International Journal of Bio-Inorganic Hybrid Nanomaterials

Synthesis of Iron Oxide Nanoparticles using Borohydride Reduction

Majid Farahmandjou^{1*}, Farzaneh Soflaee²

¹ Assistant Professor, Department of Physics, Varamin Pishva Branch, Islamis Azad University, Varamin, Iran ² M.Sc., Department of Physics, Varamin Pishva Branch, Islamis Azad University, Varamin, Iran

Received: 9 July 2014; Accepted: 13 September 2014

ABSTRACT

Iron oxide (Fe₂O₃) nanoparticles were synthesized by a simple approach using sodium borohydride (NaBH₄) and Iron chloride hexahydrate (FeCl₃.6H₂O). Their physicochemical properties were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and electron dispersive spectroscopy (EDS). XRD pattern showed that the iron oxide nanoparticles exhibited rhombohedral structure and gamma-Fe₂O₃ (maghemite) to alpha-Fe₂O₃ (hematite) structural phase transition in nanocrystals. The particle size of a -Fe₂O₃ was around 28 nm in diameter as estimated by XRD technique. The surface morphological studies from SEM depicted spherical particles with formation of clusters by increasing annealing temperature. The EDS spectrum showed peaks of iron and oxygen free of impurity.

Keyword: Iron oxide nanoparticles; Sodium borohydride reduction; Synthesis; Hematite; Crystal structure; Morphological properties.

1. INTRODUCTION

Magnetic nanoparticles have unique physiochemical and optical properties due to surface and finite-size effects. These promising magnetic nanoparticles have been widely used as microwave radiation absorbers $[1, 2]$, spin-based devices $[3]$, cathode materials of lithium battery [4], ferrofluids $[5, 6]$, drug-targeting and cell separation carriers [7]. Several types of iron oxides have been studied by researchers such $Fe₃O₄$ (magnetite), α -Fe₂O₃ (hematite), γ -Fe₂O₃ (maghemite),

FeO (wustite), ϵ -Fe₂O₃ and β -Fe₂O₃ [8], among which netic application. Magnetic iron oxide nanoparticles magnetite and maghemite is the very important in magsess high surface energies. There are several methods have a large surface-to-volume ratio and therefore posto preparation of the iron oxid nanoparticles such as chemical synthesis, and sonochemical synthetic route mal synthesis, sol-gel synthesis, microemulsion, sonoco-precipitation, thermal decomposition, hydrother-

 $\overline{(*)}$ Corresponding Author - e-mail: farahmandjou@iauvaramin.ac.ir

[9, 13]. In the following, we focus mainly on chemical reduction of the iron oxide nanoparticles using Iron chloride hexahydrate (FeCl₃.6H₂O). Morphological properties are discussed by XRD, TEM, SEM and EDS analyses.

2. EXPERIMENTAL DETAIL

Iron oxide nanoparticles were synthesized by a new borohydride reduction approach according to the following manner. Firstly, 15 g of $FeCl₃$.6H₂O was dissiolved in 150 mL pure water with stirring and then 2 g N aBH₄ was added to the solution and temperature was increased to 80° C. The color of solution changed from bright to dark. The pH for the solvent was main-
tained-during the synthesis around 1.

The product was synthesized for 2 hours at the ture and finally calcined at 500° C for 4 hours. All mentioned temperature, cooled to room temperaing and purification. The specification of the size, analyses were done for samples without any washstructure and surface morphological properties of the as-synthesis and annealed $Fe₂O₃$ nanoparticles were carried out. X-ray diffractometer (XRD) was mate the crystalline size. The XRD pattern were used to identify the crystalline phase and to estirecorded with 2θ in the range of 4-85° with type X-Pert Pro MPD, Cu-K_α: λ = 1.54 Å. The morphology was characterized by field emission scanning electron

microscopy (SEM) with type KYKY-EM3200, 25 kV and transmission electron microscopy (TEM) with type Zeiss EM-900, 80 kV. The Fe and O elemental persive spectroscopy (EDS) type VEGA, 15 kV. All analysis of the samples was performed by energy disthe measurements were carried out at room tempera-
ture.

3. RESULTS AND DISCUSSION

tify crystalline phases and to estimate the crystalline X -ray diffraction (XRD) at 40Kv was used to idensizes. Figure 1 shows the X -ray diffraction patterns ure $1(a)$ shows the XRD pattern of Iron oxide before of the powder before and after heat treatment. Figannealing. $A \gamma \rightarrow \alpha$ -Fe₂O₃ phase transformation took place during calcination between 300 and 400° C [9]. ter annealing. An abrupt increase in the amount of Figure $1(a)$ shows the XRD pattern of Iron oxide afa phase occurred when the calcinations tempera-
ture rose above 500°C. α-Fe₂O₃ was the only phase a phase occurred when the calcinations temperapresent for the powder calcined above 500° C [12]. The exhibited picks correspond to the (012) , (104) , (110) , (113) , (024) , (116) , (018) , (214) and (300) of a rhombohedral (hexagonal) structure of α -Fe₂O₃ is identified using the standard data. The mean size of the ordered $Fe₂O₃$ nanoparticles has been estimated bye-Sherrer formula according to equation the folfrom full width at half maximum (FWHM) and De-

lowing:

$$
D = \frac{0.89\lambda}{B\cos\theta} \tag{1}
$$

length, B is the line broadening at half the maximum where, 0.89 is the shape factor, λ is the X-ray waveintensity (FWHM) in radians, and θ is the Bragg an-
gle. The mean size of as-prepared α -Fe₂O₃ nanopartiintensity (FWHM) in radians, and θ is the Bragg ancles was around 28 nm from this Debye-Sherrer equation. The lattice constant so obtained for alpha $Fe₂O₃$ cles was around 28 nm from this Debye-Sherrer equananoparticles were a= $b= 5.0352$ A \degree and c= 13.7480 A° .

The scanning electron microscope (SEM) was

Figure 2: SEM images of the Fe₂O₃ nanoparticles (a) as-
prepared (b) annealed at 500°C.

2Fe prepared-as of image TEM 3: Figure 3O .nanoparticles

used for the morphological study of nanoparticles of $Fe₂O₃$ samples. These analyses show that high homogeneity emerged in the samples surface by ing temperature the morphology of the particles increasing annealing temperature. With increaschanges to the spherical shape and nanopowders were less agglomerate. Figure $2(a)$ shows the SEM image of the as-prepared $Fe₂O₃$ nanoparticles prepared by chemical reduction method. In this Figure, the particles prepared with formation of clusters. Figure $2(b)$ shows the SEM image of the annealed $Fe₂O₃$ nanoparticles at 500°C for 4 hours. The $Fe₂O₃$ nanoparticles formed were not aggre gated. The spherical shaped particles with clumped distributions are visible through the SEM analysis. crystals is in the range of $24-32$ nm in diameter. The SEM observation, the size of annealed nano-

The transmission electron microscopic (TEM) analysis was carried out to confirm the actual size tribution of the crystallites. Figure 3 shows the as-
synthesized TEM image of spherical $Fe₂O₃$ nanopartribution of the crystallites. Figure 3 shows the asof the particles, their growth pattern and the disticles prepared by chemical reduction route. It can be seen that nanoparticles were prepared with less .aggregation

Energy dispersive spectroscopy (EDS) of $Fe₂O₃$ pre firms the existence of Fe and O with weight percent. pared by wet synthesis is shown in Figure 4 which con-EDS was used to analyze the chemical composition of a material under SEM. EDS shows peaks of iron and oxygen with fewer chlorine and sodium element.

Figure 4: EDS spectra of the as-synthesized Fe₂O₃ prepared by wet synthesis.

CONCLUSIONS 4.

The α -Fe₂O₃ nanoparticles have been prepared using chemical reduction of iron chloride hexa hydrate and sodium borohydride. XRD spectrum shows rhombo-
hedral (hexagonal) structure of α-Fe₂O₃. From SEM sodium borohydride. XRD spectrum shows rhomboimages, it is clear that with increasing temperature the morphology of the particles changes to the spherical shape and nanopowders were less agglomerate. TEM image exhibits that the as-synthesized TEM image of spherical $Fe₂O₃$ nanoparticles prepared by chemical reduction route with a diameter in the range of 24-32 nm with less aggregation. EDS shows only peaks of iron and oxygen and indicates the absence of impurities in prepared $Fe₂O₃$.

ACKNOWLEDGMENT

The authors are thankful for the financial support of Varamin Pishva Branch at Islamic Azad University for analysis and the discussions on the results.

REFERENCES

- 1. Kirschvink J.L., *Bioelectromagnetics*, 17 (1996), 187.
- 2. Kim D.K., Amin M.S., Elborai S., Lee S.H., *Koseoglu Y.*, Zahn M. and Muhammed M., *J.*

Appl. Phys., 97 (2005), 10J510.

- 3. Wang S., Yue F.J., Wu D., Zhang F.M., Zhong W. and Du Y.W., *Appl. Phys. Lett.*, 94 (2009), 012507.
- moto K. and Koura N., *J. Power Sources.*, 146 4. Ito S., Nakaoka K., Kawamura M., Ui K., Fuji- (2005) , 319.
- antharaman M.R. and Philip R., *Appl. Phys. Lett.*, 5. Nair S.S., Thomas J., Suchand Sandeep C.S., An-92 (2008), 171908.
- 6. Wang X.F. and Shi L.Q., *Chin. Phys. B*, **19** (2010), 107502.
- 7. Chen H.M., Deng C.H. and Zhang X.M., *Angew*. Chem. Int. Ed., 49 (2010), 607.
- 8. R.M. Cornell, U. Schwertmann, 2003. The Iron Oxides: Structures, Properties, Reactions, Occur-
rences and Uses, Wiley-VCH, Weinheim.
- 9. Cabrera L., Gutierrez S., Menendezb N., Morales M.P., Herrasti P., *Electrochim. Acta*, 53 (2008), 3436.
- 10. Pascal C., Pascal J.L., Favier F., Moubtassim M.L.E., Payen, C. Chem. Mater., 11 (1999), 141.
- 11. Bomati-Miguel O., Mazeina L., Navrotsky A., Veintemillas-Verdaguer S., Chem. Mater., 20 $(2008), 591.$
- 12. Bharde A.A., Parikh R.Y., Baidakova M., Jouen S., Hannoyer B., Enoki T. et al., *Langmuir*, 24 $(2008), 5787.$
- 13. Roh Y., Vali H., Phelps T.J., Moon J.W., *J. Nanotechnol.*, 11 (2006), 3517.

206