.
- Ilhan, S.; (2008). Synthesis and spectral Characterization of Pb(II) Perchlorate Complexes. Ind. J. Chem., 47A: 374-377.
- Ilhan, S.; Temel, H.; Pasa, S.; Tegin, I.; (2010). Synthesis and Spectral Studies of Macrocyclic Pb(II), Zn(II), Cd(II) and La(III) Complexes by Template Reaction of 1,2-Bis(2-Formylphenyl)ethane with Metal Nitrate and Various Diamine. Russ. J. Inorg. Chem., 55(9): 1402-1409.
- Ilhan, S.; Temel, H.; Kilic, A.; Tas, E.; (2007a). Synthesis and Spectral Characterization of Macrocyclic Ni^{II} Complexes Derived from Various Diamines, Ni^{II} Perchlorate and 1,4-bis(2-carboxyaldehydephenoxy)butane. Trans. Met. Chem., 32: 1012-1017.
- Ilhan, S.; Temel, H.; Yilmaz, I.; Sekerci, M.; (2007b). Synthesis, Structural Characterization and Electrochemical Studies of New Macrocyclic Schiff Base Containing Pyridine Head and Its Metal Complexes. J. Organomet. Chem., 692: 3855-3865.
- Ilhan, S.; Temel, H.; Ziyadanogullari, R.; Sekerci, M.; (2007c). Synthesis and Spectral Characterization of Macrocyclic Schiff Base by Reaction of 2,6-Diaminopyridine and 1,4-bis(2-Carboxyaldehydephenoxy)butane and Its CuII, Ni^{II}, PbII, CoIII and LaIII Complexes. Trans. Met. Chem., 32: 584-590.
- Keypour, H.; Shayesteh, M.; Rezaeivala, M.; Chalabian, F.; Valencia, L.; (2013). Synthesis and Characterization of a Series of Transition Metal Complexes with a New Symmetrical Polyoxaaza Macrocyclic Schiff Base Ligand: X-ray Crystal Structure of Cobalt(II) and Nickel(II) Complexes and Their Antibacterial Properties. Spectrochim. Acta A101:59-66.
- Khalaji, A.D.; Nikookar, M.; Fejfarova, K.; Dusek, M.; (2014). Synthesis of New Cobalt(III) Schiff

Base Complex. A New Precursor for Preparation Co_3O_4 Nanoparticles via Solid-State Thermal Decomposition. J. Mol. Struct. 1071:6-10.

- Khalaji, A.D.; Rahdari, R.; Gharib, F.; Matalobos, J.S.; Das, D.; (2015). Preparation and Characterization of Co₃O₄ Nanoparticles by Solid State Thermal Decomposition of Cobalt(II) Macrocyclic Schiff Base Complexes. J. Cer. Process. Res., 16: 486-489.
- Khandar, A.A.; Hosseini-Yazdi, S.A.; Khatamian, M.;
 Zarei, S.A.; (2010). Synthesis, Characterization,
 Electrochemical Behaviour and X-ray Crystal
 Structures of Nickel(II) Complexes with a N₂O₂
 Donor Set Macrocyclic Schiff Base Ligand. Polyhedron, 29: 995-1000.
- Khanmohammadi, H.; Keypour, H.; Salehei Fard, M.;
 Abnosi, M.H.; (2009). Synthesis and Biological Activity of Magnesium(II) Complexes of heptaaza Schiff Base Macrocyclic Ligands; 1H and 13C Chemical Shifts Computed by the GIAO-DFT and GSGT-DFT Methodologies. J. Incl. Phenom. Macrocycl. Chem., 63: 97-108.
- Kumar Meher, S.; Rao, G.R.; (2011). Effect of Microwave on the Nanowire Morphology, Optical, Magnetic, and Pseudocapacitance Behavior of Co₂O₄. J. Phys. Chem. C115:25543-25556.
- Li, D.; Wu, X.; Xiao, T.; Tao, W.; Yuan, M.; Hu, X.;
 Yang, P.; Tang, Y.; (2012). Hydrothermal Synthesis of Mesoporous Co₃O₄ Nanobelts by Means of

a Compound Precursor. J. Phys. Chem. Solids, 73: 169-175.

- Lv, Y.; Li, Y.; Shen, W.; (2013). Synthesis of Co₃O₄ Nanotubes and Their Catalytic Application in Co Oxidation. Catal. Commun., 42: 116-120.
- Makhlouf, S.A.; Bakr, Z.H.; Aly, K.I.; Moustafa, M.S.; (2013). Structural, Electrical and Optical Properties of Co₃O₄ Nanoparticles. Superlatt. Microstruct., 64: 107-117.
- Singh, D.; Grover, V.; Kumar, K.; Jain, K.; (2011). Synthesis and Characterization of Divalent Metal Complexes of the Macrocyclic Ligand Derived from Isatin and 1,2-Diaminoethane. J. Serb. Chem. Soc., 46(3): 385-393.
- Teng, Y.; Yamamoto, S.; Kusano, Y.; Azuma, M.; Shimakawa, Y.; (2010). One-pot Hydrothermal Synthesis of Uniformly Cubic Co₃O₄ Nanocrystals. Mater. Lett., 64: 239-242.
- Yilmaz, I.; Ilhan, S.; Temel, H.; Kilic, A.; (2009). Synthesis, Characterization and Electro-Spectrochemical Studies of Four Macrocyclic Schiff-base Co(II) Complexes Having N₂O₂ Set of Donor Atoms. J. Incl. Phenom. Macrocycl. Chem., 63: 163-169.
- Xu, R.; Wang, J.; Li, Q.; Sun, G.; Wang, E.; Li, S.; Gu,
 J.; Ju, M.; (2009). Porous Cobalt Oxide (Co₃O₄)
 Nanorods: Facile Syntheses, Optical Property and
 Application in Lithium-Ion Batteries. J. Solid state
 Chem., 182: 3177-3182.

AUTHOR (S) BIOSKETCHES

Aliakbar Dehno Khalaji, Ph.D., Assistant Professor, Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran & Cubane Chemistry of Hircan (CCH) Co, Gorgan, Iran, *E-mail: alid-khalaji@yahoo.com*

Raziyeh Rahdar, B.Sc., Department of Chemistry, Faculty of Science, Golestan University, Gorgan, Iran