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ABSTRACT: Investigating the longitudinal optical conductivity of graphene systems, which is the most 
important property for opto-electronic devices, for three-layer graphene systems theoretically and 
numerically is the main purpose of this study. Each layer can be mono- or bi-layer graphene. Separation 
between layers has been denoted by d, selected to be about ten nanometers. The carrier densities in 
each layer can be tuned by changing gate voltage. In these two dimensional layered structures; the 
main contributions to the optical conductivity are from the intra- and inter-band transition channels in a 
same layer. In this paper the graphene structure is described primarily, and the three-layer graphene 
systems with composes of mono-mono-mono and bi-bi-bi has been defined. Using dielectric and 
electron density-density correlation tensors, the imaginary part of dielectric function for the three-layer 
graphene systems are calculated and optical conductivities are plotted as a function of photon energies 
in different broadening widths, for final stages.
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Three-layer systems are formed by three isolated layers 
with an ultrathin insulating dielectric (such as FeCl3, 
Al2O3 and so on) intercalation to separate the adjacent 
layers. Each layer can be cosisted by heterostructure, 
mono-layer graphene, and so on. Using the Raman 
spectrum analysis, experimental researchers indicate 
the dicoupling of the few layer graphene into separate 
mono-layer graphene. In these three-layer structures, 
the long-range inter-layer Coulomb interaction plays 
important roles in the many-body properties such as 
plasmon modes, polarizability, and drag conductiv-

ity. Min et al. Calculated the static polarizability and 
screening of multilayer graphene which is dependent on 
the layer number and includes the intra- and inter-band 
polarizability.The theoretical Thomas-Fermi screening 
wave vector results show different behaviours for sev-
eral stacking sequences which implies the importance 
of the layer structure.The drag conductivity is induced 
by the Coulomb drag between passive and active lay-
ers.The electric field is applied in the passive layer and 
the current density is obtained in the other active layer, 
which is through the electron-electron scattering pro-
cess. This drag conductivity, in the lowest leading order 
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in the inter-layer potential, is related to the nonlinear 
susceptibility for each layer and screened inter-layer 
potential in the random phase approximation. There-
fore, the optical coductivity and the drag conductivity 
are both related to the dielectric function for each layer 
and the inter-layer screened Coulomb interaction [1]. 
Graphene a 2D system with one atomic thick sheet 
of carbon, was fabricated experimentally in 2004 by 
Novoselov et al.. This ultra-thin material exhibits very 
novel physical properties because the energy disper-
sion can be expressed as linear relationship round the 
two nodal points k and k¢ in the Brillouine zone. The 
electron dynamics obeys the 2D massless Dirac equa-
tion H=gσ, g=hnF, nF=1/300 c for graphene. k, which 
differs strongly from the case in a conventional two 
dimensional electron gas (2DEG) with the kinetic en-
ergy being proportional to k2. Ef=Ef

i the reference Fer-
mi energy. σ, k are the Pauli matrix operator and wave-
vector, respectively. This exotic electronic structure 
has aroused the wide investigation on the fundamental 
physical properties in graphene which become a fast-
growing research area in condensed matter physics.

In this paper, the structure with several isolated 
parallel two-dimension mono-layer graphene, and 
bi-layer graphene, separated by a distance d with an 
ultra-thin dielectric is studied. When an inter-layer 
distance d is about a few angstroms (d~3.5 Å), the out-
of-plane p orbitals from two adjacent graphene sheets 
start to overlap. The inter-layer tunneling is obvious 
when (d~1-5 Å). Increasing the distance between the 
adjacent layers, the inter-layer tunneling decreases, 
and inter-layer electron-electron Coulomb scattering 
should be included. Here, we refer to the electron sys-
tems (i.e. extrinsic graphene systems) where the Fermi 
energy Ef>0 and T→0. The carrier density for each 
layer can be tuned both by the chemical doping and 
applied field (or gate voltage). The carrier densities in 
each layer can be independently controlled by using 
top and bottom gates. The carrier density in each layer 
can be obtained by the capacitance between graphene 
and the gates [2]. The properties of the optical con-
ductivity in graphene have been widely investigated 
experimentally and theoretically. The experimental 
value of the optical conductivity per graphene layer 
(or optical sheet conductivity) is almost a constant 
and close to σ0=e2/4h, which is independent from the 

frequency and the inter-layer hopping. The second ob-
servation is that the optical sheet conductivity showed 
a threshold structure at two times the Fermi energy 
under an applied gate voltage and the turning points 
can be tuned by the gate voltage. In this paper, the 
optical conductivity for three-layer systems with com-
poses mono-mono-mono and bi-bi-bi, is investigated 
analytically and numerically. The intra- and inter-lay-
er contributions, the intra- and inter-band transition 
channels, the electron density, the broadening width 
for the optical conductivity are discussed.

THEORETICAL APPROACHES

For a n-layer graphene system, using the mean-field 
random phase approximation, The dielectric tensor el-
ements, εl,m (q,ω) , where l , m= 1,2,…, n denoting the 
different layer, can be written as:

Here, α=Vq=2πe2⁄кq is the intra-layer Coulomb inter-
action, к is the static dielectric constant for graphene, 
Πn is the density-density correlation tensor. For a sev-
eral-layer graphene system, each layer separated by a 
dielectric πlm=0 , if l≠m , and πlm=πl , if l=m. We can 
obtain:

The matrix elements πl=πl (q,ω) are the density-densi-
ty correlation functions, which for mono- and bi-layer 
graphene can be obtained as:
πl (q,ω)=gsgv ∑s,s',km

 (1+ss'Akmq
)/2 fs,km

-fs',km+q)/ћω+Es,km
- 

Es',|km+q|)+iΓm.gs=2 is spin degeneracy. There are two 
points k and k' at the corner of the graphene Brillouin 
zone, called the Dirac points. gv=2 refers to this de-
generacy, fs,km

 is the Fermi-Dirac distribution func-
tion in the m-th layer. s,s'= ±1 refer to the conduction 
band (+1) and the valence band (-1). (1+ss'Akmq

)/2 
Come from the overlap of carrier states. Akmq=cosφm 
and Akmq=cos2φm in monolayer and bilayer graphene 
respectively, cosφm=(km+qcosϴm)/(|km+q|), ϴm being 
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the angle between km and q. In monolayer graphene, 
Es,k=shnF |k| (nF being the Fermi velocity of graphene). 
In bilayer graphene Es,k=(sh2k2)/2m , m≈0.033 me is 
the effective mass of bilayer graphene with me being 
the free-electron mass. Γm is the broadening width in-
duced by the carrier scattering process.
The Bn itself, can be written as:

where,

Here,

In which, d is the distance between the adjacent lay-
ers. And:

Here, Pl=1/πl.
For a three-layer graphene system we obtain that:

And we can find:

As well as:

where,

Hence,

As we said: 

So we can write:

Then ε3 becomes as;

Determination of the dielectric matrix function for 
three-layer graphene system yields;

Knowing that; πl=πl (q,ω). And we find imaginary part 
of dielectric function as;

The longitudinal optical conductivity can be obtained 
by the dielectric function [3];

ε(q,ω) is the determination of the dielectric matrix 
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function. ω is the frequency of the incident light. q®0 
reflects a fact that the electron-photon scattering does 
not change the wave vector of an electron, which can 
be understood from Maxwell equations with a com-
plex dielectric function ε'=ε+i σ/ω being introduced to 
investigate the optical absorption problems. The lon-
gitudinal optical conductivity σxx(ω) is proportional to 
(ImπRe ε-ImεRe π). The intra- and inter-band d-d cor-
relation functions contribute to the real and imaginary 
parts.

Each part can be written as:

The real parts in the i-th layer are

and:

The imaginary parts are:

and,

(++) and ( ̶ +) denoting intra- and inter channel tran-
sitions, respectively. Here L=1, 2 is for monolayer 
and bilayer graphene respectively. This coefficient is 
similar to the obtained plasmon results in MLG and 
BLG. These two plasmon analytical results are identi-
cal except for an extra factor of √2 in the BLG case. 
xi=Γi/ћω, Ai=(ћω)2+Γi

2, ∆=2γk-ћω, Ri=(2γk-ћω)2+Γi
2,  

γ=ћVf and kc is the cutoff wave vector above which 
the linear energy dispersion approximation breaks 
down for graphene.

(a being the distance between C-C bond). The real and 
imaginary parts of intra- or inter-band d-d correlation 

function have much common factors, and have similar 
relationship to the broadening width, Fermi energy, 
q-wave vector, and the optical frequency. The contri-
butions to the optical conductivity are from electron-
hole excitations from the intra-layer and inter-layers. 
In each layer, there are two transition channels (intra- 
and inter-band transitions) contributing to the optical 
absorption. When the applied optical field is present, 
the carriers are excited from the occupied states to the 
unoccupied states. The intra-band contribution cor-
responds to electron excitation in the vicinity of the 
Fermi level within the conduction band. While the 
inter-band contribution corresponds to carrier excita-
tion from the valance band to the conduction band and 
has a turning point at 2E_F. These two processes are 
intra-layer case given by the Vq term. The inter-layer 
contributions given by Vq

2 , Vq
3 terms. Finally the op-

tical conductivity becomes:

APPROACHES AND FINDINGS

Using dielectric tensor which has been obtained from 
electron density-density correlation function. The 
total optical conductivity has been calculated from 
imaginary part of three-layer graphene dielectric func-
tion, and plotted numerically as a function of photon 
energy for mentioned three-layer graphene systems, 
in different broadening widths, and constant electron 
densities in each layer. By using a MATLAB program 
the results have been collected and shown as below; 

RESULTS AND DISCUSSIONS

By comparing Figures 1, 2 and 3 can be observed: 
1- The longitudinal optical conductivity in bi-bi-bi, 
three-layer graphene system, is greater than the mono-
mono-mono one, at all energy regions. 
2- The second threshold structure in bi-bi-bi, three-
layer graphene system, has an obvious difference with 
mono-mono-mono one, so as in bi-bi-bi system, the 
optical conductivity of second threshold structure, 
decreasing when photon energy increases, while, the 
mono-mono-mono system’s optical conductivity is al-
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most constant.
3- At high energy regions, the optical conductivity of 
mono-mono-mono system tendency is three times of 
a sheet graphene’s optical conductivity but in bi-bi-bi 
system this value is six times of it. 
4- By decreasing the value of broadening width, turn-
ing regions between different threshold structures, 
sharply increase.
5- By decreasing the value of broadening width, the 
value of the optical conductivity decreases too.
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(c)

Fig. 1. The optical conductivity as a function of photon energy, for Three-layer graphene systems mono-mono-mono (solid 
line), and bi-bi-bi (dot line) in different broadening widths width values; a) Γ=0.09Ef; b), Γ=0.05Ef; c) Γ=0.01Ef; ne1=5×1012 cm-2; 
ne2=3×1012 cm-2; ne3=1×1012 cm-2; are electron densities in first-, second-, and third-layers respectively.
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