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ABSTRACT: The longitudinal optical conductivity is the most important property for graphene-based 
devices. So investigating this property for spatially separated few-layer graphene systems analytically 
and numerically is the main purpose of our study. Each layer can be mono- or bi-layer graphene. The 
density-density correlation function has been screened by the dielectric function using the random 
phase approximation, which includes the inter-layer Coulomb coupling. By using Kronecker delta and 
dielectric tensors, the optical conductivity, is calculated, and plotted as a function of photon energy 
for three-layer graphene systems with composes mono-bi-bi, bi-mono-bi, and bi-bi-mono in different 
broadening widths. In the presence of the potential function between the layers, the carrier densities in 
each layer can be tuned respectively. In these two dimensional layered structures; the main contributions 
to the optical conductivity are from the intra- and inter-band transition channels in a same layer.
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Graphene, single atomic layer thickness, was fabricated 
experimentally by Geim, et al. This ultra-thin material 
exhibits very exceptional and excellent physical prop-
erties, such as, Klein tunneling, high mobilities, unique 
quantum Hall effect, and so on. Using the applied field 
(or gate voltage) the carrier density can be tuned, and 
the corresponding transport properties can be measured 
experimentally. For example, using the global gate and 
a metallic top gate in single layer graphene, which led 
to the electrostatic potential barrier, n-p junctions with 
tunable charge densities can be obtained and the trans-
port measurements in the presence of barrier can be 

performed experimentally. In the presence of the bar-
rier structure, the charge transmission coefficient de-
pends on the height and the width of the barrier and 
transmittance value is less than one. But for graphene 
material, owing the suppression of backscattering, the 
charge exhibits perfect transmission through the barrier 
at normal incidence regardless of the barrier character-
istics. During the fabrication of graphene material, the 
number of graphene layer has many possibilities, such 
as, mono-layer, bi-layer, and few-layers. For example, 
mono-bi-bi, means the first layer is formed by one 
sheet of graphene, while the second and third layers are 
made of two sheets of graphene. In a more than one-
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layer system with top andback gates, the out-of-plane 
electric field creates a different potential between the 
layers and the carriers densities in each layer can be 
independently controlled by gates. The carrier den-
sity in each layer can be obtained by the capacitance 
between graphene and the gates. Some ultra-thin di-
electric layers can be used to separate graphene layers 
into two or more independently contacted single- or 
bi-layers. The dependence of the layer resistivities on 
the back gate bias indicates that the charge densities 
in each graphene layers are induced differently with 
the applied back gate voltage. At the Fermi energy, the 
kinetic energy in a different layer is different. Khra-
pach et al., intercalated the FeCl3 into two- to five-lay-
er graphene [1-3]. The Raman spectra measurments 
indicate the decoupling of the few layer graphene.
The longitudinal magneto-conductance oscilates as 
a function of perpendicular magnetic field at T<10K, 
which indicates the distinct charge densities in differ-
ent layers. From the Hall resistance measurement, it 
has found that the monolayer and bilayer graphene 
are included in the intercalation graphene system. The 
optical transmission in the visible wavelength range 
slightly decreases at low wavelength. Bao et.al. dem-
onstrated an increase of optical transmittance in the 
visible rangeupon Lithium intercalation for 3-60 gra-
phene layers, which is explained by the suppression of 
interband transitions. Min et.al. calculated the static 
polarizability and screening of multilayer graphene 
which is dependent on the layer number and includes 
the intra- and inter-band polarizability. The theoreti-
cal Thomas-Fermi screening wave vector results show 
different behaviours for several stacking sequences 
which implies the importance of the layer structure. 
Das Sarma et al., investigated the intrinsic and extrin-
sic plasmons for single- and double-layer systems and 
the effects of the layered structure, electron densities, 
the background lattice dielectric constant, and the 
temperature are included in their investigations The 
optical conductivity in graphene also exhibits other 
important properties with inter- and intra-band transi-
tions channels which have been widely investigated 
experimentally and theoretically. The experimental 
value of the optical conductivity per graphene layer 
(or an optical sheet conductivity) is almost a constant 
and close to s0=e2/4h, above 2Ef, which is indepen-

dent from the frequency and the inter-layer hopping. 
The second observation is that the optical sheet con-
ductivity showed a threshold structure at two times 
the Fermi energy under an applied gate voltage and 
the turning points can be tuned by the gate voltage. 
Theoretically, the Boltzmann transport theory and/or 
the Kubo formula were employed to investigate the 
optical conductivity as a function of the gate voltage 
and the optical frequency with the disorder broaden-
ing from impurity and phonon scattering. The optical 
conductivity is proportional to the layer number mul-
tiplying the universal optical conductivity. Taking into 
account of the full energy dispersion, the results for 
the optical conductivity from the infrared to the ultra-
violet frequency regions are obtained with extra peak 
structures observed [1].

In this paper, the structures with three isolated paral-
lel two dimension mono-layer graphene, in combina-
tion with two bi-layer graphene, separated by a dis-
tance d with an ultra-thin dielectric is studied. When 
an inter-layer distance d is about a few angstroms 
(d~3.5 Å), the out-of-plane p orbitals from two adja-
cent graphene sheets start to overlap. The inter-layer 
tunneling is obvious when (d~1-5 Å). Increasing the 
distance between the adjacent layers, the inter-layer 
tunneling decreases, and inter-layer electron-electron 
Coulomb scattering should be included. Here, we 
refer to the electron systems (i.e. extrinsic graphene 
systems) where the Fermi energy Ef>0 and T®0. The 
carrier density for each layer can be tuned both by the 
chemical doping and applied field (or gate voltage). 
The carrier densities each layer can be independently 
controlled by using top and bottom gates. The carrier 
density in each layer can be obtained by the capaci-
tance between graphene and the gates.

THEORETICAL APPROACHES

For a several-layer graphene system, using the mean-
field random phase approximation, The dielectric ten-
sor en, and it’s elements, el,m(q,w), where l,m=1,2,...,n  
denoting the different layer, can be written as:
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Where the elements	          are Kronecker deltas, 
Showing the Identity matrix. Vn the Coulomb interac-
tion tensor;

Here, a=Vq=2pe2/kq is the intra_layer Coulomb inter-
action, k is the static dielectric constant for b=e-qd, In 
which, d is the distance between the adjacent layers. 
So we can write Vn=abn, Pn is the density_density 
correlation tensor.For a several_layer graphene sys-
tem, each layer separated by a dielectric plm=0, if l≠m, 
and plm=pl, if l=m. We can obtain:

The matrix elements pl=pl(q,w) are the density-densi-
ty correlation functions, which for mono- and bilayer 
graphene can be obtained as:

gs=2 is spin degeneracy. There are two points k and k' 
at the corner of the graphene Brillouin zone, called the 
Dirac points. gn=2 refers to this degeneracy, fs,km

 is the 
Fermi-Dirac distribution function in the m-th layer. 
s,s'= ±1 refer to the conduction band (+1) and the va-
lence band (-1).1+ss'Akmq/2 comes from the overlap of 

carrier states. Akmq=cosjm and Akmq=cos2jm in mono-
layer and bilayer graphene respectively, 
cosjm=km+qcosqm/|km+q|, qm being the angle between 
km and q. In monolayer graphene, Es,k=shuF|k|(uF be-
ing the Fermi velocity of graphene). In bilayer gra-
phene Es,k=sh2k2/2m, m≈0.033 is the effective mass of 
bilayer graphene with me being the free-electron mass. 
Gm is the broadening width induced by the carrier scat-
tering process. For a three-layer graphene system we 
obtain that:
Graphene, blm=b|l-m|, and e3=D3-V3P3

So we can write:

Then e3 becomes as;

Determination of the dielectric matrix function for 
three-layer graphene system yields;

Knowing that; pl=pl(q,w). And we find imaginary part 
of dielectric function as;

The longitudinal optical conductivity can be obtained 
by the dielectric function [2].

e(q,w) is the determination of the dielectric-matrix 
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function. w is the frequency of the incident-light. q®0 
reflects a fact that the electron-photon scattering does 
not change the wave vector of an electron, which can 
be understood from Maxwell equations with a com-
plex dielectric function e'=e+is/w being introduced to 
investigate the optical absorption problems. The lon-
gitudinal optical conductivity sxx(w) is proportional to 
(lmpRee-lmeRep). The intra- and inter-band d-d cor-
relation functions contribute to the real and imaginary 
parts.

Each part can be written as

The real parts in the i-th layer are 

and

The imaginary parts are

(++) and ( ̶ +) denoting intra- and inter channel transi-
tions, respectively. Here L=1, 2 is for monolayer and 
bilayer graphene respectively. This coefficient is simi-
lar to the obtained plasmon results in MLG and BLG. 
These two plasmon analytical results are identical ex-
cept for an extra factor of √2 in the BLG case. xi= 
Gi/hw, Ai=(hw)2+ Gi

2, D=2gk-hw, Ri=(2gk-hw)2+ Gi
2, 

g=hVf and kc is the cutoff wave vector above which 
the linear energy dispersion approximation breaks 
down for graphene. kc~1/a (a being the distance be-
tween C-C bond). The real and imaginary parts of in-
tra- or inter-band d-d correlation function have much 
common factors, and have similar relationship to the 
broadening width, Fermi energy, q-wave vector, and 
the optical frequency. Using the imaginary parts of the 
d-d correlation function and the dielectric function, 
results of the optical conductivity sxx(w) can be ob-

tained by the analytical calculation. The contributions 
to the optical conductivity are from electron-hole ex-
citations from the intra-layer and inter-layers. In each 
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Fig. 1. The optical conductivity as a function of photon en-
ergy, for Three-layer graphene systems mono-bi-bi (solid 
line), and bi-mono-bi (dash line), and bi-bi-mono (dot line) 

in different broadening widths width values; a) G=0.09Ef; b) 

G=0.05Ef; c) G=0.01Ef; ne1=5×1012 cm-2; ne2=3×1012 cm-2, 
ne3=1×1012 cm-2 are electron densities in first-, second-, and 
third-layers respectively.

(b)

(a)
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layer, there are two transition channels (intra- and 
inter-band transitions) contributing to the optical ab-
sorption. When the applied optical field drive is pres-
ent, the carriers are excited from the occupied states 
to the unoccupied states. The intra-band contribution 
corresponds to electron excitation in the vicinity of 
the Fermi level within the conduction band. While the 
inter-band contribution corresponds to carrier excita-
tion from the valance band to the conduction band and 
has a turning point at 2EF. These two processes are 
intra-layer case given by the Vq term. The inter-layer 
contributions given by Vq

2, Vq
3 terms. The carriers are 

driven by the electric field force, through the Coulomb 
scattering, and the momentum is transferred to the ad-
jacent layers which drive the carriers. But this strength 
decreases with increasing the distance between the 
two layers. The optical conductivity becomes:

Gate voltage can be used to tune the carrier den-
sity and the electrons are occupied. In limits of long 
wavelength (i.e., q®0), the inter-layer contribution is 
smaller than the intra-layer contribution by e-qd factor. 
And the intra-band contribution is smaller than the in-
ter-band contribution when the optical energy is larger 
than two times the kinetic energy at the Fermi energy. 
This is because, in the presence of the optical field, 
the electrons absorbing the optical energy are excited 
to the above unoccupied states, satisfying the condi-
tions of the conservation of momentum. Inter-band 
channels have higher probabilities to achieve these 
processes.

RESULTS AND DISCUSSION

Theoretical investigations using dielectric tensor 
which has been obtained from electron density-density 
correlation function, leading to numerical analysis and 
methods. We used a MATLAB program to calculate 

the total optical conductivity, and plotted it as a func-
tion of photon energy for different broadening widths 
and constant electron densities in each layer. The total 
optical conductivity can be calculated from imaginary 
part of three-layer graphene dielectric function. The 
results have been collected and shown as below; 

APPROACHES AND FINDINGS 

By comparing Figs. 1, 2 and 3 can be observed;
1- The values of longitudinal optical conductivity, for 
different composes of three-layer graphene systems 
are; smbb>sbmb>sbbm

2- Coming up the one sheet thick graphene layer, the 
slide of first threshold structure is less in value. 
3- At high energy regions, the optical conductivity of 
all three-layer systems tendencying to five times of a 
sheet graphene’s optical conductivity. 
4- By decreasing the value of broadening width, turn-
ing regions between different threshold structures, 
sharply increase.
5- By decreasing the value of broadening width, the 
value of the optical conductivity decreases too.
6- Decreasing the value of broadening width, causes 
decreasing of curve slide in all compose.
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