Low temperature hydrothermal synthesis, characterization and optical $\text{properties of } \text{Sr}_{6}\text{Nb}_{10}\text{O}_{30} - \text{Nb}_{2}\text{O}_{5}$ nanocomposite

Sh. Khademinia¹; M. Behzad^{1}; A. Alemi²; M. Dolatyari³*

¹ Department of Chemistry, Semnan University, Semnan 35351-19111, Iran ² Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran ³ SP-EPT Labs, ASEPE Company, Industrial Park of Advanced Technologies, 5364196795, *Tabriz*, *Iran*

Received: 1 December 2015; Accepted: 3 February 2016

ABSTRACT: Sr₆Nb₁₀O₃₀-Nb₂O₅ nanocomposite was synthesized in 2M NaOH aqueous solution. A stoichiometric 1:1 Sr:Nb molar ratio hydrothermal method at 120°C was used to synthesize this nanocomposite. Sr(NO₃)₂ and Nb₂O₅ were used as raw materials. The synthesized nanomaterials were characterized by powder X-ray diffraction (PXRD) technique. It was found that $\rm Sr_6Nb_{10}O_{30}$ was crystallized in tetragonal crystal structure with space group P4/mbm and cell parameters of $a = b = 12.3548$ and c = 3.896 Å. Nb $_2$ O $_{5}$ crystals were also found in orthorhombic and monoclinic crystal structures. Nb $_2$ O $_{\rm g}$ lattice parameters were found as a= 6.175 Å, b= 29.175 Å, c= 3.93 Å and a= 12.73 Å, b= 5.56 Å, $C = 4.88$ Å with $v = 105.1^\circ$, respectively for the orthorhombic and monoclinic crystal structures. The morphologies of the synthesized materials were studied by field emission scanning electron microscope (FESEM). The FESEM images showed that the synthesized nanocomposite had flower and sponge-like morphologies. Ultraviolet–Visible (UV-Vis) spectra showed that the synthesized nanocomposite had strong light absorption in the ultraviolet light region. FTIR spectrum of the obtained nanomaterial was also studied.

 ${\sf Keywords:}$ Crystal Structure; Hydrothermal Method; Nanocomposite; Optical property; Sr₆Nb₁₀O₃₀

INTRODUCTION

Sr-Nb-O compounds such as other similar compounds are of interest for their wide range industrial applications and interesting properties (Shan, *et al.*, 2013). The compounds are ferroelectric material and have found tani, *et al.*, 1976) and a variety of other applications ory (Fujimori, et al., 1998), optical waveguides (Ishiseveral applications as a nonvolatile ferroelectric mem-(Nanamatsu, *et al.*, 1975, *Akishige, <i>et al.*, 2003). Photo

ied extensively using these materials as photo catalyst catalytic water splitting reaction has also been studunder ultraviolet (UV) irradiation (Kato, et al., 2003, *Hwang, et al., 2000, Machida, et al., 2000, Kudo, et al.,* 2000, Domen, et al., 2001). We have recently reported the synthesis of $Sr₅Nb₄O₁₅-Nb₂O₅$ nanocomposites using a 1:2 molar ratio of Sr:Nb at different KOH coning a 1:2 molar ratio of Sr:Nb at different KOH concentrations which have some interesting applications (Khademinia and Behzad, 2015). However, $\text{Sr}_6\text{Nb}_{10}\text{O}_{30}$

 $\overline{(*)}$ Corresponding Author - e-mail: mbehzad @semnan.ac.ir

one-dimensional crystal structure and low d-electron perconductivity, anisotropic conductivity, pseudois interested for its physical properties, including suconcentration (Hwang and Kwon., 1997). To the best of our knowledge, there is only two reported touts that have been conducted for the synthesis of $\text{Sr}_6\text{Nb}_{10}\text{O}_{30}$ which are two different solid state methods (Hwang and Kwon, 1997, Isawa, *et al.*, 1993). In the present study, a hydrothermal route was employed for the syn-
thesis of nanostructured powder $Sr_6Nb_{10}O_{30} - Nb_2O_5$ study, a hydrothermal route was employed for the syncomposite using $Sr(NO₃)₂$, $Nb₂O₅$ and NaOH as raw materials at 1:1 Sr:Nb molar ratio. The direct band gap energy of the as-prepared-nanocomposite was initially estimated from UV-Visible spectrum. Besides, FTIR spectrum of the synthesized nanocomposite was also .studied

EPERIMENTAL

Materials and methods

All chemicals including $Sr(NO₃)₂$, $Nb₂O₅$ and NaOH mercial sources (Merck, Germany) and were used were of analytical grade and were obtained from comwithout further purifications. Phase identifications were performed on a powder X-ray diffractometer D5000 (Siemens AG, Munich, Germany) using $CuKa$ radiation. The morphology of the obtained materials was examined with a field emission scanning electron sorption spectrum was recorded on a Jena Analytik microscope (Hitachi FE-SEM model S-4160). Ab-Specord 40 (AnalytikJena UK, Wembley, UK). Also, FTIR spectrum was recorded on a Tensor 27 (Bruker Corporation, Germany).

Hydrothermal synthesis of Sr₆Nb₁₀O₃₀-Nb₂O₅ nano-composites

In typical synthetic experiment, 0.32 g (1.5 mmol) of $Sr(NO₃)₂$ (Mw = 211.62 g mol⁻¹) and 0.20 g (0.75) mmol) of Nb_2O_5 (Mw = 265.82 g mol⁻¹) were added to 50 mL of aqueous solution of 2 M NaOH under magnetic stirring at 80° C. The resultant solution was stirred for further 15 min and transferred into a 100 mL Teflon lined stainless steel autoclave. The autoclave was sealed and heated at 120° C for 48 h. When the reaction was completed, it was cooled to room temwas washed with distilled water and dried at 120° C for 20 min under normal atmospheric condition. The obtained powder was placed in a 25 mL crucible and treated thermally at 400° C for 3 h. After the reaction was completed, the sample was cooled down naturally to the room temperature. The obtained nano powder was collected without any pulverization and used for further analyses.

RESULTS AND DISCUSSION

Powder X-ray diffraction analysis

The X-ray diffraction pattern of the $Sr_6Nb_{10}O_{30}$ - $Nb₂O₅$ nanocomposite with the JCPDS card num bers are shown in Fig. 1. The results showed that the

Fig. 1. PXRD pattern of the $Sr_6Nb_{10}O_{30} - Nb_2O_5$ nanocom posite, the bars show the Bragg's positions for a) orthorhombic Nb_2O_s , b) monoclinic Nb_2O_s and c) $Sr_6Nb_{10}O_{30}$. posite, the bars show the Bragg's positions for a) orthorhom-

Fig. 2. FESEM images of $\text{Sr}_{6}\text{Nb}_{\text{10}}\text{O}_{\text{30}}\text{--Nb}_{\text{2}}\text{O}_{\text{5}}$ nanocomposite.

pattern had two main phases as $Sr_6Nb_{10}O_{30}$ and Nb_2O_5 . As shown in Figs. 1a and 1b, two different crystal structures were observed for Nb_2O_5 , namely ortho rhombic and monoclinic crystal structures, respective-
ly. Nb_2O_5 lattice parameters were found as a= 6.175 Å, rhombic and monoclinic crystal structures, respective $b= 29.175$ Å, and $c= 3.93$ Å for the orthorhombic phase; and a= 12.73 Å, b= 5.56 Å, and c= 4.88 Å with γ = 105.1° for the monoclinic phase. As shown in Fig. 1c, $Sr₆Nb₁₀O₃₀$ structure was detected with tetragonal crystal structure which has been crystallized in the P4/ mbm space group. $Sr_6Nb_{10}O_{30}$ lattice parameters were found as $a = b = 12.35$ Å and $c = 3.90$ Å with $\alpha = \beta =$ $\gamma = 90^\circ$. According to the PXRD pattern, it is clearly seen that the $Sr_6Nb_{10}O_{30}$ phase formation is comparable with that for Nb_2O_5 . O_{5} .

Morphology of the obtained material

Figs. 2a-f show typical FESEM images of the hydro-
thermally-synthesized $Sr_6Nb_{10}O_{30} - Nb_2O_5$ nanocom-
posite. From the typical FESEM images in Figs. 2a-Figs. 2a-f show typical FESEM images of the hydrosponge and flower-like morphologies. These flowers form structure. Fig. 2c shows that the thickness sizes of were made of rods joint to each other to make a uni-

Fig. 3. FTIR spectra of $Sr_6Nb_{10}O_{30} - Nb_2O_5$ nanocomposite.

Fig. 4. Plots of a) UV-Vis spectrum and b) (ahv)² versus hv for $\mathrm{Sr}_{6}\mathrm{Nb}_{10}\mathrm{O}_{30}$ –Nb $_2\mathrm{O}_5$ nanomaterial.

the sponge's sheets were about 40-50 nm. Figs. 2e-f shows that the rod diameters were about 100 nm.

Fig. 3 shows the FTIR spectrum of the synthesized $Sr_6Nb_{10}O_{30} - Nb_2O_5$ nanocomposite. This Fig. shows the absorption bands for $Sr_6Nb_{10}O_{30} - Nb_2O_5$ nanocomposite. The bands at around 636 and 854 cm⁻¹ were assigned to monoclinic $Nb₂O₅$ and the bands at around 572 cm⁻¹ was attributed to orthorhombic Nb_2O_5 (Ikeya, *et al.*, 1988, Ristic, *et al.*, 2004, Brayner, *et al.*, 2003, Jehng and Wachs, 1991). It is a confirmation of the co-existence of both orthorhombic and monoclinic $Nb₂O₅$ in the synthesized nanocomposite that is in agreement with the measured PXRD data. According to the spectrum, the peaks at 732 , 854 and 925 cm⁻¹ were corresponded to Nb-O vibrations (Khademinia and Behzad, 2015). The band at around 611 cm^{-1} was assigned to Sr–O vibration (Kamba, *et al.*, 2001, Angel, *et al.*, 2013).

UV-Vis spectrum and band gap calculation data are shown in Figs. 4a and 4b, respectively. $Sr_6Nb_{10}O_{30}$ – $Nb₂O₅$ nanocomposite displayed typical visible ab sorption edges at about 397 and 868 nm. According to the results of Pascual *et al.* (Pascual, *et al.*, 1978), the relation between the absorption coefficient and

incident photon energy could be written as $(\alpha h v)^2$ = $A(hv - Eg)$, where A and Eg are constant and direct band gap energies, respectively. Band gap energy was evaluated by extrapolating the linear part of the curve to the energy axis. It was found that the band gaps were 1.5 and 2.9 eV.

CONCLUSIONS

In this work, $Sr_6Nb_{10}O_{30} - Nb_2O_5$ nanocomposite was sis confirmed the successful synthesis of the mentioned synthesized via a hydrothermal method. PXRD analysized nanomaterial had a mixture of plus, sponge and material. FESEM images showed that the as-syntheflower like morphologies. UV-Vis and FTIR spectra gated and the band gap energies were calculated. It of the synthesized nanocomposite were also investiwas found that the direct band gap was 2.896 eV.

REFERENCES

- Shan L., Li W., Fang R., Han Z., Xu H., Dong L., Wu Z_{n} , Zhang X_{n} , (2013). Microstructure of strontium ite ceramics by powder-sol method. J. Inorg. Or-
ganomet. Polym., 23 (4): 855-860. barium niobate/strontium barium titanate compos-
ite ceramics by powder-sol method. J. Inorg. Orbarium niobate/strontium barium titanate compos-
- Fujimori Y., Izumi N., Nakamura T., Kamisawa A., (1998). Jpn. J. Appl. Phys. 37: 5207-5210.
- Ishitani A., Kimura M., (1976). Single-crystal $Sr₂N$ tani A., Kimura M., (1976). Single-crystal Sr₂N-
b₂O₇ film optical waveguide deposited by rf sput-
tering. Appl. Phys. Lett., 29: 289-291.
- Nanamatsu S., Kimura M., Kawamura T., (1975). Crystallographic and Dielectric Properties of Fer-
roelectric $A_2B_2O_7$ (A= Sr, B= Ta, Nb) Crystals and Crystallographic and Dielectric Properties of Fer-Their Solid Solutions. J. Phys. Soc. Jpn., 38: 817-824.
- shige Y., Kamata M., Fukano K., (2003). Successive Phase Transition of $(Sr_{1-x}Ba_x)_2Nb_2O_7$. J. Korean. Phys. Soc., 42: 1187-1191. Akishige Y., Kamata M., Fukano K., (2003). Succes-
- o H., Kudo A., (2003). Photocatalytic Decomposition of Pure Water into H_2 and O_2 over $SrTa_2O_6$ Kato H., Kudo A., (2003). Photocatalytic Decomposi-Prepared by a Flux Method. Chem. Lett., 28: 1207-1208.
- Hwang D.W., Kim H.G., Kim J., Cha K.Y., Kim

ting over Highly Donor-Doped (110) Layered Y.G., Lee J.S., (2000). Photocatalytic Water Split-Perovskites. J. Catal., 193: 40-48.

- Machida M., Yabunaka J., Kijima T., (2000). Synthesis and Photocatalytic Property of Layered Perovskite Tantalates, $RbLnTa_2O_7$ (Ln = La, Pr, Nd, and Sm). Chem. Mater., 12 (3): 812-817.
- lo A., Kato H., Nakagawa S., (2000). Water Split-
ting into H₂ and O₂ on New Sr₂M₂O₇ (M = Nb and Kudo A., Kato H., Nakagawa S., (2000). Water Splittures: Factors Affecting the Photocatalytic Activity. J. Phys. Chem. B, 104 (3): 571-575. Ta) Photocatalysts with Layered Perovskite Struc-
tures: Factors Affecting the Photocatalytic Activ-Ta) Photocatalysts with Layered Perovskite Struc-
- Domen K., Kondo J.N., Hara M., Takata T., (2001). Photo- and Mechano-Catalytic Overall Water gen on Heterogeneous Catalysts. Bulletin. Chem. Splitting Reactions to Form Hydrogen and Oxy-Soc. Jpn., 73 (6): 1307-1331.
- Khademinia S., Behzad M., Alemi A., Dolatyari M., sis and characterization and optical properties of (2015) . Low temperature hydrothermal synthe- $Sr₅Nb₄O₁₅ - Nb₂O₅$ nanocomposite. Int. J. Bio-
Inorg. Hybr. Nanomater., 4 (1): 49-54.
- trical properties of tetragonal tungsten bronze type Hwang Y.K., Kwon Y.U., (1997). Syntheses and elecsolid solution Ba $6 - x$ LaxNb₁₀O₃₀ + $\delta(x = 0, 1,$ 2, 3) and $Sr_6Nb_{10}O_{30}$. Mater. Res. Bull., 32 (11): 1495-1502.
- auchi H., (1993). Synthesis and transport proper-
ties of Sr_xNbO_3 . Phys. Rev. B, 47: 2849-2853. auchi H., (1993) . Synthesis and transport proper-Isawa K., Sugiyama J., Matsuura K., Nozaki A., Yam-
- Ikeya T., Senna M., (1988). Change in the structure of niobium pentoxide due to mechanical and thermal treatments. J. Non-Cryst. Solid, 105: 243-250.
- ite M., Popovic S., Music S., (2004). Sol–gel synthesis and characterization of Nb_2O_5 powders. Mater. Lett., 58: 2658-2663. Ristic M., Popovic S., Music S., (2004). Sol-gel syn-
- ide prepared by soft chemical routes: morphology, Brayner R., Verduraz F.B., (2003). Niobium pentoxstructure, defects and quantum size effect. Phys. Chem. Chem. Phys., 5: 1457-1466.
- Jehng J.M., Wachs I.E., (1991). Structural chemistry and Raman spectra of niobium oxides. Chem. Ma-
ter., 3 (1): 100-107.
- ture hydrothermal synthesis, characterization and Khademinia S., Behzad M., (2015). Low temperaoptical properties of strontium pyroniobate. Adv. Powder Tech., 26: 644-649.
- Kamba S., Petzelt J., Buixaderas E., Haubrich D., Vanek P., (2001). High frequency dielectric properties of $A_5B_4O_{15}A_5B_4O_{15}$ microwave ceramics. J. Vanek P., (2001). High frequency dielectric prop-Applied Phys., 89: 3900-3906.
- Angel J., Greena M., Karuppasamy K., Antony R., Shajan X. S., Kumaresan S., (2013). Effect of erties of Strontium Formate Dihydrate Crystals. Magnesium Doping on the Physicochemical Prop-Chem. Sci. Trans. 2 (1): 141-146.
- Pascual J., Camassel J., Mathieu M., (1978). Fine structure in the intrinsic absorption edge of $TiO₂$. Phys. Rev. B, 18: 5606-5614.

AUTHOR (S) BIOSKETCHES

Shahin KHademinia, Ph.D., Department of Chemistry, Semnan University, Semnan 35351-19111, Iran

Mahdi Behzad, Associate Professor, Department of Chemistry, Semnan University, Semnan 35351-19111, Iran, *E-mail: mbehzad @semnan.ac.ir, mahdibehzad @gmail.com*

Abdolali Alemi, Professor, Department of Inorganic Chemistry, Faculty of Chemistry, University of Ta-
briz, Tabriz, Iran

Mahboubeh Dolatyari, Associate Professor, SP-EPT Labs, ASEPE Company, Industrial Park of Ad-
vanced Technologies, 5364196795, Tabriz, Iran