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ABSTRACT: In this research, analysis of nonlocal magneto-electro-thermo-elastic of a functionally graded nanobeam 

due to magneto-electro-elastic loads has been done. In order to formulate the problem the Timoshenko theory of beams 

is utilized. The principle of virtual work, Hamilton’s principle as well as nonlocal magneto-electro-thermo-elastic 

relations has been recruited to derive the governing equations of equilibrium. The small size effect is captured using 

Eringen’s nonlocal elasticity theory. The Electric, Magnetic and Thermal fields are assumed in around of nanobeam. 

The nanobeam is subjected to transverse loads and initial electric and magnetic potentials. The constitutive relations are 

used in order to calculate the bending results of the nano-beam for a simply-supported nano-beam in terms of 

parameters of loadings, materials and geometries. The obtained results in this paper are validated by comparison with 

existing results in corresponding reference. Remarkable effects such as in-homogeneous parameter, nonlocal parameter, 

initial electric and magnetic potentials and thermal loads are investigated on the mechanical and electrical results in 

detail for nanobeams made of METE-FG materials. The results show that with increasing the nonlocal parameter and 

initial magnetic potentials, deflection of METE-FG nanobeam increases. 
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INTRODUCTION 

Magneto-electro-elastic (MEE) materials are smart 

materials which possess piezoelectric phase and 

piezo-magnetic phases. Since the 1970s when the 

first magneto-electro-elastic composite consisting of 

the piezomagnetic phase and piezoelectric phase is 

reported, MEE composite materials are attracted 

considerable attention. Compared to MEE bulk 

composite materials, MEE nanomaterials possess 

higher ME coupling (Lotey and Verma, 2013). 

Because of converting energy among three forms, 

namely electric, magnetic and elastic, MEE 

materials are widely used in many smart devices, 

such as sensors, memory devices, actuators, 

transducers, etc. (Nan, 1994, Huang and Kuo, 1997). 

(Pan, 2001) derived exact solutions for three-

dimensional, anisotropic, linearly MEE, simply-

supported, and multilayered rectangular plates under 

static loadings. Free vibration of MEE beam using 

in-plane plate, analytically solutions, semi-analytical 

solutions, approximate solution, finite element 

approach is carried out by (Vaezi, et al., 2016), 

(Ramirez, et al., 2006), (Kumaravel, et al., 2007, 
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Anandkumar, et al., 2007). A new one-dimensional 

model for the dynamic problem of magneto electro 

elastic generally laminated beams is presented by 

(Milazzo, 2013). The electric and magnetic fields are 

assumed to be quasi-static and a first-order shear 

beam theory is used. (Reddy, 2007) studied various 

available beam theories, including the Euler–

Bernoulli, Timoshenko, Reddy, and Levinson beam 

theories, are reformulated using the nonlocal 

differential constitutive relations of Eringen. He 

used analytical solutions of bending, vibration and 

buckling for the nonlocal theories to bring out the 

effect of the nonlocal behavior on deflections, 

buckling loads, and natural frequencies. (Ebrahimi 

and Salari, 2015) by presenting a Navier type 

solution is investigated the thermal effect on 

buckling and free vibration characteristics of FG 

size-dependent Timoshenko nanobeams subjected to 

thermal loading. Structural elements, such as beams 

and plates in micro or nano length scale are 

commonly used as components in micro/nano-

electromechanical systems (MEMS/NEMS). 

(Mohammadimehr, et al., 2016) are presented the 

free vibration analysis of MEE cylindrical composite 

panel reinforced by various distributions of carbon 

nanotubes (CNTs) considering open and closed 

circuits boundary conditions based on the first order 

shear deformation theory (FSDT). Study of a 

dynamic solution for the propagation of harmonic 

waves in imhomogeneous MEE plates composed of 

piezoelectric BaTiO3 and magnetostrictive CoFe2O4 

are done by (Bin, et al., 2008). They showed that the 

influential factors of the piezoelectricity and 

piezomagnetism on the wave characteristics are 

similar. They utilized the Legendre orthogonal 

polynomial series expansion approach to determine 

the wave propagating characteristics in the plates. 

Size-dependent nonlinear free vibration (Ansari, et 

al., 2015a,b), forced vibration in the pre and post 

buckled (Ansari and Gholami, 2016) of METE 

nanobeams and nanoplates based upon the nonlocal 

elasticity theory analyzed by Ansari et al. They used 

Hamilton’s principle for extraction of governing 

equations which are then discretized via the 

generalized differential quadrature method 

(GDQM). Their results demonstrated that the effects 

of external magnetic potential and electric voltage 

are dependent on their sign. They found that by 

increasing temperature nanobeams, the natural 

frequency of nanobeams slightly decreases while the 

forced vibration response of these structures is 

almost insensitive to the temperature rise. It is 

concluded that increasing nonlocal parameter result 

in decreasing the total stiffness of METE nanoplate 

and subsequently lead to the lower values of 

nondimensional frequencies, for all types of 

boundary conditions. Using analytical approach, the 

stress analysis of a long piezoelectric polymeric 

hollow cylinder reinforced with carbon nanotube 

(CNT) under combined magneto-thermo-electro-

mechanical loading is investigated by (Ghorbanpour 

arani, et al., 2012). In another work (Ghorbanpour 

Arani, et al., 2015) studied the stress analysis of 

composite cylinder reinforced by BNNTs under non-

axisymmetric thermo-mechanical loads. Composite 

materials with inhomogeneous micromechanical 

structure which are described by the variation in 

gradually over volume are named Functionally 

Graded Materials (FGMs). They are composed of 

two different parts. There are many areas of 

application for FGM. These materials which are 

mainly constructed to operate in high temperature 

environments find their application in nuclear 

reactors, chemical laboratories, aerospace, turbine 
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rotors, flywheels and pressure vessels. FGMs have 

also attracted intensive research interests, which are 

mainly focused on their bending, vibration, 

Thermoelastic and buckling characteristics of FGM 

structures. (Ghorbanpour arani, et al., 2009a,b) 

analyzed the thermopiezoelectric behavior of a thick 

walled cylinder with FG materials and to obtain the 

response of MEE stress and perturbation of the 

magnetic field vector for a thick walled spherical 

functionally graded materials (FGM) vessel are 

developed an analytical method. The classical 

continuum models need to be extended to consider 

the nanoscale effects therefore the nonlocal elasticity 

theory proposed by (Eringen, 1983) which considers 

the size-dependent effect. Wu and Tsai (2007) 

developed three-dimensional static behavior of 

doubly curved MEE-FG shells under the mechanical 

load, electric displacement and magnetic flux by 

using an asymptotic approach. Thermo-piezo-

magneto-mechanical stresses analysis as well as 

Semi-analytical solution of magneto-thermo-elastic 

stresses for functionally graded rotating thin disk is 

done by (Ghorbanpour arani, et al., 2010a,b). 

The stress and displacement correlations, including 

mechanical, magnetic and thermal terms are defined 

using elasticity theory. It has been found that 

imposing a magnetic field significantly decreases 

tensile circumferential stresses. Therefore the fatigue 

life of the disk will be significantly improved by 

applying the magnetic field. Free vibration and static 

analysis of simply supported MEE-FG cylindrical 

shells and plates analyzed (Bhangale and Ganesan, 

2005, 2006). Their results showed that influence of 

piezoelectric increase the structural frequency 

marginally and the magnetic effect is reducing the 

same marginally. Wave propagation analysis of a 

nanobeam MEE-FG rest on Visco-Pasternak 

foundation is developed by (Arefi and Zenkour, 

2017). Also in other work (Arefi, 2016) studied the 

wave propagation in a MEE-FG nano-rod subjected 

to two-dimensional electric and magnetic potentials. 

The numerical results indicate that increasing the 

wave number leads to increasing phase velocity. In 

two separate work, (Lang and Xuewu, 2013) and 

(Ebrahimi and Barati, 2016) studied the buckling 

and vibration of size-dependent METE-FG for 

circular cylindrical shells and nanosize Beams. They 

utilized Hamilton’s principle and the higher order 

shear deformation theory for extracting governing 

equations. In this research because of initial electric 

and magnetic potentials and thermal loads the size 

dependent equations of equilibrium for a METE-FG 

nanobeam is present. Timoshenko beam theories as 

well as nonlocal magneto-electro-thermo-elastic 

relations are used to investigate the influence of 

parameters of materials, geometries and loadings on 

results of METE-FG nanobeam. In this work an 

analytical solution for solving the governing 

equations of motion of bending of a simply 

supported METE-FG nanobeam is presented. 

Comparisons with validated references are 

performed to verify our formulations. 

 

THEORY AND FORMULATION 

Contrary to the constitutive equation of classical 

elasticity theory, Eringen’s nonlocal theory (Şimşek 

and Yurtcu, 2013, Arefi and Zenkour, 2016, 

Ghorbanpour Arani, et al., 2014, 2018, Eringen, 

1972, 1983, 2002) notes that the stress at a reference 

point is assumed to depend not only on the strain 

components at this point but is a function of other 

points stress of the METE body. In this section, the 
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nonlocalmagneto-electro-thermo-elasticity 

constitutive relations are expressed. 

   ijnnijmmijklijklijij HqEeCae  22
0  (1) 

   ininmimkliklii pHdEseDaeD  22
0  (2) 

   ininmimkliklii HEdqBaeB  22
0  (3) 

In which iiiij EBD ,,, and iH are the stress, 

electric displacement, magnetic induction, electric 

field components and magnetic 

field. iklinimmijijkl qdseC ,,,, and in  are the 

components of elastic stiffness,  piezoelectric , 

dielectric permittivity constants, magnetoelectric, 

piezomagnetic and magnetic permittivity constants, 

respectively, as well as iiij p  ,, and  are the 

thermal moduli, pyroelectric constants, 

pyromagnetic constants and mass density, 

respectively.  is the temperature change 

and  ae0 & 2  are the scale parameter and the 

Laplace operator. 

0,0, ,,,  iiiiijij BDu  (4) 

In order to satisfy the Maxwell equations, the 

electric potential ),,( tzx and the magnetic 

potential ),,( tzx of METE nanobeams are 

considered as a combination of a linear and half-

cosine variation (Şimşek and Yurtcu, 2013, Arefi 

and Zenkour,2016, Ghorbanpour Arani, et al., 2014, 

2018, Eringen, 1972, 2002) in which 
h


  , 

0 & 0  are the initial external magnetic potential 

and electric potential and, respectively. 

    0
2,cos),,( 
h
ztxztzx   (5) 

    0
2,cos),,( 
h
ztxztzx   (6) 

The non-zero components of magnetic field and 

electric field using Eqs. )5( and )6( can be expressed 

as: 

 
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) 
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
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(8

) 

 

Timoshenko beam model (TBT) 

To model the nanobeam, Timoshenko model of 

beam is used. Based on this model, two time 

dependent displacement components along the axial 

and transverse direction are expressed as:  

     txztxutzxU ,,,,1   (9) 

   txwtzxU ,,,3   (10) 

Where t  is time, u  and w  are displacement 

components of the mid-plane along x and 

z directions, respectively. Two components of 

normal and shear strains using described 

displacement field in Eqs. )109(  , is derived as: 

x
z

x
u

xx 







   





x
w

xz
 (11) 

According to Eqs. )31(   and using Eqs. )11,8,7(  

and Substitution of the required equations, the strain 

energy of the METE nanobeam is given. Where the 

bending moment, transverse shear force and normal 

force are calculated in Eq. 17. 

/2

0 /2

1
2

L h
xx xx xz xz x x

z z x x z zh

D E
U dxdz

D E B H B H
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

  
     
   (12) 
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(13) 
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The work done by external electric potential, 

magnetic potential, uniform temperature rise and 

loading is denoted. In which, THE NandNN , are 

the normal force induced by the external electric 

potential 0 , external magnetic potential 0 , and 

temperature rise . 
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 
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(16) 

Now consider the Hamilton's principle, which states 

that the motion of an elastic structure during the 

time interval 21 ttt   is such that the time integral 

of the total dynamics potential is extreme. Here 

 U  is strain energy and  W  is work done  

  
t

dtWU
0

0  (17) 

When substituting Eqs. )1612(  into Eq. )17( , 

integrating by parts and setting the coefficients of 

 andwu ,,,  to zero, the equations of 

motion will be obtained follows as : 

:u  0
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
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x
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 

 
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
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For a magneto-electro-thermo-elastic FGM 

nanobeam, the nonlocal constitutive relations 

)31(   can be approximated to one-dimensional 

form as:  
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5 6Ks   is the shear correction factor (Ebrahimi 

and Barati, 2016). By substituting Eqs. 

)2823(  into Eqs. )2218(  , the force-strain and 

the moment strain of the nonlocal Timoshenko 

beam theory can be obtained where  2
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By substituting Eqs. )2018(  into Eqs. )3129(  , 

The explicit expressions of the nonlocal normal 

force, bending moment and shear force can be 

written. 

11 22

11 11 0 11 21 0 33

x
uN A A
x x

E B Q B B



   

 
 

 
     

 (36) 

 

22 33 12

12 0 12 22 0 44
2

22

x

H E T

uM A A E
x x

B Q B B T

wN N N q
x

 

  

 

 
  

 
    


   



 (37) 

 

12 12 11

3

21 32

x

H E T

wQ KsA KsA D
x x

wD N N N
x x

q
x









 
  

 
 

   
 






 (38) 

However, by using Eqs. )2218(   and )3832(   

the governing equation of motion can be re-

expressed in the form of  andwu ,,, . 

:u
 

2 2

11 222 2

11 11 0

uA A
x x

E Q
x x



 

 
 

 
 

  
 

 (39) 
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:w
 

 

 

2 2

122 2

2 2

12 11 212 2

4 2

4 2

2

2 0

H E T

H E T

w wN N N q A
x x

A D D
x x x

w qN N N
x x

  

 

 
   

 

  
  

  
 

    
 

 
(40) 

:
 

2

12 12 11 21 22 2

2

33 12 122 0

w uA A D D A
x x x x

A E Q
x xx

 


  

   
   

   
  

   
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(41) 

:
 

11 12 12 12 0

2
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2 2
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x x

wY X X T D
x
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x x x
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 

  

 
  

 


    


  
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 (42) 

:
 

11 12 11 11 0

2

12 12 0 22 11 2

2 2

11 11 122 2 0

uE E Y X
x x

wY X Y T D
x

D T T
x x x


 

 

  

 
  

 


    


  
   

  

 (43) 

Solution method 

In this section, general solution of Eqs. (39 43) as 

governing equations is presented using complex 

Fourier series. In this way, to satisfy governing 

equations of motion, the displacement, rotation and 

electric and magnetic potential variables are 

adopted to be of the form: (Ghorbanpour Arani, et 

al., 2014, Zenkour and Arefi, 2017). 

  










0

cos, ti
n

nex
L

mUtxu   (44) 

  










0

cos, ti
n

nex
L

mtx   (45) 

  










0

sin, ti
n

nex
L

mWtxw   (46) 

  










0

sin, ti
n

nex
L

mtx   (47) 

  










0

sin, ti
n

nex
L

mtx   (48) 

Where nnnnn WU  ,,,,  are the coefficients of 

complex Fourier series represent the amplitudes of 

the displacement, rotation, the magnetic potential 

and the electric potential of nanobeams to be 

determined for each value. Substituting Eq. 

 4844  into Eqs.  4338  leads to Eq. 49 where 

the elements in the matrixs  ijij FK ,  according to 

the equations  4319 are determined. 
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The Material Property 

Fig.1 illustrates a METE-FG nanobeam with length 

L and thickness h  exposed to a magnetic 

potential ),,( tzx , an electric potential ),,( tzx , a 

uniform temperature rise and loading )(xq .  

 

Fig. 1. The schematic configuration of a METE-FG 

nanobeam 

The effective material properties of the METE-FG 

nanobeam based on power-law form can be 

displayed in the following form (Şimşek and 

Yurtcu, 2013): 

1122 VPVPP   (50) 



A. Ghorbanpour Arani & et al. 

170 

That 1P  and 2P  are the material properties of the 

bottom and top surfaces and 1V  and 2V  are the 

corresponding volume fractions: 

112 VV
n

h
zV 






 

2
1

2
 (51) 

Where 0n  is power index which specifies the 

material distribution through the thickness of the 

METE-FG nanobeam. The effective properties of 

METE-FG nanobeam have been obtained using 

Eqs. )5150(  with the following form: 

112 2
1)()( P

h
zPPzP

n







   (52) 

Notice that, the top surface at 2/hz  and the 

bottom surface 2/hz  of nanobeam are assumed 

the pure 42OCoFe  and the pure 3BaTiO , 

respectively. In the Table 1, the values of the METE 

material properties are expressed (Arefi and 

Zenkour, 2016, Ghorbanpour Arani, et al., 2018). 

The Comparison study 

After extensive validation of the present 

formulation for the elastic nanobeam model by 

neglecting the piezomagnetic, magnetoelectric and 

magnetic coefficients immijijkl seC ,, and so on, 

Table 2 are presented for ensuring the accuracy of 

findings. In which the results of comparison of non-

dimensional maximum center deflection 

)(10* 4
0

2 LqEIww   in simply supported beams 

subjected to uniform load 0q  (Reddy, 2010) has 

been displayed.  

 3.0,10*30,10,1 6
0  ELq  

As can be seen from the Figure, the difference 

between values is very little, and there is good 

agreement between two methods. 

 

Table 1. Material properties of 3BaTiO  and 

42OCoFe  material. 

 

 

 

Parameter Symbol 3BaTiO  42OCoFe  

11C  166  286  

12C  77  173  

13C  78  5.170  

Elastic 

 Gpa  

44C
 

43  3.45  

15e  6.11  0  Piezoelectric 

 2/ mC  
31e  4.4  0  

15q  0  550  Piezomagnetic 

 AmN /  
31q  0  3.580  

11s  2.11  080.0  Dielectric 

permittivity 

 VmC /10 9  33s  6.12  093.0  

11d  0  0  Magnetoelectric 

 VCNs /10 12  
33d  0  0  

11  5  590  Magnetic 

permittivity 

 226 /10 CNs  33  10  157  

x  7.15  10  

y  7.15  10  
Thermal expansion  

 K/110 6  

z  4.6  10  

Pyromagnetic 

 AmKN /10 6  3  187.5  187.5  

Pyroelectric 

 NC /10 6  3p  94.2  25  

Mass density 

 3/ mKg  
  5850  5300  

zyx CCC  131211   
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Table 2. Comparison of non-dimensional 

maximum center deflection (Reddy, 2010). 

( )
TBT
PRE

 
( )
TBT
REF

 
( )
EBT
REF    h

L  

3074.1  3134.1  3130.1  0  

3720.1  3813.1  3809.1  5.0  

4365.1  4492.1  4487.1  1 

5010.1  5170.1  5165.1  5.1  

5655.1  5849.1  5844.1  2  

100 

3155.1  3218.1  3130.1  0  

3804.1  3909.1  3809.1  5.0  

4453.1  4600.1  4487.1  1 

5102.1  5290.1  5165.1  5.1  

5752.1  5981.1  5844.1  2  

20  

3406.1  3483.1  3130.1  0  

4068.1  4210.1  3809.1  5.0  

4730.1  4937.1  4487.1  1 

5391.1  5664.1  5165.1  5.1  

6053.1  6391.1  5844.1  2  

10  

 

RESULTS AND DISCUSSION 

As can be seen, Fig. 2 depicts the variations of 

dimensionless transverse deflection )(*1000 Lw  

versus nonlocal parameters of METE-FG nanobeam 

 0,1 00  Tm   for various shear effect 

coefficient. From this Figure is taken that by 

increasing nonlocal parameters, the dimensionless 

deflection of nanobeam increases. As well as 

considering the shear effect coefficient, the ratio 

)(*1000 Lw  increases. Increase of non-

dimensional deflection of nanobeam is due to 

decrease of stiffness of nanobeam with increase of 

nonlocal parameters. The influence of initial 

magnetic potentials of METE-FG nanobeam on the 

variation of non-dimensional deflection 

)(*1000 Lw of nanobeam 

 0,1,1,1 0  Tm   is presented in Fig. 3. 

The numerical results indicate that the absolute 

value of non-dimensional deflection )(*1000 Lw  

of nanobeam is increased with increase of initial 

magnetic potential and also decrease of initial in-

homogeneous index. This event has been created 

due to material properties changes of the nanobeam.  

0 1 2 3 4 5 6 7 8 9
720.5
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723

(nm2) ,0=0 , 0=0, m=1, h/L=0.01

 ( 
w

*1
0 

3 /L
)

 

 

With shear effect ( ks=5/6)
Without shear effect (ks=1)

 
Fig. 2. Variations of dimensionless transverse deflection 

versus nonlocal parameters of METE-FG nanobeam for 

various shear effect  0T1m 00  ,  
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 ( 
w

*1
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n=1
n=2
n=3
n=4

 
Fig. 3. Variations of dimensionless transverse deflection 

versus initial magnetic potentials of METE-FG 

nanobeam for various in-homogeneous 

index  0,1,1,1 0  Tm   
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Fig. 4 displays that non-dimensional deflection 

)(*1000 Lw  versus nonlocal parameters of 

METE-FG nanobeam for various in-homogeneous 

index  0,1 00  Tm  .It is understood that 

with increasing the nonlocal parameter and in-

homogeneous index, the dimensionless transverse 

deflection increases. This is due to decrease of 

stiffness of METE-FG nanobeam. 

0 1 2 3 4 5 6 7 8 9 10
550

600

650

700

750

800

 (nm2) , 0=0, 0=0, m=1, h/L=0.01

 ( 
w

*1
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3 /L
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n=0
n=1
n=2
n=3

 
Fig. 4. Variations of dimensionless transverse 

deflection versus nonlocal parameters of METE-FG 

nanobeam for various in-homogeneous 

index  0T1m 00  ,  

The variation of non-dimensional 

deflection )(*1000 Lw in terms of temperature 

rising and inhomogeneousindex 

 0,1,1 00  m  is demonstrated in Fig. 

5. It shows that with increase of in-homogeneous 

index and also decrease of temperature rising, the 

non-dimensional deflection )(*1000 Lw  

increases.The effects of variations of 

dimensionless transverse deflection for various 

inhomogeneous indexes of METE-FG nanobeam 

versus initial electric potentials 

 0,1,1 0  Tm   are illustrated in Fig. 

6. 
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-14

-12

-10

-8
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-2
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 ( 
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*1
0 

3 /L
)
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Fig. 5. The effect of temperature rising on 

dimensionless transverse deflection of METE-FG 

nanobeam versus on in-homogeneous 

index  011m 00   ,,  

According to Fig. 6, increasing initial electric 

potentials lead to decrease the dimensionless 

transverse deflection. Also, this Figure demonstrates 

that increasing in-homogeneous reduces the 

stiffness of the beam in result non-dimensional 

deflection )(*1000 Lw  increases. 
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n=0
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Fig. 6. Variations of dimensionless transverse deflection 

for various in-homogeneous index of METE-FG 

nanobeam versus initial electric potentials 

 0,1,1 0  Tm   

Fig.7 indicates that change of non-dimensional 

deflection )(*1000 Lw  of nanobeam in terms of 

thicknesstolength ratio Lh  for various 

inhomogeneous indexes. 
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 0,1,1 00  Tm   

This Figure illustrates that with increase of 

thickness-to-length ratio Lh , the non-dimensional 

deflection of nanobeam is decreased significantly. 

In addition, from this Figure can be concluded that 

results converges for higher values of Lh . 

Decrease of non-dimensional deflection of 

nanobeam is due to increase of stiffness of 

nanobeam with increase of Lh . 
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Fig. 7. The effect of different in-homogeneous index on 

dimensionless transverse deflection of METE-FG 

nanobeam versus thickness-to-length ratio 

 0,1,1 00  Tm   

 

CONCLUTIONS 

In this paper, an analytically solutions for a 

functionally graded nanobeam is developed. The 

nanobeam made of magneto-electro-thermo-elastic 

material. The nonlocal magneto-electro-thermo-

elastic relations as well as principle of virtual work 

are employed for formulation of the problem. The 

nanobeam is subjected to transverse loads and 

magneto-electro-thermal loads. Timoshenko beam 

theory considering the shear correction factor is 

utilized for description of displacement field. In 

addition electric and magnetic potentials are 

presented in the form of a linear distribution and a 

cosine distribution to mention initial electric and 

magnetic potentials. The governing equations of 

equilibrium are derived using the elasticity theory 

by assuming power functions for all 

mechanical, electrical, magnetical and thermal 

properties. The used analytical solution is based on 

Fourier series where numerical analysis of the 

problem and investigation on the influence of 

important parameters of the problem is solved by it. 

 The important parameters of the problem are 

divided to parameters of loads, geometries and 

materials. Subsequently, the influences of the in-

homogeneous parameter, nonlocal parameter, initial 

electric and magnetic potentials and thermal loads 

are investigated on the mechanical and electrical 

results in detail for nanobeams made of METE-FG 

materials.  The numerical results lead to important 

conclusions as follows: 

1. Change of initial electric and magnetic 

potentials can change the bending and electro-

magnetic behaviors of nanobeam. The results 

demonstrates that by increasing initial electric 

potential and initial magnetic potential, the 

maximum of non-dimensional deflection increase. 

2. Nonlocal parameter of nanomaterials can 

strongly change the results of the problem. This 

study shows that increase of nonlocal parameter 

leads to increase transverse deflections. Also from 

these results are understood that increases of 

transverse displacements by increasing of in-

homogeneous index. 

3. Temperature rising of METE-FG 

nanobeam leads decrease transverse displacements. 

4. The parameter thickness-to-length ratio 

Lh  has important effect on the results of the 

problem. By increasing of this parameter leads to 
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decrease and converges of non-dimensional 

transverse displacement. 

5. The shear correction factor is another 

effective parameter. This parameter has a small 

incremental effect on the bending behavior of 

METE-FG nanobeam. 
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