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Abstract 

In the current study, we have developed a new method called the third- order moving average method to estimate the shape and 

depth of residual magnetic anomalies. This method, calculates a nonlinear relationship between depth and shape factor, at seven points 

with successive window length. It is based on the computing standard deviation at depths that are determined from all residual magnetic 

anomalies for each value of the shape factor. The method was applied to the synthetic model by geometrical shapes both as horizontal 

cylinder and combination of horizontal cylinder, sphere and thin sheet approaches, with and without noise. It was tested by real data in 

Geological Survey of Iran (GSI). In this study, least square methods were applied to interpret the magnetic field so that we can compare 

the results of this methods with the third- order moving average method. This method is applied to estimate the depth using second 

horizontal derivative anomalies obtained numerically from magnetic data with successive window lengths. This method utilizes the 

variance of the depths as a scale for calculation of the shape and depth. The results showed that the third- order moving average method 

is a powerful tool for estimating shape and depth of the synthetic models in the presence and absence of noise compared to least square 

method. Moreover, the results showed that this method is very accurate for real data while the least square method did not lead to 

feasible results. 
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1. Introduction 
Estimation of depth and shape is a crucial factor in 

magnetic data interpretation and many methods have 

been developed for this purpose. We can mention a 

method called Euler decomposition, whose calculations 

are solved independently based on depth and shape. 

Furthermore, a good review is provided by Hinze (1990) 

for estimating the depth of a buried structure of magnetic 

data. Several geometrical methods have been proposed 

for the interpretation of magnetic data due to the simple 

2D-shapes such as sphere, cylinders, dikes and geological 

structures (Gay 1963; Paul 1964; Gay 1965; 

Radhakrishna Murthy 1967; Stanley 1977; Atchuta Roa 

and Ram Babu 1980; Prakasa Rao et al.1986; Prakasa 

Rao and Subrahmanyam 1988). However, none of the 

above studies discussed the accuracy and validity of the 

models in sufficient detail when the data are inherently 

noisy. Different numerical methods have been presented 

for determining the depth from magnetic data, such as 

Werner deconvolution method (Werner 1953; Hartman et 

al. 1971; Jain 1976) and Euler method (Thompson 1982; 

Reid et al. 1990). Moreover, these methods utilized linear 

equations for determination the depth of magnetic 

anomalies. The methods are sensitive to errors both in 

anomaly amplitude resolution and in determination of 

vertical and horizontal gradients, which are highly 

sensitive to noise (Steenland 1968). As a result, a suitable 

method for finding model parameters was presented by 

McGrath and Hood (1970) based on the least-squares 

method.  
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Abdelrahman and Abo-Ezz (2001) developed an 

approach for determination of the depth using numerical 

derivative anomalies. However, most of these methods 

are dependent upon initial estimation of the model 

parameters, but Abdelrahman et al. (2007) showed that 

least-squares method which was applied to estimate the 

depth, utilized numerical second horizontal derivative 

anomalies obtained from magnetic data with successive 

window lengths. They used the variance of the depths as 

a scale for calculating the shape and depth. 

In addition, Abdelrahman and Essa (2015) presented a 

new method to estimate the shape and depth of residual 

magnetic anomalies for most geological structures. They 

extended a curved window method for simultaneous 

determination of shape and depth. They used second 

horizontal derivative anomalies obtained from magnetic 

data with of successive window lengths. But this method 

has limitations for estimation of shape and depth of 

buried structures in some cases. Their method cannot be 

applied to observed data consisting of the combined 

effect of a residual component due to a purely local 

structure and a regional component represented by a 

third- or fourth-order polynomial. 

To solve the above problems, Abdelrahman et al. (2016) 

introduced ‘‘second moving average method’’ for the 

estimation of shape and depth using residual magnetic 

anomalies. They showed the magnetic anomaly by 

separate model due to a vertical and horizontal magnetic 

anomalies of the sphere, the horizontal cylinder, the thin 

sheet, and the geological contact. Pengfei et al (2017) 

introduced the Tilt-depth method, widely used to 

determinate the source depth of a magnetic anomaly. 
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They deduce similar Tilt-depth methods for both 

magnetic and gravity data based on the contact and sphere 

models and obtain the same equation for a gravity 

anomaly as that for a magnetic anomaly. They propose a 

weighting method based on the estimated depths from 

both the contact model and the sphere model to estimate 

the depth for real data. Then, Essa et al. (2018) showed a 

new algorithm to estimate parameters that controlled the 

source dimensions from magnetic anomaly profile data in 

the light of PSO (particle swarm optimization). Essa and 

Elhussein (2019) are developed the particle swarm 

optimization for determination of the depth due to 

inference of second moving average residual magnetic 

anomalies. This approach was used to remove the impact 

of the regional background up to the third-order 

polynomial by applying filters of successive window 

lengths. 

In the present study, a new method is proposed to 

estimate the shape and depth of residual magnetic 

anomalies which is known as third- order moving 

average. In this work, we intend to compare the ability of 

our method with least squares method using residual 

magnetic anomalies with successive window lengths. 

Also, in this study we used synthetic models in magnetic 

field of horizontal cylinder model and combination of 

magnetic field of the horizontal cylinder, sphere and thin 

sheet models for comparison of the third- order moving 

average and least squares methods for estimating of shape 

and depth of the buried structures by residual magnetic 

anomalies. 

 

2. Methodology 
Many of the geological structures can be modeled as 

simple geometrical shapes like, sphere, cylinder, dike and 

geological contact. These four geometrical shapes, are 

almost similar to geological structures that often applied 

in the interpretation of magnetic data for the exploration. 

In this article, these four geometrical shapes shown in the 

Fig. 1, were used for the synthetic modeling. In addition, 

we will prove the mathematical relations of third-order 

moving average method while reviewing the 

mathematical relations of the least squares method. The 

total intensity, vertical and horizontal magnetic anomaly 

of the sphere and the horizontal cylinder are defined 

according to equation 1 (Abdelrahman and Essa 2015). 

 

 

                    (1) 

 

Where: 

 
 

In equation 1, z is the depth from earth's surface to 

center of anomaly, ix is the position coordinate, K is 

the amplitude factor,   is an inclination parameter and 

q is the shape factor, FHD and SHD denote the first and 

the second horizontal derivatives of the magnetic 

anomaly,  respectively. 

 

 

 
Fig 1. Geometrical shapes (Abdelrahman et al. 2016). 

 

2.1. Third- order moving average method 

This method, calculates a nonlinear relationship between 

depth and shape factor, at seven points with successive 

window lengths. It is based on the computing of standard 

deviation of depths that are determined from all residual 

magnetic anomalies for each value of the shape factor. 

Using equation 1, the residual magnetic anomalies 

obtained from third- order moving average method are 

defined according to equation 2. In this equation, R2 

(Abdelrahman et al. 2016) and R3 are the second- order 

and third- order moving average method along the 

anomaly profile, respectively and s  is the window length 

that its unit is meter. 

 

 

3 i 2 i 3 i( , , , ) ( ) Z ( )R x z q s R x x= −                (2) 

Where: 

 

2 i 1 i 2 i
( , , , ) ( ) ( )R x z q s R x z x= −  

1 1
2 i

( ) ( )
( ) , 1,. 2,..,

2
..i iR x s R x s

z x for s M
− + +

= → =
 

1 1i i i
( , , , ) ( ) ( )R x z q s T x z x= −  

1 i .
( ) ( )

(x ) , 1,2,..,
2

..i iT x s T x s
z for s N

− + +
= → =  

 

 

 

( )
( )

2 2

2 2
, i

i

i

i q

Az Bx Cx
T x z K

x z

+ +
=

+



Fouladi et al. / Iranian Journal of Earth Sciences, Vol. 13, No. 3, 2021, 209-222. 

 

 

211 

 

( )

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2

2 2 2 2

( ) ( ) ( ) ( )
3 2 2

( ) (( ) ) (( ) )

2 ( 2 ) ( 2 ) ( 2 ) ( 2 )1 1

2 (( 2 ) ) 2 (( 2 ) )

i i i i i i

q q q

i i i

i

i i i i

q q

i i

Az Bx Cx Az B x s C x s Az B x s C x s

x z x s z x s zK
R x

Az B x s C x s Az B x s C x s

x s z x s z

 + + + − + − + + + +
− − 

+ − + + + 
=  

+ − + − + + + + + +
 − + + + 

 

 

2 2
3 i

( ) ( )
Z (x ) , 1,2,.., N...

2

i iR x s R x s
for s

− + +
= → =                                                           (3) 

Where: 

( )

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

3 2 2 2 2

2 2

( ) ( ) ( 2 ) ( 2 )
7 4

(( ) ) (( 2 ) )

( 3 ) ( 3 )
8

( ) (( 3 ) )

8 ( ) ( ) ( 2 ) ( 2 )
7 4

(( ) ) ((

i i i i

q q

i i

i i i i

q q

i i

i

i i i i

q

i

Az B x s C x s Az B x s C x s

x s z x s z

Az Bx Cx Az B x s C x s

x z x s zK
z x

Az B x s C x s Az B x s C x s

x s z

+ − + − + − + −
−

− + − +

+ + + − + −
− +

+ − +
=

+ + + + + + + +
+ −

+ +
2 2

2 2

2 2

2 ) )

( 3 ) ( 3 )

(( 3 ) )

q

i

i i

q

i

x s z

Az B x s C x s

x s z

+ +

+ + + +
+

+ +

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Now by replacing  seven observation data, 3ix s− , 2ix s− , 
ix s− , 

ix , 
ix s+ , 2ix s+ , 3ix s+  in the equation 1, 

the residual magnetic anomalies are obtained by the third- order moving average method: 

                             
2 2 2 2

2 2 2 2

2 2

2 2

2 2

2 2

3 i 2 2

2 2

2

( ) ( )
20 15

( ) (( ) )

( ) ( )
15

(( ) )

( 2 ) ( 2 )
6

(( 2 ) )
( , , , )

8 ( 2 ) ( 2 )
6

(( 2 ) )

( 3 )

i i i i

q q

i i

i i

q

i

i i

q

i

i i

q

i

i

Az Bx Cx Az B x s C x s

x z x s z

Az B x s C x s

x s z

Az B x s C x s

x s zK
R x z q s

Az B x s C x s

x s z

Az B x s

+ + + − + −
−

+ − +

+ + + +
−

+ +

+ − + −
+

− +
=

+ + + +
+

+ +

+ − +
−

2

2 2

2 2

2 2

( 3 )

(( 3 ) )

( 3 ) ( 3 )

(( 3 ) )

i

q

i

i i

q

i

C x s

x s z

Az B x s C x s

x s z

 
 
 
 
 
 
 
 
 
 
 
 
 

− 
 − +
 
 + + + +

− 
+ + 

                       (4) 

 

 

It is necessary to solve equation 4 for. 2ix s= + , 2ix s= − , 3ix s= + and 3ix s= −  also by subtracting and division these 

equations, we are able to delete A, C and K,B respectively, So: 
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Finally, according to equation 5, we have: 
1

1 2
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4

q
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                                                                                                                        (6) 

Equation 6 can be used for z using standard methods for 

nonlinear equations. In this study, in synthetic models, 

data were contaminated with random noise using 

equation 7 (Abdelrahman and Essa 2016).  In this 

Equation, 
(x )noise iT

 is the noisy magnetic field value at ix

, M is the noise amplitude factor, RAN is a random 

number between zero and one, profile length and 

sampling interval are 100 m and 1m, respectively. 

(x ) (x ) (RAN(i) 0.5)noise i iT T M= + −                                (7) 

According to the equation 6 and considering the different 

shape factors and the successive window length, the 

depth is calculated for each one. Then the average and 

standard deviation of the depths are calculated. From the 

obtained depths, the depth having the lowest standard 

deviation which is the depth of the anomaly and the shape 

factor in accordance with this depth, confirms the shape 

of the magnetic anomaly. Finally, we simultaneously 

determine the depth and shape of a buried structure 

obtained from magnetic data with filters of successive 

window lengths. 

 

2.2. Least- Squares method 

This method is based on the computing of variance of 

depths that are determined from all profiles which are 

second- derivative anomalies. Variance is a scale for 

determining the correct shape and depth of buried 

structure. The magnetic anomaly produced by most 

geological structures  according to Gay (1963), Prakasa 

Rao et al. (1986) and Prakasa Rao and Subrahmanyan 

(1988) defined according to equation 8 (Abdelrahman et 

al. 2007). 
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In equation 8, z is the depth, Xi is the position coordinate 

(Centre located at 0ix = ), K is the amplitude factor,   is 

an inclination parameter and q is the shape factor. The 

numerical values for  a,b,c,m,n,r,p,q for all of the models 

are given in Table 1. Since the total magnetic intensity of 

the sphere does not follow the equation  8, it was not 

presented in Table 1. Now by replacing  five observation 

data, 2ix s− , 
ix s− , 

ix , 
ix s+ , 2ix s+  along the 

anomaly profile. In the following, we must first calculate 

the second numerical horizontal derivative and then do 

that for all shapes at the origin 0ix = , obtained the 

equation 9: (Abdelrahman et al. 2007). 

 

 
Table 1. The numerical values for geological structures 

Model Field component a b c m n p r q 

Sphere Vertical 2 -1 -3 1 0 1 1 2.5 

Sphere Horizontal -1 2 -3 0 1 1 1 2.5 

Horizontal cylinder, dike (FHD), geological contact (SHD) Total, vertical, horizontal 1 -1 2 0 1 1 1 2 

Dike, geological contact (FHD) Total , vertical, horizontal 1 0 -1 0 1 0 0.5 1 
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Now, we will calculate the numerical derivative value for 
ix s=  and then according ( ) ( )
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The unknown depth Z in equation 10 can be obtained by minimizing: 
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( )Z  is minimizing the depth z , ( )iL X is second horizontal derivative anomaly at 
iX and ( ( )) / dZ 0d Z =  is 

Minimization of ( )Z  by least-squares. 
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Where                                                                                  
*( , , ) ( ( , , )) /i iW X Z S d W X Z S dZ=  

 

Following, both the third order moving average method 

and least squares method were modeled synthetically by 

MATLAB software. These models were horizontal 

cylinder and combination of sphere, horizontal cylinder 

and thin sheet. 

 

3. Synthetic Modeling 
3.1. Magnetic field of horizontal cylinder model 

The residual magnetic anomaly in Fig 2,  demonstrate the 

magnetic field due to a horizontal cylinder (

4000 , 8 , 30K nT z m = = =  and 2q = ). In this model, the 

regional magnetic field is second- order polynomial 

(equation 13). For this reason, the regional magnetic field 

in Fig 2 is seen as a parabola curve (green curve). 

The composite anomaly (residual magnetic anomaly of 

the horizontal cylinder and regional anomaly) for 

horizontal cylinder model (red curve) and residual 

magnetic anomaly (blue curve) are defined according to 

equation 14: 
2 0  0.02 1Regional magnetic fie xld x+ +=                        (13) 

2
2

2 2

64cos(30 ) 16 sin(30 ) cos(30 )
( ) 4000 0.02 10

( 64)

i i
i

i

x x
T x x x

x

+ −
= + + +

+

     

                         (14) 

Also, 5% random noise is added to residual magnetic 

field data (according to equation 7, M equals 5nT ) . 

The black curve in Fig 2, shows a noisy magnetic field 

using four successive window lengths ( 5,6,7s = and 8 

spacing units). Fig 3 and 4, show values of the composite 

magnetic anomaly estimated using third- order moving 

average method without noise (red curve in Fig 2) and 

with noise (black curve in Fig 2) using four successive 

window lengths ( 5,6,7s = and 8 spacing units), 

respectively. Also Fig 5 and 6, show the second 

numerical horizontal derivative values for non-noisy data 

and noisy data, respectively. 

The values of the depth for composite magnetic anomaly 

by third- order moving average method and the second 

numerical horizontal derivative values by least- squares 

method, with and without noise were calculated by 

equations 6 and 11, respectively. Table 2 and Table 3, 

show the calculated depth values for the least- squares 

method and third- order moving average method by 

successive window lengths ( 5,6,7s = and 8 spacing 

units) and different values of the shape factor, 

respectively. Table 2, shows that the minimum variance 

values by least- square method, obtained the 2q =  for 

non- noisy data and the 1q = for noisy data. So, the 

shape of the magnetic anomaly by minimum variance 

value, is somehow between thin sheet structure and 

horizontal cylinder structure. 

 

 
Fig 2. The magnetic field of a horizontal cylinder by 

4000 , 8K nT z m= =  , 2q =  and 30 =  with regional 

magnetic field of two- order polynomial and random 

noise=5% 
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Table 2. The values of the depth for composite magnetic anomaly by least- squares method for successive window lengths ( 5,6,7s =

and 8 spacing units) and different values of the shape factor. ( 4000 , 8 , 30K nT z m = = =  and random noise=5%).  (The least variance 

shown in bold) 

 

window 

length 

(m )S 

Depth calculated for 

1q =  

Depth calculated for 

2q = 

Depth calculated for 

2.5q = 

Without 

noise 

error  

% 

With 

noise 

error  

% 

Without 

noise 

error  

% 

With 

noise 

error  

% 

Without 

noise 

error  

% 

With 

noise 

error  

% 

5 5.82 27.25 5.46 31.75 7.18 10.25 9.68 21 4.8 40 4.78 40.25 

6 5.52 34.38 5.78 27.75 7.73 3.38 7.12 11 5.4 32.5 4.94 38.25 

7 5.13 35.84 4.69 41.38 7.93 0.875 8.68 8.5 5.3 33.75 5.85 26.9 

8 4.8 40 5.17 35.38 8 0 8.86 10.75 5.8 27.5 6.34 20.75 

Average 

value (m) 
5.32 33.53 5.28 34.06 7.71 3.63 8.59 7.38 5.17 35.38 5.48 31.5 

variance 

(m2) 
0.199 0.214 0.138 1.14 0.169 0.553 

 

 
According to the Table 3, the minimum standard 

deviation for the estimated depths was obtained based on 

the shape factor for the non-noisy and noisy magnetic 

data equals 2 and 1.9, respectively. Hence, using the 

third-order moving average method, the closest depth to 

a given depth (average value) for non-noisy and noisy 

magnetic data was 8 m and 8.15 m, respectively. So, the 

shape of the magnetic anomaly by minimum standard 

deviation value, is the horizontal cylinder structure. 

Comparing Table 2 and Table 3 to estimate the shape and 

depth of buried structures, it can be concluded that third- 

order moving average method has a good agreement than 

the least squares method for the horizontal cylinder 

structure. 

 

 

Fig 3. Values of the composite magnetic anomaly 

by third- order moving average method (TMAR) 

(without noise) 

 

Fig 4. Values of the composite magnetic anomaly 

by third- order moving average method (TMAR) 

(with noise) 

 

Fig 5. Values of the composite magnetic anomaly 

by least- squares method 

(Without noise) 

Fig 6. Values of the composite magnetic anomaly 

by least- squares method 

(With noise) 
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Table 3. The calculated depth values for successive window lengths (s=5,6,7 and 8 spacing units) and different values of the shape 

factor. ( 4000 , 8 , 30K nT z m = = =  and random noise=5%). (The closest depth to a given depth shown in bold) 

 
shape factor S = 5 S = 6 S = 7 S = 8 Average value (m) Standard deviation (m) 

1.6 
Without noise 6.43 6.88 6.63 6.58 6.63 0.187 

with noise 5.76 6.59 4.38 6.96 5.92 1.144 

1.7 
Without noise 6.58 7.24 6.83 7.77 7.12 0.52 

with noise 7.26 8.75 5.87 5.38 6.8 1.52 

1.8 
Without noise 7.71 7.37 7.06 7.69 7.46 0.31 

with noise 6.35 9.45 7.62 8.68 8.02 1.345 

1.9 
Without noise 7.86 7.67 7.34 7.85 7.68 0.243 

with noise 8.25 9.07 7.45 7.82 8.15 0.7 

2 
Without noise 8 8 8 8 8 0 

with noise 8.77 8.96 7.32 9.43 8.62 0.91 

2.1 
Without noise 8.05 8.23 7.78 8.1 8.04 0.19 

with noise 8.96 9.14 8.37 10.21 9.17 0.767 

2.2 
Without noise 8.17 8.38 7.95 8.24 8.19 0.18 

with noise 7.58 10.75 8.12 9.69 9.04 1.452 

2.3 

 

Without noise 8.22 8.54 8.13 8.41 8.33 0.185 

with noise 8.78 9.79 9.57 11.45 9.9 1.12 

2.4 
Without noise 8.43 8.69 8.26 8.57 8.49 0.185 

with noise 9.46 10.36 8.87 12.23 10.23 1.47 

 

 
Fig 7. The magnetic field due to a horizontal cylinder by 

50000 , 10K nT z m= = and 50 =  (residual anomaly 1), 

vertical magnetic field of sphere by 

25000 , 12K nT z m= = and 75 =  (residual anomaly 2) 

and magnetic field of a thin sheet 2000 , 20K nT z m= =  

and 25 = (residual anomaly 3), with regional magnetic 

field of two- order polynomial and random noise=5%  

 

 

3.2. Magnetic field of the horizontal cylinder, sphere 

and thin sheet models 

Fig 7, shows the residual magnetic anomaly,  magnetic 

field due to a horizontal cylinder by 

50000 , 10K nT z m= = and 50 =  (residual anomaly 

1), vertical magnetic field of sphere by 

25000 , 12K nT z m= = and 75 =  (residual anomaly 

2) and magnetic field of a thin sheet 

2000 , 20K nT z m= =  and 25 = (residual anomaly 

3). The center of the horizontal cylinder model is at the 

origin of the profile and the center of the spherical model 

is 30 m from the origin and to the right and center of the 

thin sheet model is 35 m from the origin and to the left. 

In these models, the regional magnetic field are 

considered two-order polynomial (Equation 15), a 

random noise of 5% and a successive window length 

3,4s = and 5 spacing units. 

 

In Fig 7, shows the regional magnetic field by purple 

curve, residual magnetic anomaly due to a horizontal 

cylinder by green curve, sphere model by yellow curve, 

thin sheet model by blue curve, composite anomaly 

without noise by black curve and composite anomaly 

with noise by turquoise curve. 

The composite anomaly (residual magnetic anomaly of 

the horizontal cylinder, residual magnetic anomaly of the 

Sphere, residual magnetic anomaly of the thin sheet and 

regional anomaly) are defined according to equation 16: 
2 0  0.04 1Regional magnetic fie xld x+ −=                   (15) 
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Fig 8, 9, 10 and 11 show values of the composite 

magnetic anomaly by third- order moving average 

method without and with noise and the second numerical 

horizontal derivative values for non- noisy data and noisy 

data using three successive window lengths  ( 3,4s = and 

5 spacing units), respectively. Also, Table 4 and 5, show 

the calculated values of the depth for the least- squares 

method and third- order moving average method with and 

without noise by successive window lengths ( 3,4s = and 

5 spacing units) and different values of the shape factor, 

respectively.  

Table 4, shows that the minimum variance values by 

least- square method, obtained the 2q =  for noisy data 

and the 1q = for non- noisy data. So, the shape of the 

magnetic anomaly by minimum variance value, is 

somehow between thin sheet structure and horizontal 

cylinder structure. 
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Table 4. The values of the depth for composite magnetic anomaly by least- squares method for successive window lengths (s=3,4 and 

5 spacing units) and different values of the shape factor. ( 50000 , 10K nT z m= = and 50 =  (residual anomaly 1), 

25000 , 12K nT z m= = and 75 = (residual anomaly 2), 2000 , 20K nT z m= = and 25 = (residual anomaly 3), random 

noise=5%,)). (The least variance shown in bold) 

 

window 

length 

(m )S 

Depth calculated for 

1q =  

Depth calculated for 

2q = 

Depth calculated for 

2.5q = 

Without 

noise 

error  

% 

With 

noise 

error  

% 

Without 

noise 

error  

% 

With 

noise 

error  

% 

Without 

noise 

error  

% 

With 

noise 

error  

% 

3 7.29 27.1 7.47 25.3 9.44 5.6 9.36 6.4 6.63 33.7 6.04 39.6 

4 7.05 29.5 7.27 27.3 10.33 3.3 9.64 3.6 7.01 29.9 7.37 26.3 

5 6.68 33.2 6.02 39.8 10.74 7.4 10.59 5.9 7.07 29.3 6.41 35.9 

Average 

value (m) 
7 29.93 6.92 30.8 10.17 1.7 9.86 1.37 6.9 30.97 6.61 33.93 

variance 

(m2) 
0.0944 0.786 0.665 0.645 0.239 0.686 

 

 

 

According to the Table 5, the minimum standard 

deviation for the estimated depths was obtained based on 

the shape factor for the non-noisy and noisy magnetic 

data equals 2 and 2.1, respectively. As a result, the shape 

of the magnetic anomaly by minimum standard value is 

the horizontal cylinder structure.  So, when we compare 

Table 4 and 5 to estimate the shape and depth of the 

buried structures, it can be seen that the third-order 

moving average method has a good agreement for the 

horizontal cylindrical structure. 
 

 

 

Fig 8. Values of the composite magnetic anomaly 

by third- order moving average method (TMAR) 

(without noise). 

 

Fig 9. Values of the composite magnetic anomaly 

by third- order moving average method (TMAR) 

(with noise). 

 

Fig 10. Values of the composite magnetic anomaly 

by least- squares method 

 (Without noise). 

 

Fig 11. Values of the composite magnetic anomaly 

by least- squares method 

(With noise). 
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Table 5. The calculated values of the depth for composite magnetic anomaly by third- order moving average method for successive 

window lengths (S=3,4 and 5 spacing units) and different values of the shape factor. ( 50000 , 10K nT z m= = and 50 =  

(residual anomaly 1), 25000 , 12K nT z m= = and 75 = (residual anomaly 2), 2000 , 20K nT z m= = and 25 = (residual 

anomaly 3), random noise=5%,)).  (The closest depth to a given depth shown in bold) 

 

shape factor S = 3 S = 4 S = 5 
Average value 

(m) 

Standard deviation 

(m) 

1.6 
Without noise 9.26 8.93 8.85 9.01 0.217 

with noise 8.38 7.82 7.47 7.89 0.46 

1.7 
Without noise 9.41 9.24 9.1 9.25 0.155 

with noise 8.74 8.47 7.96 8.39 0.396 

1.8 
Without noise 9.57 9.43 9.37 9.46 0.103 

with noise 9.29 8.84 9.05 9.06 0.226 

1.9 
Without noise 9.73 9.65 9.6 9.66 0.066 

with noise 9.61 9.16 9.44 9.4 0.23 

2 
Without noise 9.81 9.77 9.74 9.77 0.0351 

with noise 9.88 9.47 9.67 9.673 0.205 

2.1 
Without noise 9.96 10.08 9.85 9.963 0.115 

with noise 9.84 9.73 10.1 9.89 0.19 

2.2 
Without noise 10.17 10.35 10.27 10.26 0.09 

with noise 10.13 10.56 10.42 10.37 0.219 

2.3 

 

Without noise 10.32 10.67 10.48 10.49 0.175 

with noise 10.36 10.83 10.66 10.62 0.238 

2.4 
Without noise 10.55 10.87 10.63 10.683 0.166 

with noise 10.75 11.14 10.83 10.91 0.206 

 
 

4. Real data 
4.1. Geological Survey of Iran (Geophysics Site) 

In order to study geomagnetic studies, an anomaly have 

been buried in the geophysical site of the Geological 

Survey of Iran that the information’s of this anomaly are 

shown in Table 6. It should be noted that, the inside and 

outside of the buried anomaly is metal. Fig 12, show a 

picture of anomaly on the geophysics site of the 

geological survey of Iran. The magnetic measurements of 

the study area were shown in Tehran geological map on 

the scale of 1:100000 .Most of geological units in the 

study area are, alluvial sediments and Fans (Fig. 13). 

Also, Fig 14 shows the location of the study area  (red 

square) and access routes. 

 
Table 6. The information’s of the magnetic anomaly 

shape of 

the 

magnetic 

anomaly 

Lengths of 

the magnetic 

anomaly 

diameter of 

the 

magnetic 

anomaly 

depth from 

Earth's 

surface to the 

lower surface 

of anomaly 

(m) 

depth from 

Earth's 

surface to 

center of 

the 

anomaly 

(m) 

Horizontal 

Cylinder 
1.8 0.56 2.06 1.78 

 

4.2. Geophysical data acquisition and data processing 

The magnetic surveying, with one device (GSM-19T 

Proton Precession magnetometer) were measured in the 

field. In this site, spacing between profiles (East- West) 

and stations were selected as 0.5 m. Survey extent in 

geophysics site is 8 m*8.5 m that profiles number and 

stations number were measured 17 and 323, respectively. 

Fig 15, shows the total magnetic intensity map and the 

maximum and minimum values of the total magnetic 

intensity equals 47048nT and 43645nT , respectively. For 

the correction of the magnetic data in this site, the 

magnetic residual map, local magnetic residual map (by 

remove a trend surface first- order) and reduced to 

magnetic pole map was prepared that Fig 16, show the 

reduced to magnetic pole map (according to the IGRF, 

regional magnetic field= 48451nT , inclination=54.66

and declination= 4.82 ). 

 

4.3. Application of the third- order moving average 

method 

To analyze the magnetic field by the third- order moving 

average method, we introduce profile AA´ with length 

equal to 6.625 m on the local residual magnetic map 

(Fig17). According to the equation (15), the third- order 

moving average method with different window lengths 

was determined and plotted. Fig 18 and Table. 7 show the 

magnetic anomaly diagram and the calculated depth 

values for successive window lengths (

0.1,0.125,0.15,0.175s = and 0.2 spacing units) for 

profile AA´ using the third- order moving average 

method, respectively. 
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Fig 12. A picture of the magnetic anomaly on the geological survey of Iran. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 13.  Geological map of magnetic anomaly area (red square), Geological Survey of Iran (1993). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig 14.  Location of the study area (red square) and access routes (Google Earth) 
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Fig 17. The profile AA´ on the local residual magnetic map 

 

 

According to the Table 7, the minimum standard 

deviation for the estimated depths with different window 

lengths was obtained based on the shape factor equal to 2 

the factor which is a horizontal cylinder structure. So 

based on the third- order moving average method,  the 

mean depth of the anomaly for magnetic data  obtained 

was 1.676 m.  

 

4.4. Application of the least- square method 

Using by equation 23, were determined and plotted 

numerical second horizontal derivative anomalies for 

successive window lengths ( 0.1,0.125,0.15,0.175s =  

and 0.2 spacing units) for profile AA´ by utilizing the 

least- square method. Fig 19, shows the numerical second 

horizontal derivative magnetic anomalies. Results of the 

inversion with the least squares method for shape factor 

Fig 15. The total magnetic intensity map 

 
Fig 16. The reduced to magnetic pole map (RTP) 
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1, 2 and 2.5 were show in table 8. This method is based 

on computing the variance of depths that are determined 

from all residual magnetic anomalies for each value of 

the shape factor with successive window length. 

According to the Table 8, the minimum variance for the 

estimated depths with successive window lengths 

0.1,0.125,0.15,0.175s =  was obtained based on the shape 

factor for equal to 1, that show the shape of the anomaly 

is dike. Also, the estimated depth for this model, is 0.11m. 

While, according to prior information, the shape and 

depth of the anomaly in the geophysics site, is horizontal 

cylinder and 1.2m, respectively. 
 

 
Fig 18. The magnetic anomaly by third- order moving average method (TMAR) 

(profile AA´) 

 

 
Fig 19. The numerical second horizontal derivative magnetic anomalies (profile AA´) 

 

 
Table 7. The calculated shape factor and depth values for successive window lengths   ( 0.1,0.125,0.15,0.175s =  and 0.2 spacing 

units) for profile AA´ by utilizing the third- order moving average method.  (The closest depth to the actual depth is shown in bold) 

 
shape 

factor 
S = 0.1 S = 0.125 S = 0.15 S = 0.175 S = 0.2 

Average value 

(m) 

Standard 

deviation (m) 

1.7 1.82 1.54 1.49 1.45 1.6 1.58 0.1454 

1.8 1.84 1.56 1.51 1.49 1.64 1.608 0.1420 

1.9 1.86 1.59 1.53 1.51 1.67 1.632 0.1418 

2 1.9 1.63 1.577 1.557 1.72 1.676 0.1398 

2.1 1.91 1.64 1.58 1.56 1.73 1.684 0.1426 

2.2 1.93 1.65 1.6 1.58 1.77 1.706 0.1454 

2.3 1.95 1.68 1.63 1.6 1.8 1.732 0.1438 

2.4 1.97 1.7 1.64 1.63 1.81 1.75 0.1423 
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Table 8. The values of the depth for magnetic anomaly by least- squares method for profile AA´ with successive window lengths        

( 0.1,0.125,0.15,0.175s = and 0.2 spacing units) and different values of the shape factor. (The least variance shown in bold) 

 

window 

length S (m)  

Depth calculated for 

1q =  

Depth calculated for 

2q = 

Depth calculated for 

2.5q = 

Depth calculated for 

2.5q = 

Dike model  

(all fields) 

Horizontal cylinder 

(all fields) 

Sphere 

(vertical field) 

Sphere 

(horizontal field) 

0.1 0.12 1.83 0.32 1.83 

0.125 0.11 0.4 0.31 1.56 

0.15 0.1 0.53 1.8 1.61 

0.175 0.11 1.45 2 1.71 

0.2 0.11 1.8 2.4 1.91 

Average 

value (m) 
0.11 1.2 1.11 1.724 

variance (m2) 0.00004 0.382 0.774 0.0172 

 
5. Conclusions 
The results showed that third- order moving average 

method, gives more accurate response in the absence of 

noise by the horizontal cylinder model for synthetic data 

and also shows a 2.3% error margin in the combined 

shape (horizontal cylinder, sphere (vertical field) and thin 

sheet models). Also, in the presence of noise for 

horizontal cylinder model and combination of horizontal 

cylinder, sphere (vertical field) and thin sheet models, 

errors were calculated 1.87% and 1.1%, respectively. But 

result of the least squares methods, can be shown that in 

the absence of noise by the horizontal cylinder model and 

combined shape for synthetic data, were errors calculated 

3.63% and 29.93%, respectively. Also, this value with 

noise data, were obtained 34.06% and 1.37% error, 

respectively. The third- order moving average and least 

square methods has shown that for real magnetic data 

with 5% and 90.8% error, respectively (According to 

table 6). 

Comparing the third- order moving average and least 

square methods defined that the third- order moving 

average is a powerful tool for estimating of shape and 

depth of the synthetic models and real data in the 

presence and absence of noise.  
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