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Abstract. In recent years several studies have shown that �� control 
charts with adaptive schemes or double sampling plans detect both 

small and moderate shifts in the process mean more quickly than 

the traditional Shewhart �� chart. In the classical double sampling 

�� chart, the difference between two points were placed in the 

central region of first stage was not considered. In this study, a 

new control chart is proposed by combination of double sampling �� 
chart and variable sample size �� chart (called DSVSS chart), that 

can successfully reduce the detection time of small mean shift. 

Before a DSVSS �� chart is used, its design parameters should be 

determined, hence economic design model of DSVSS �� chart is 

constructed. Markov chain approach is used to compute the 
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statistical properties of the chart that are essential to our cost 

function. Then, the Genetic Algorithms (GA) are used to solve the 

optimal designs of DSVSS �� chart. Finally, a numerical example is 

provided to illustrate the use of this model.  

Keywords; Quality Control, Double Sampling Chart, Variable 

Sample Size Chart, Markov Chain, Genetic Algorithms. 

1. Introduction  

Control chart is a main statistical process control (SPC) tool to detect 

the occurrence of assignable causes so that a remedial action can be 

taken before many defective products are manufactured in a process. 

Dr.shewhart created �� control chart, which � ± 3	
� is used to set 

control limits for controlling process. It is easy for operators to 

understand how Shewhart's control chart works, so the chart is widely 

applied in industries. Static strategies have become less and less suitable 

for today's advanced industrial society, because of their low performance 

in detecting small process shifts quickly. Researchers have been trying to 

propose various adaptive schemes in control chart in order to respond to 

a shift in process immediately, when a control chart is used to monitor a 

process, three design parameters the operator must select are the sample 

size, the sampling interval, and the action limit. All the three parameter 

of Shewhart control charts are constant. Studies have shown that we can 

improve performance of control charts by changing their parameters 

within the production controlling. We can categorize the adaptive 

schemes the following types: variable sample size (VSS) chart, variable 

sample interval (VSI) chart, variable control limit (VCL) chart,and 

joint-adaptive charts which at least two of the designing parameters are 

variables. Adaptive control charts was first proposed by Reynolds et al. 

(1988). They used the �� control chart with variable sampling intervals 

(VSI) and used average time to signal and average number of sample to 

signal as performance measure and showed that their control chart works 

better than Shewhart control chart. They concluded a shorter sample 

interval is used if there is sign that the process might have changed and 

the longer sample interval is used if there is no such indication. In the 

industries, the nature of the process may need that the sampling 
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frequency must be fixed, but there is no limitation for the sample size, 

therefore the VSS scheme might be more reasonable than VSI scheme 

from an industrial perspective. Prabhu et al. (1993) and Costa (1994) 

proposed the VSS schemes for �� control chart. They investigated a 

smaller sample size for next sample when current sample �� value is close 
to center line and larger sample size in otherwise. Costa (1997, 1998, 

1999) presented a fully adaptive and R chart. Costa also showed that 

the VP �� and R chart has better efficiency than other adaptive �� and R 

charts and the joint Shewhart �� and R chart. The VP �� and R charts 

plot the sample means on the �� chart and sample ranges are plotted on 

the R chart. Daudin (1992) proposed a double sampling (DS) control 

chart determine by two sample sizes where a second sample is inspected 

only if the first is not sufficient to make a decision about the state of the 

process. Carot et al. (2002) further combined the double sampling 

method with the VSI �� chart. Khoo et al. (2010) combined the synthetic 

chart and DS �� chart to increase the detecting efficiency in process mean 

shifts. Lee et al. (2012b) designed the DSVSI �� chart with an economic 

design method. Many researchers have considered an economic criteria in 

the design of a control chart. The economic design includes developing a 

cost function that considers all the cost components relevant to 

monitoring and controlling a process. The design parameters are selected 

such that the cost function is minimized. This method has been widely 

called the economic design of control charts in the quality control 

literature (Montgomery, 1980; Prabhu et al., 1997). Duncan (1956) 

constructed a cost model for the design parameters (sample size, 

sampling interval, and control limit coefficient) of Shewhart’s �� control 
chart. Lorenzen and Vance (1986) developed one unified approach to the 

economic design of control charts. They constructed a general cost model 

that applied to all control charts. Elsayed (1994) developed an economic 

design of �� control chart using quadratic loss function. In this study, a 
new chart is proposed to improve the performance of double sampling 

(DS) control chart by combination of double sampling �� chart and 

variable sample size �� chart (DSVSS). In classical double sampling 

��chart, there was not any difference between two points were placed in 

the in-control region (central). Hence, VSS scheme is combined into first 

stage of double sampling �� chart in order to improve this weakness. 
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Before a DSVSS �� chart is used, its design parameters should be 

determined.we develop an economic design of the �� control chart based 
on Markov chain approach. The use of Markov chain allows us easily to 

obtain the statistical properties of the chart that are necessary to our 

cost function. The optimal solution can be found through the genetic 

algorithms (GAs) such that the cost function is minimized. Finally, 

numerical illustration of DSVSS �� chart is performed. 

2. Combined Double Sampling and Variable Sample Size �� 
Control Chart 

A combination of double sampling X  chart and variable sample size X  

chart (DSVSS) includes 8 design parameters such as 
1
n , 

2
n , 

3
n , h , 

1
w , 

1
k  and

2
k . The parameters n1 and n2 are respectively the sample sizes  

(
2 1
n n> ) of the first stages and n3 is the sample size of second stage of 

the double sampling. h is the sampling interval, 
1
w  and 

2
w  are the 

warning limits to change the sample size, and 
1
k  and 

2
k  are the control 

limit coefficients of the first and second stages of the double sampling. 

For the normally distributed observations, we can construct the DSVSS 

as Figure. 1. The operational procedure for the DSVSS is, first take a 

small sample of size 
1
n , and calculate its sample mean 

1
.X  If X  falls in 

1
I , the process will be considered as an in-control state, and the next 

sample size is 
1
n , if X  falls in 

2
I , the next sample size is n2, if X  falls 

in 
4
I , the process will be considered as an out-of-control state. For the 

case that X  falls in 
3
I , it is necessary to take a second sample of size n3 

with a sample mean 
3

X and continue monitoring the process with the 

second-stage chart. The total sample mean Y  can then be computed, if 

previous point was placed in 
1
I  with 

1 1 3 3

1 3

n X n X
Y

n n

+
=

+
, 

or if previous point was placed in 
2
I  with 

2 2 3 3

2 3

n X n X
Y

n n

+
=

+
. 
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 If Y  falls in 
5
I , the process will be considered in control and we will 

start the monitoring with sample size n1 again .Otherwise, the process 

will be regarded in an out-of-control state. After a false alarm, the first 

sample size n1 is taken. 

 
1st stage 

 
2nd stage 

Figure 1. DSVSS control chart. 
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3. The Construction of an Economic Design Model 

In this section, we construct a cost function for the design optimization 

of DSVSS. In our economic model, a process is assumed to start with an 

in-control state (µ � µ) but after a random time, single assignable cause 

will be occurred, that causes a fixed shift in the process mean (� � ��). 

After the shift, the process remains out-of-control until the assignable 

cause is deleted (if possible). The time interval that process remains in 

control is exponential random variable with parameter � and the time 

interval between two sampling stages is 0. A sample is taken at each 

sampling time to compute the �� value. If �� falls inside the action limit, 

its value will be used to determine the next sample size. Otherwise, the 

process is stopped and a search starts to find cause and repair the 

process. Production cycle considered in the cost model is shown in 

Figure. 2. 
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Figure 2. The production cycle 

Figure 2 shows the production cycle, which is divided into four time 

intervals of in-control period (T1), out-of-control period (T2), searching 

period due to false alarm (T3), and the time period for identifying and 

repairing the assignable cause (T4). 

T1: The expected length of in-control period is 1 / λ . 

T2: The expected length of out-of-control shows the average time needed 

for the control chart to produce a signal after the process mean 

shift. This average time is the adjusted average time to signal 

(AATS).The memory less property of the exponential distribution 

permits the computation of AATS using the Markov Chain 

approach. 

Let M be the average time from the cycle start to the time the chart 

signals after the process shift. Then, 

1
AATS M

λ
= −  

According to the status of the process (in or out-of-control) and the 

position of ���, we have eight transient states. Shift size is denoted by δ . 

1 0
( )µ µ δ= +  

For ith sampling, the states of the Markov Chain are: 

State 1: the process is in-control (δi=0) and ��� falls into the I1 

State 2: the process is in-control (δi=0) and ��� falls into the I2 
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State 3: the process is in-control (δi=0) and ��� falls into the I3 

State 4: the process is in-control (δi=0) and ��� falls into the I4 

State 5: the process is out-of-control (δi ≠ 0) and ��� falls into the I1 

State 6: the process is out-of-control (δi ≠ 0) and ��� falls into the I2 

State 7: the process is out-of-control (δi ≠ 0) and ��� falls into the I3 

State 8: the process is out-of-control (δi ≠ 0) and ��� falls into the I4 

When State 4 is reached, the signal the chart gives is a false alarm. If �� 
falls into the action region at a sampling time while the process status is 

out-of-control, then the signal is a true alarm and the absorbing state, 

State 8, is reached. 

The transition probability matrix is: 

11 12 13 14 15 16 17 18

21 22 23 24 25 26 27 28

31 32 33 34 35 36 37 38

41 42 43 44 45 46 47 48

55 56 57 58

65 66 67 68

75 76 77 78

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0 0 0 0 1

P P P P P P P P

P P P P P P P P

P P P P P P P P

P P P P P P P P

P P P P

P P P P

P P P P

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 

Where pij represents the transition probability that i is the prior state 

and j is the current state. Then we have: 

P11 = Pr(��� ∈I1, δi = 0│��i–1∊I1, δi–1 = 0) = e–λh[2ϕ(w1)–1] 

P12 = Pr(���∊I2, δi = 0│�����∊I1, δi–1 = 0) = e–λh[2[ϕ(w2)–ϕ(w1)]] 

P13 = Pr(���∊I3, δi = 0│�����∊I1, δi–1 = 0) = e–λh[2[ϕ(k1)–ϕ(w2)] 

P14 = Pr(���∊I4, δi = 0│�����∊I1, δi–1 = 0) = e–λh[2–2ϕ(k1)] 

P15 = Pr(���∊I1, δi ≠ 0│�����∊I1, δi–1 = 0)  

 = (1–e–λh)[ϕ(–δ√��+w1)–ϕ(–δ√��–w1)] 
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P16 = Pr(���∊I2, δi ≠ 0│�����∊I1, δi–1 = 0)  

 = (1–e–λh)[ϕ(w2–δ√��)–ϕ(w1–δ√��)+ϕ(–δ√��–w1)–ϕ(–δ√��–w2)] 

P17 = Pr(���∊I3, δi ≠ 0│�����∊I1, δi–1 = 0)  

 = (1–e–λh)[ϕ(–δ√��+k1)–ϕ(–δ√��+w2)+ϕ(–δ√��–w2)–ϕ(–δ√��–k1)] 

P18 = Pr(���∊I4, δi ≠ 0│�����∊I1, δi–1 = 0)  

= (1–e–λh)[1–ϕ(k1–δ√��)+ϕ(–k1–δ√��)] 

P21 = Pr(���∊I1, δi � 0│�����∊I2, δi–1 = 0) = e–λh[2ϕ(w1)–1] 

P22 = Pr(���∊I2, δi � 0│�����∊I2, δi–1 = 0) = e–λh[2[ϕ(w2)–ϕ(w1)]] 

P23 = Pr(���∊I3, δi � 0│�����∊I2, δi–1 = 0) = e–λh[2(ϕ(k1)–ϕ(w2)] 

P24 = Pr(���∊I4, δi � 0│�����∊I2, δi–1 = 0) = e–λh[2–2ϕ(k1)] 

P25 = Pr(���∊I1, δi ≠ 0│�����∊I2, δi–1 = 0) 

 = (1–e–λh)[ϕ(w1–δ√��)–ϕ(–δ√��–w1)] 

P26 = Pr(���∊I2, δi ≠ 0│�����∊I2, δi–1 = 0) 

 = (1–e–λh)[ϕ(w2–δ√��)–ϕ(w1–δ√��)+ϕ(–δ√��–w1)–ϕ(–δ√��–w2)] 

P27 = Pr(���∊I3, δi ≠ 0│�����∊I2, δi–1 = 0) 

 = (1–e–λh)[ϕ(–δ√��+k1)–ϕ(–δ√��+w2)+ϕ(–δ√��–w2)–ϕ(–δ√��–k1)] 

P28 = Pr(���∊I4, δi ≠ 0│�����∊I2, δi–1 = 0) 

 = (1–e–λh)[1–ϕ(k1–δ√��)+ϕ(–k1–δ√��)] 

Let �� be the average sample size is taken from first stage to go second 

stage, thus: 

( ) ( )  
1 13 53 2 23 63

n n p p n p p= + + +  

We assume if �� falls in I3, then �� falls in I5, we start the monitoring the 

process with sample size n1 in first stage. 

P31 = Pr(���∊I1, δi � 0│�����∊I3, δi–1 = 0)×pr(��∊I5) 

 = e–λh[2ϕ(w1)–1]×[2ϕ(k2)–1] 

P32 = Pr(���∊I2, δi � 0│�����∊I3, δi–1 = 0)×pr(��∊I5) 
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 = e–λh[2[ϕ(w2)–ϕ(w1)]]×[2ϕ(k2)–1] 

P33 = Pr(���∊I3, δi � 0│�����∊I3, δi–1 = 0)×pr(��∊I5) 

 = e–λh[2[ϕ(k1)–ϕ(w2)]]×[2ϕ(k2)–1] 

P34 = Pr(���∊I6, δi � 0│�����∊I3, δi–1 = 0) 

 = e–λhPr(���∊I6, δi � 0) = e–λh[2–2ϕ(k2)] 

P35 = Pr(���∊I1, δi ≠ 0│�����∊I3, δi–1 = 0)×pr(��∊I5) 

 = (1–e–λh)[ϕ(w1–δ√��)–ϕ(–w1–δ√��)]×[2ϕ(k2)–1] 

P36 = Pr(���∊I2, δi ≠ 0│�����∊I3, δi–1 = 0)×pr(��∊I5) 

 = (1–e–λh)[ϕ(w2–δ√��)–ϕ(w1–δ√��)+ϕ(–δ√��–w1)–ϕ(–δ√��–w2)] 

×[2ϕ(k2)–1] 

P37 = Pr(���∊I3, δi ≠ 0│�����∊I3, δi–1 = 0)× ��(��∊I5) 

 = (1–e–λh)[ϕ(–δ√��+k1)–ϕ(–δ√��+w2)+ϕ(–δ√��–w2)–ϕ(–δ√��–k1)] 

×[2ϕ(k2)–1] 

P38 = Pr(���∊I6, δi ≠ 0│�����∊I3, δi = 0)  

 = (1–e–λh)[1–ϕ(k2–δ��� + � )+ϕ(–k2–δ��� + � )] 

P41 = P11; P42 = P12; P43 = P13; P44 = P14; P45 = P15; P46  

 = P16; P47 = P17; P48 = P18 

P51 = P52 = P53 = P54 = 0 

P55 = Pr(���∊I1, δi ≠ 0│�����∊I1, δi–1 ≠ 0) = ϕ(w1–δ√��)–ϕ(–δ√��–w1) 

P56 = Pr(���∊I2, δi ≠ 0│�����∊I1, δi–1 ≠ 0) 

 = ϕ(w2–δ√��)–ϕ(w1–δ√��)+ϕ(–δ√��–w1)–ϕ(–δ√��–w2) 

P57 = Pr(���∊I3, δi ≠ 0│�����∊I1, δi–1 ≠ 0) 

 = [ϕ(k1–δ√��)–ϕ(w2–δ√��)+ϕ(–δ√��–w2)–ϕ(–δ√��–k1)] 

P58 = Pr(���∊I4, δi ≠ 0│�����∊I1, δi–1 ≠ 0) 

 = [1–ϕ(k1–δ√��)+ϕ(–k1–δ√��)] 

P61 � P62 = P63 = P64 = 0 
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P65 = Pr(���∊I1, δi ≠ 0│�����∊I2, δi ≠ 0) = ϕ(w1–δ√��)–ϕ(w1–δ√��) 

P66 = Pr(���∊I2, δi ≠ 0│�����∊I2, δi ≠ 0) 

 = ϕ(w2–δ√��)–ϕ(w1–δ√��)+ϕ(–δ√��–w1)–ϕ(–δ√��–w2) 

P67 = Pr(���∊I3, δi ≠ 0│�����∊I2, δi–1 ≠ 0) 

 = [ϕ(k1–δ√��)–ϕ(w2–δ√��)+ϕ(–δ√��–w2)–ϕ(–δ√��–k1) 

P68 = Pr(���∊I4, δi ≠ 0│�����∊I2, δi–1 ≠ 0) 

 = 1–ϕ(k1–δ√��)+ϕ(–k1–δ√��) 

P71 = P72 = P73 = P74 = 0 

P75 = Pr(���∊I1, δi ≠ 0│�����∊I3, δi–1 ≠ 0)×pr(��∊I5) 

 = [ϕ(w1–δ√��)–ϕ(–w1–δ√��)]×[ϕ(k2–δ��� + � )–ϕ(–δ��� + � –k2)] 

P76 = Pr(���∊I2, δi ≠ 0│�����∊I3, δi–1 ≠ 0)× Pr(��∊I5) 

 = [ϕ(w2–δ√��)–ϕ(w1–δ√��)+ϕ(–δ√��–w1)–ϕ(–δ√��–w2)] 

×[ϕ(k2–δ��� + � )–ϕ(–δ��� + � –k2)] 

P77 = Pr(���∊I3, δi ≠ 0│�����∊I3, δi–1 ≠ 0)× ��(��∊I5) 

 = [ϕ(–δ√��+k1)–ϕ(–δ√��+w2)+ϕ(–δ√��–w2)–ϕ(–δ√��–k1)] 

×[ϕ(k2–δ��� + � )–ϕ(–δ��� + � –k2)] 

P78 = Pr(���∊I6, δi ≠ 0│�����∊I3, δi ≠ 0) 

 = [1–ϕ(k2–δ��� + � )–ϕ(–k2–δ��� + � )] 

P81 = P82 = P83 = P84 = P85 = P86 = P87 = 0; P88 = 1 

Where ϕ( ) is the cumulative distribution function of a standard normal 

distribution.  

According to the primary properties of Markov Chains (Cinlar, 1975), 

we know that �!(" − $)��, shows the mean number of transitions in each 

transient state before the true alarm signals, where r'=(r1, r2, r3, r4, r5, r6, 

r7), is the vector of starting probability that r1+r2+r3+r4+r5+r6+r7=1; I 

is identity matrix of order 7; Q is the transition matrix where the 

elements associated with the absorbing state have been removed. 
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Let M be the average time from the cycle start to the time the chart 

indicates signal after the process shift. 

& �  �!(" − $)�� ' 

t is the vector of the sampling intervals. Here, we set vectors r'=(1, 0, 0, 

0, 0, 0, 0)  and  t' =(h, h, h, h, h, h, h). 

T3: Let t0 be the average amount of time for searching each false alarm, 

and E(F) be the expected number of false alarms per cycle. Thus, 

(()) � �!(" − $)�� * 

Where: *′ � (0,0,0,1,0,0,0). So the expected time for searching false 

alarm per cycle is t0 E(F). 

T4: The time to identify and fix the assignable cause following a true 

alarm is a constant t1. 

As a result, The expected production cycle time of DSVSS, E(T), is: 

((.) � & + '(()) + '� 

If we define: 

V0= the hourly profit earned when the process is in control state. 

V1= the hourly profit earned when the process is in out-of-control state. 

C0= the average search cost if the given signal is false 

C1= the average cost to find the assignable cause and adjust the process 

to in-control state 

S = the cost for each inspected item 

Therefore, the expected net profit from a production cycle is: 

((/) � 0(1 �⁄ ) + 0�(M − 1 �⁄ ) − 3(()) − 3� − 4((5) 

Where ((5) is the average numbers of inspected items per cycle, and it 

is: 

((5) � �!(" − $)�� 6 

�� � ��(�� + �7 ) + ��(�� + �8 ) 

Where  6 � (�� , ��, �� + � , ��, ��, ��, �� + � ). 

At end, the expected loss per hour E(L) is: 
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((9) � : − 
((/)
((.)

 

The economic design model of DSVSS is presented as: 

Min  ((9) 

s.t. 

0 < >� ≤ >� < @� < @A 

0 < @� < @� 

0 < �� < �� 

��, ��, � ∈ 5 

Where the ku is the maximum tolerance value of the control limit. 

4. Solution Procedure 

Genetic algorithms for optimization problems are used in many areas. so 

In this study, the GA is also selected to solve the optimal designs of  

DSVSS. E(L) is a function of the process parameters (t0, t1,�, δ), the cost 
parameters (S, C0, C1, V0, V1), and the design parameters ( n1, n2, n3, h, 

w1, w2, k1, k2).We want to minimize the cost function by using GA. The 

GA contains the following major steps: 

(1) Randomly generate primary solutions which have to satisfy the 

constraints. 

(2) Compare fitness of solutions by objective function. 

(3) Conduct crossover and mutation to get next generation solutions and 

then return to step (2) until a 

convergent solution will be obtained. 

5. A Numeric Example & Sensitivity Analysis 

We set parameters such as v0=500, v1=250, c0=250, c1=500, s =5, t0 =5, 

t1=1, � � 0.02, ku =5, and δ=1.5 is considered for the economic design of 

DSVSS. The above mentioned values are substituted to construct the 

model, and then GA is used to find the optimal solution. By conducting 

repeated tests, we have found the best values to be set for the number of 

population, the crossover rate, and the mutation rate are  230, 0.8, and 
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0.25, respectively, and these settings of GA are applied for the solution 

of DSVSS. We obtain the optimal parameters of DSVSS n1=10, n2=12, 

n3=6, h=4.65, k1=3.25, k2=4.5, w1=2.05, w2=2.38, and the expected E(L) 

value is 42.17. 

The effects of model parameters on the optimal design of DSVSS are 

studied .Table1 shows the effect of model parameters on the optimal 

design of the DSVSS. 

Table 1. 

  n1 n2 n3 h k1 k2 w1 w2 E(L) 

 400 8 9 5 5.05 2.97 3.7 1.8 2.5 34.07 

v0 500 10 12 6 4.65 3.25 4.5 2.05 2.38 42.17 

 600 9 10 4 3.71 2.8 3.5 1.71 2.1 49.08 

 200 7 7 4 3.58 3.02 2.88 1.8 2.6 43.86 

v1 250 10 12 6 4.65 3.25 4.5 2.05 2.38 42.17 

 300 6 9 9 3.96 3.01 3.03 1.81 2.31 38.88 

 200 7 8 6 3.81 3.04 3.1 1.94 2.23 41.23 

c0 250 10 12 6 4.65 3.25 4.5 2.05 2.38 42.17 

 300 7 9 6 3.68 3.05 3.08 2.01 2.45 41.39 

 250 8 8 4 4.13 3.02 3.06 2.16 2.68 36.93 

c1 500 10 12 6 4.65 3.25 4.5 2.05 2.38 42.17 

 750 8 10 6 4.32 3.08 3.07 2.24 2.64 46.18 

 0.01 6 10 9 4.47 3.14 3.06 1.82 2.40 25.93 

� 0.02 10 12 6 4.65 3.25 4.5 2.05 2.38 42.17 

 0.05 10 10 4 3.15 3.32 3.15 1.96 2.64 79.78 

 1 14 15 12 4.68 2.86 2.65 1.82 2.25 50.27 

D 1.5 10 12 6 4.65 3.25 4.5 2.05 2.38 42.17 

 2 6 6 3 3.64 3.43 4.25 2.16 2.48 37.16 

 

The following conclusions can be derived: 

(1) Increasing D conspicuously increases the k1, w1 and w2 but reduces 

the n1, n2, n3 and h. 

(2) Increasing � conspicuously increases the n1, k1 but reduces n3. 



14 S. Khaki, N. Ghanbari, and M.M. Seyed Esfehani 

References 

[1] Aparisi, F. & de Luna, M. a., (2009). Synthetic- control charts 

optimized for in-control and out-of-control regions. Computers & 

Operations Research, 36(12), pp.3204–3214.  

[2] De Araújo Rodrigues, A.A., Epprecht, E.K. & De Magalhães, M.S., 

(2010). Double-sampling control charts for attributes. Journal of 

Applied Statistics, 38(1), pp.87–112.  

[3] Bamenimoghadam, M., (2012). Economic statistical design 

multivariate T2 control chart with variable sample sizes. , 1(2), 

pp.1–13. 

[4] Carot, V., Jabaloyes, J.M. & Carot, T., (2002). Combined double 

sampling and variable sampling interval X�chart. International 

Journal of Production Research, 40(9), pp.2175–2186.  

[5] Chen, W. et al., (2011). Economic design of X� control charts under 

preventive maintenance and Taguchi loss functions. , 3, pp.103–109. 

[6] Chou, C.-Y., Chen, C.-H. & Liu, H.-R., (2009). Economic design of X� 

charts for non-normally correlated data. International Journal of 

Production Research, 39(9), pp.1931–1941. 

[7] Costa, A.F.B., (1995). X� charts with variable sample sizes and 

variable intervals. Journal of Quality Technology, p.13. 

[8] Duncan, A.J., (1956). The Economic Design of X� Charts Used to 

Maintain Current Control of a Process. Journal of the American 

Statistical Association, 51(274), pp.228–242.  

[9] ELSAYED, E.A. & CHEN, A., (1994). An economic design of X� 

control chart using quadratic loss function. International Journal of 

Production Research, 32(4), pp.873–887.  

[10] Ganguly, a. & Patel, S.K., (2009). Economic Design of X� Control 

Chart Using Simulated Annealing. Procedia Engineering, 38, 

pp.1037–1043.  

[11] Khoo, M.B.C. et al., (2010). A synthetic double sampling control 

chart for the process mean. IIE Transactions, 43(1), pp.23–38.  



An Economic Design of Combined Double Sampling and Variable Sample ...  15 

[12] Lee, P., (2013). Joint statistical design of X� and s charts with 

combined double sampling and variable sampling interval. European 

Journal of Operational Research, 225(2), pp.285–297.  

[13] Lee, P., Torng, C. & Liao, L., (2010). An economic design of 

combined double sampling and variable sampling interval X� control 

chart. Intern. Journal of Production Economics, 138(1), pp.102–106.  

[14] Lorenzen, T.J. & Vance, L.C., (1986). The Economic Design of 

Control Charts: A Unified Approach. Technometrics, 28(1), pp.3–10.  

[15] Montgomery, D.C., (1980). The economic design of control charts. 

Journal of Quality Technology, 12, pp.75–81. 

[16] Nenes, G., (2011). A new approach for the economic design of fully 

adaptive control charts. International Journal of Production 

Economics, pp.631–642.  

[17] Reynolds, M.R. et al., (1998). X� Charts With Variable Sampling 

Intervals. Technometrics, 30(2), pp.181–192.  

[18] Several, I. & Dias, R., (2002). A Combined Double Sampling and 

Predetermined Sampling Intervals X bar Control Chart. 

[19] Tagaras, G., (1998). A survey of recent developments in the design of 

adaptive control charts. Journal of Quality Technology Technology, 

30, pp.212–231. 

[20] Torng, C.-C., Tseng, C.-C. & Lee, P.-H., (2010). Non-normality and 

combined double sampling and variable sampling interval control 

charts. Journal of Applied Statistics, 37(6), pp.955–967.  

[21] Zhou, W. & Lian, Z., (2011). Optimum design of a new VSS-NP 

chart with adjusting sampling inspection. Intern. Journal of 

Production Economics, 129(1), pp.8–13.  

[22] Zimmer, L.S., Montgomery, D.C. & Runger, G.C., (1998). 

Evaluation of a three-state adaptive sample size X� control chart. 

International Journal of Production Research, 36(3), pp.733–743.  



16 S. Khaki, N. Ghanbari, and M.M. Seyed Esfehani 

 

 

 


