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Abstract

In the current study, we have developed a new method called the third- order moving average method to estimate the shape and
depth of residual magnetic anomalies. This method, calculates a nonlinear relationship between depth and shape factor, at seven points
with successive window length. It is based on the computing standard deviation at depths that are determined from all residual magnetic
anomalies for each value of the shape factor. The method was applied to the synthetic model by geometrical shapes both as horizontal
cylinder and combination of horizontal cylinder, sphere and thin sheet approaches, with and without noise. It was tested by real data in
Geological Survey of Iran (GSI). In this study, least square methods were applied to interpret the magnetic field so that we can compare
the results of this methods with the third- order moving average method. This method is applied to estimate the depth using second
horizontal derivative anomalies obtained numerically from magnetic data with successive window lengths. This method utilizes the
variance of the depths as a scale for calculation of the shape and depth. The results showed that the third- order moving average method
is a powerful tool for estimating shape and depth of the synthetic models in the presence and absence of noise compared to least square
method. Moreover, the results showed that this method is very accurate for real data while the least square method did not lead to

feasible results.
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1. Introduction

Estimation of depth and shape is a crucial factor in
magnetic data interpretation and many methods have
been developed for this purpose. We can mention a
method called Euler decomposition, whose calculations
are solved independently based on depth and shape.
Furthermore, a good review is provided by Hinze (1990)
for estimating the depth of a buried structure of magnetic
data. Several geometrical methods have been proposed
for the interpretation of magnetic data due to the simple
2D-shapes such as sphere, cylinders, dikes and geological
structures (Gay 1963; Paul 1964; Gay 1965;
Radhakrishna Murthy 1967; Stanley 1977; Atchuta Roa
and Ram Babu 1980; Prakasa Rao et al.1986; Prakasa
Rao and Subrahmanyam 1988). However, none of the
above studies discussed the accuracy and validity of the
models in sufficient detail when the data are inherently
noisy. Different numerical methods have been presented
for determining the depth from magnetic data, such as
Werner deconvolution method (Werner 1953; Hartman et
al. 1971, Jain 1976) and Euler method (Thompson 1982;
Reid et al. 1990). Moreover, these methods utilized linear
equations for determination the depth of magnetic
anomalies. The methods are sensitive to errors both in
anomaly amplitude resolution and in determination of
vertical and horizontal gradients, which are highly
sensitive to noise (Steenland 1968). As a result, a suitable
method for finding model parameters was presented by
McGrath and Hood (1970) based on the least-squares
method.
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Abdelrahman and Abo-Ezz (2001) developed an
approach for determination of the depth using numerical
derivative anomalies. However, most of these methods
are dependent upon initial estimation of the model
parameters, but Abdelrahman et al. (2007) showed that
least-squares method which was applied to estimate the
depth, utilized numerical second horizontal derivative
anomalies obtained from magnetic data with successive
window lengths. They used the variance of the depths as
a scale for calculating the shape and depth.

In addition, Abdelrahman and Essa (2015) presented a
new method to estimate the shape and depth of residual
magnetic anomalies for most geological structures. They
extended a curved window method for simultaneous
determination of shape and depth. They used second
horizontal derivative anomalies obtained from magnetic
data with of successive window lengths. But this method
has limitations for estimation of shape and depth of
buried structures in some cases. Their method cannot be
applied to observed data consisting of the combined
effect of a residual component due to a purely local
structure and a regional component represented by a
third- or fourth-order polynomial.

To solve the above problems, Abdelrahman et al. (2016)
introduced ‘‘second moving average method”’ for the
estimation of shape and depth using residual magnetic
anomalies. They showed the magnetic anomaly by
separate model due to a vertical and horizontal magnetic
anomalies of the sphere, the horizontal cylinder, the thin
sheet, and the geological contact. Pengfei et al (2017)
introduced the Tilt-depth method, widely used to
determinate the source depth of a magnetic anomaly.
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They deduce similar Tilt-depth methods for both
magnetic and gravity data based on the contact and sphere
models and obtain the same equation for a gravity
anomaly as that for a magnetic anomaly. They propose a
weighting method based on the estimated depths from
both the contact model and the sphere model to estimate
the depth for real data. Then, Essa et al. (2018) showed a
new algorithm to estimate parameters that controlled the
source dimensions from magnetic anomaly profile data in
the light of PSO (particle swarm optimization). Essa and
Elhussein (2019) are developed the particle swarm
optimization for determination of the depth due to
inference of second moving average residual magnetic
anomalies. This approach was used to remove the impact
of the regional background up to the third-order
polynomial by applying filters of successive window
lengths.

In the present study, a new method is proposed to
estimate the shape and depth of residual magnetic
anomalies which is known as third- order moving
average. In this work, we intend to compare the ability of
our method with least squares method using residual
magnetic anomalies with successive window lengths.
Also, in this study we used synthetic models in magnetic
field of horizontal cylinder model and combination of
magnetic field of the horizontal cylinder, sphere and thin
sheet models for comparison of the third- order moving
average and least squares methods for estimating of shape
and depth of the buried structures by residual magnetic
anomalies.

2. Methodology

Many of the geological structures can be modeled as
simple geometrical shapes like, sphere, cylinder, dike and
geological contact. These four geometrical shapes, are
almost similar to geological structures that often applied
in the interpretation of magnetic data for the exploration.
In this article, these four geometrical shapes shown in the
Fig. 1, were used for the synthetic modeling. In addition,
we will prove the mathematical relations of third-order
moving average method while reviewing the
mathematical relations of the least squares method. The
total intensity, vertical and horizontal magnetic anomaly
of the sphere and the horizontal cylinder are defined
according to equation 1 (Abdelrahman and Essa 2015).
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In equation 1, z is the depth from earth's surface to
center of anomaly, X; is the position coordinate, K is

the amplitude factor, @ is an inclination parameter and
q is the shape factor, FHD and SHD denote the first and

the second horizontal derivatives of the magnetic
anomaly, respectively.
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Fig 1. Geometrical shapes (Abdelrahman et al. 2016).

2.1. Third- order moving average method

This method, calculates a nonlinear relationship between
depth and shape factor, at seven points with successive
window lengths. It is based on the computing of standard
deviation of depths that are determined from all residual
magnetic anomalies for each value of the shape factor.
Using equation 1, the residual magnetic anomalies
obtained from third- order moving average method are
defined according to equation 2. In this equation, R;
(Abdelrahman et al. 2016) and R3 are the second- order
and third- order moving average method along the
anomaly profile, respectively and s is the window length
that its unit is meter.

Ra(X;:2,0,8) =R, (X;) = Z,(x;) @
Where:

R,(x,,2,0,8) =R (x,)-Z,(x,)
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Now by replacing seven observation data, x; —3s, X; —2s, X, =S, X;,» X; +S, X; +2s, x, +3s in the equation 1,
the residual magnetic anomalies are obtained by the third- order moving average method:
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It is necessary to solve equation 4 for. x, =+2s,x, =-2s, x; =+3s and x;, =-3s also by subtracting and division these
equations, we are able to delete A, C and K,B respectively, So:
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Finally, according to equation 5, we have:

: :{(A4+OB J% _452}%

Equation 6 can be used for z using standard methods for
nonlinear equations. In this study, in synthetic models,
data were contaminated with random noise using
equation 7 (Abdelrahman and Essa 2016). In this
T e X0)

Equation, e (1) s the noisy magnetic field value at X;

, M is the noise amplitude factor, RAN is a random
number between zero and one, profile length and
sampling interval are 100 m and 1m, respectively.

Tnoise (Xi ) =T (Xi )+ M (RAN(I)_OS) (7)
According to the equation 6 and considering the different
shape factors and the successive window length, the
depth is calculated for each one. Then the average and
standard deviation of the depths are calculated. From the
obtained depths, the depth having the lowest standard
deviation which is the depth of the anomaly and the shape

T(X,,Z,0)=K

(aZ > +bX 2)(sin@)™ (cosH)" +cX ,Z P (sin 9)" (cos )"

(6)

factor in accordance with this depth, confirms the shape
of the magnetic anomaly. Finally, we simultaneously
determine the depth and shape of a buried structure
obtained from magnetic data with filters of successive
window lengths.

2.2. Least- Squares method

This method is based on the computing of variance of
depths that are determined from all profiles which are
second- derivative anomalies. Variance is a scale for
determining the correct shape and depth of buried
structure. The magnetic anomaly produced by most
geological structures according to Gay (1963), Prakasa
Rao et al. (1986) and Prakasa Rao and Subrahmanyan
(1988) defined according to equation 8 (Abdelrahman et
al. 2007).

i=123.N (8)

(X7+z?)

In equation 8, z is the depth, X; is the position coordinate
(Centre located atx, =), K is the amplitude factor, & is

an inclination parameter and q is the shape factor. The
numerical values for a,b,c,m,n,r,p,q for all of the models
are given in Table 1. Since the total magnetic intensity of
the sphere does not follow the equation 8, it was not
presented in Table 1. Now by replacing five observation

data, x, -2s, X, -S, X, X; +S, x, +2s along the

anomaly profile. In the following, we must first calculate
the second numerical horizontal derivative and then do
that for all shapes at the origin x, =0, obtained the

equation 9: (Abdelrahman et al. 2007).

Table 1. The numerical values for geological structures

Model Field component albfJcIm[n][p] r]q
Sphere Vertical 2 1 -3 1 0 1 1 25
Sphere Horizontal (12 3 0 1 1 1 25
Horizontal cylinder, dike (FHD), geological contact (SHD) | Total,vertical,horizontal 1 -1 2 0o 1 1 1 2
Dike, geological contact (FHD) Total,vertical,horizontal 1 0 -1 0 1 0 05 1
Z%T,, (0)(4S°+2Z2)
Tx (Xi,Z,ﬁ,S): 2 2r XX(z)( 2r )2 2 X
2[Z% @z +4pS%)-az ¥ (457 +27)" |
r 2 2 ] 9
@z * +b(X; +2S)*)+c(X, +2S)Z *)(tang)" " ©)

(X, +28)*+27?)"
P (aZ * +bX ?)+cX ,Z P (tan @)™ "
(X7+z2)y
(@27 +b(X, ~28)) +e(X, ~25)Z (tan )"
(X, —28)2+2Z7%)"

Now, we will calculate the numerical derivative value for x, = +s and then according  _ T 8) =Ty (=5) we will have:

Tyx (Xilzvs):TXXT(O)W (X;,Z,S)
Where

T (0)
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The unknown depth Z in equation 10 can be obtained by minimizing:

w<2)=Z[L(xi)—T“¥W (xiyz,S)}

(11)

w(Z) is minimizing the depthz , (X )is second horizontal derivative anomaly at x and d(y(Z))/dZ=0 is

Minimization of ,(z ) by least-squares.
f (Z):i[L(Xi)—TXXT(mW (Xi,Z,S)}N "(X,,2,8)=0

Where
W’(X,,Z,S)=dW (X,,Z,S))/dz

Following, both the third order moving average method
and least squares method were modeled synthetically by
MATLAB software. These models were horizontal
cylinder and combination of sphere, horizontal cylinder
and thin sheet.

3. Synthetic Modeling

3.1. Magnetic field of horizontal cylinder model

The residual magnetic anomaly in Fig 2, demonstrate the
magnetic field due to a horizontal cylinder (
K =4000nT ,z =8m,#=30°" andq = 2). In this model, the
regional magnetic field is second- order polynomial
(equation 13). For this reason, the regional magnetic field
in Fig 2 is seen as a parabola curve (green curve).

The composite anomaly (residual magnetic anomaly of
the horizontal cylinder and regional anomaly) for
horizontal cylinder model (red curve) and residual
magnetic anomaly (blue curve) are defined according to
equation 14:

Regional magnetic field =0.02x *+x +10 (13)

64c0s(30°) +16x, sin(30°) —x ? cos(30°)

e +0.02x % +x +10
X7+
(x; +64)

T (x,) = 4000

(14)
Also, 5% random noise is added to residual magnetic
field data (according to equation 7, M equals5nT ).
The black curve in Fig 2, shows a noisy magnetic field
using four successive window lengths (s =5,6,7and 8
spacing units). Fig 3 and 4, show values of the composite
magnetic anomaly estimated using third- order moving
average method without noise (red curve in Fig 2) and
with noise (black curve in Fig 2) using four successive
window lengths (s =5,6,7and 8 spacing units),
respectively. Also Fig 5 and 6, show the second

(12)

numerical horizontal derivative values for non-noisy data
and noisy data, respectively.

The values of the depth for composite magnetic anomaly
by third- order moving average method and the second
numerical horizontal derivative values by least- squares
method, with and without noise were calculated by
equations 6 and 11, respectively. Table 2 and Table 3,
show the calculated depth values for the least- squares
method and third- order moving average method by
successive window lengths (S =5,6,7 and 8 spacing

units) and different values of the shape factor,
respectively. Table 2, shows that the minimum variance
values by least- square method, obtained the q = 2 for
non- noisy data and the ¢ = 1for noisy data. So, the

shape of the magnetic anomaly by minimum variance
value, is somehow between thin sheet structure and
horizontal cylinder structure.

120

Residual anomaly
100+ Regional anomaly q

Composite anomaly d
ank Noisy composite anomaly

60+
Model parameters:
=8m

40F  g=2

K=4000 nT
Angle=30 degree

Magnetic (nT)

20+

0 -40 -30 -20 -10 0 10 20 30 40 50
Distance (m)

Fig 2. The magnetic field of a horizontal cylinder by
K =4000nT ,z =8m , q =2 and & =30" with regional
magnetic field of two- order polynomial and random
noise=5%
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Fig 3. Values of the composite magnetic anomaly
by third- order moving average method (TMAR)
(without noise)

Fig 4. Values of the composite magnetic anomaly
by third- order moving average method (TMAR)
(with noise)

Second derivative anomaly (nT/m2)

Second derivative anomaly for noisy data (nT/m2)

B I I L L I I I L
-40 -30 -20 -10 0 10 20 30 40

Distance {m)

50

Distance {m)

Fig 6. Values of the composite magnetic anomaly
by least- squares method
(With noise)

Fig 5. Values of the composite magnetic anomaly
by least- squares method
(Without noise)

Table 2. The values of the depth for composite magnetic anomaly by least- squares method for successive window lengths (s =5,6,7
and 8 spacing units) and different values of the shape factor. (k =4000nT ,z =8m,9=230" and random noise=5%). (The least variance
shown in bold)

Depth calculated for Depth calculated for Depth calculated for
window q=1 q=2 qg=25
length
S (m)
Without error With error Without error With error Without error With error
noise % noise % noise % noise % noise % noise %
5 5.82 27.25 5.46 31.75 7.18 10.25 9.68 21 4.8 40 4.78 40.25
6 5.52 34.38 5.78 21.75 7.73 3.38 7.12 11 5.4 325 4.94 38.25
7 5.13 35.84 4.69 41.38 7.93 0.875 8.68 8.5 53 33.75 5.85 26.9
8 4.8 40 5.17 35.38 8 0 8.86 10.75 5.8 275 6.34 20.75
aclaod 532 3353 528 | 34.06 771 3.63 8.59 7.38 517 35.38 5.48 315
value (m)
"a(’rﬁz”)ce 0.199 0214 0138 114 0.169 0553

According to the Table 3, the minimum standard
deviation for the estimated depths was obtained based on
the shape factor for the non-noisy and noisy magnetic
data equals 2 and 1.9, respectively. Hence, using the
third-order moving average method, the closest depth to
a given depth (average value) for non-noisy and noisy
magnetic data was 8 m and 8.15 m, respectively. So, the
shape of the magnetic anomaly by minimum standard

deviation value, is the horizontal cylinder structure.
Comparing Table 2 and Table 3 to estimate the shape and
depth of buried structures, it can be concluded that third-
order moving average method has a good agreement than
the least squares method for the horizontal cylinder
structure.
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Table 3. The calculated depth values for successive window lengths (s=5,6,7 and 8 spacing units) and different values of the shape
factor. (K =4000nT ,z =8m,& =30 and random noise=5%). (The closest depth to a given depth shown in bold)

shape factor S=5] S=6 | S=7 | S=8 [ Averagevalue (m) | Standard deviation (m)
16 Without noise 6.43 6.88 6.63 6.58 .63 0.187
i with noise 5.76 6.59 4.38 6.96 592 1.144
17 Without noise 6.58 7.24 6.83 7.77 7.12 0.52
) with noise 7.26 8.75 5.87 5.38 6.8 1.52
18 Without noise 7.71 7.37 7.06 7.69 7.46 0.31
i with noise 6.35 9.45 7.62 8.68 8.02 1.345
19 Without noise 7.86 7.67 7.34 7.85 7.68 0.243
i with noise 8.25 9.07 7.45 7.82 8.15 0.7
2 Without noise 8 8 8 8 8 0
with noise 8.77 8.96 7.32 9.43 8.62 0.91
21 Without noise 8.05 8.23 7.78 8.1 8.04 0.19
i with noise 8.96 9.14 8.37 10.21 9.17 0.767
29 Without noise 8.17 8.38 7.95 8.24 8.19 0.18
i with noise 7.58 10.75 8.12 9.69 9.04 1.452
2.3 Without noise 8.22 8.54 8.13 8.41 8.33 0.185
with noise 8.78 9.79 9.57 11.45 9.9 1.12
24 Without noise 8.43 8.69 8.26 8.57 8.49 0.185
i with noise 9.46 10.36 8.87 12.23 10.23 1.47
500 T T In Fig 7, shows the regional magnetic field by purple
i gl /f\ | curve, residual magnetic anomaly due to a horizontal
Residual anomaly 3 ’ cylinder by green curve, sphere model by yellow curve,

Anomaly 1,2 and 3 ! B
Regional anomaly i

Composite anarrialy
MNoisy composite anomaly

Magnetic (nT)

-100+

o
e
Vs
1

=200 L L L L L L L 1 1
50 40 -30

Distance (m)

Fig 7. The magnetic field due to a horizontal cylinder by
K =50000nT ,z =10m and ¢ =50 (residual anomaly 1),
vertical magnetic field of sphere by
K =25000nT ,z =12m and ¢ =75 (residual anomaly 2)
and magnetic field of a thin sheet K =2000nT ,z =20m
and @ = 25° (residual anomaly 3), with regional magnetic
field of two- order polynomial and random noise=5%

3.2. Magnetic field of the horizontal cylinder, sphere
and thin sheet models
Fig 7, shows the residual magnetic anomaly, magnetic

field due to a  horizontal cylinder by
K =50000nT ,z =10m and @=50" (residual anomaly
1), vertical magnetic field of sphere by
K =25000nT ,z =12mand ¢=75 (residual anomaly
2) and magnetic field of a thin sheet

K =2000nT ,z =20m and ¢ =25 (residual anomaly

3). The center of the horizontal cylinder model is at the
origin of the profile and the center of the spherical model
is 30 m from the origin and to the right and center of the
thin sheet model is 35 m from the origin and to the left.

In these models, the regional magnetic field are
considered two-order polynomial (Equation 15), a
random noise of 5% and a successive window length

s = 3,4 and 5 spacing units.

thin sheet model by blue curve, composite anomaly
without noise by black curve and composite anomaly
with noise by turquoise curve.

The composite anomaly (residual magnetic anomaly of
the horizontal cylinder, residual magnetic anomaly of the
Sphere, residual magnetic anomaly of the thin sheet and
regional anomaly) are defined according to equation 16:

Regional magnetic field =0.04x 2 +x 10 (15)

100c0s(50°) — 20x, sin(50°) —x 2 cos(50°) N

T (x;)=50000
) (x7Z+100)° (16)
H o o 2 a3 o
25000 288sin(75 )—36>2<i cos(7255)—xi sin(75°%) N
(x;”+144)~
o 2 i o
2000 20c0s(25°) —x; sin(25°) +0.04x7 +x, ~10

(x7 +400)

Fig 8, 9, 10 and 11 show values of the composite
magnetic anomaly by third- order moving average
method without and with noise and the second numerical
horizontal derivative values for non- noisy data and noisy
data using three successive window lengths (s =3,4and
5 spacing units), respectively. Also, Table 4 and 5, show
the calculated values of the depth for the least- squares
method and third- order moving average method with and
without noise by successive window lengths (s = 3,4 and
5 spacing units) and different values of the shape factor,

respectively.
Table 4, shows that the minimum variance values by

least- square method, obtained the q = 2 for noisy data
and the g =1for non- noisy data. So, the shape of the
magnetic anomaly by minimum variance value, is
somehow between thin sheet structure and horizontal
cylinder structure.
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Fig 9. Values of the composite magnetic anomaly
by third- order moving average method (TMAR)
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Fig 11. Values of the composite magnetic anomaly

Table 4. The values of the depth for composite magnetic anomaly by least- squares method for successive window lengths (s=3,4 and
5 spacing units) and different values of the shape factor. (K =50000nT ,z =10m and ¢=50°" (residual anomaly 1),

K =25000nT ,z =12m and @ = 75° (residual anomaly 2), K = 2000nT ,z =20m and @ = 25° (residual anomaly 3), random
noise=5%,)). (The least variance shown in bold)

Depth calculated for Depth calculated for Depth calculated for
window _ — —
length q=1 q=2 q=25
S (m) Without error With error Without error With error Without error With error
noise % noise % noise % noise % noise % noise %
3 7.29 27.1 7.47 25.3 9.44 5.6 9.36 6.4 6.63 33.7 6.04 39.6
4 7.05 29.5 7.27 27.3 10.33 3.3 9.64 3.6 7.01 29.9 7.37 26.3
5 6.68 33.2 6.02 39.8 10.74 7.4 10.59 5.9 7.07 29.3 6.41 35.9
LSEER) 7 29.93 6.92 30.8 10.17 17 9.86 1.37 6.9 30.97 6.61 33.93
value (m)
"a(’::‘z”)ce 0.0944 0.786 0.665 0.645 0.239 0.686

According to the Table 5, the minimum standard
deviation for the estimated depths was obtained based on
the shape factor for the non-noisy and noisy magnetic
data equals 2 and 2.1, respectively. As a result, the shape
of the magnetic anomaly by minimum standard value is

the horizontal cylinder structure. So, when we compare
Table 4 and 5 to estimate the shape and depth of the
buried structures, it can be seen that the third-order
moving average method has a good agreement for the
horizontal cylindrical structure.
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Table 5. The calculated values of the depth for composite magnetic anomaly by third- order moving average method for successive
window lengths (S=3,4 and 5 spacing units) and different values of the shape factor. (K =50000nT ,z =10m and @ =50°

(residual anomaly 1), K =25000nT ,z =12m and @ = 75° (residual anomaly 2), K =2000nT ,z =20m and @ = 25° (residual
anomaly 3), random noise=5%,)). (The closest depth to a given depth shown in bold)

_ _ _ Average value Standard deviation
shape factor S=3 ‘ S=4 ’ S=5 | m) m)
16 Without noise 9.26 8.93 8.85 9.01 0.217
i with noise 8.38 7.82 7.47 7.89 0.46
17 Without noise 9.41 9.24 9.1 9.25 0.155
i with noise 8.74 8.47 7.96 8.39 0.396
18 Without noise 9.57 9.43 9.37 9.46 0.103
: with noise 9.29 8.84 9.05 9.06 0.226
19 Without noise 9.73 9.65 9.6 9.66 0.066
: with noise 9.61 9.16 9.44 9.4 0.23
2 Without noise 9.81 9.77 9.74 9.77 0.0351
with noise 9.88 9.47 9.67 9.673 0.205
21 Without noise 9.96 10.08 9.85 9.963 0.115
) with noise 9.84 9.73 10.1 9.89 0.19
29 Without noise 10.17 10.35 10.27 10.26 0.09
) with noise 10.13 10.56 10.42 10.37 0.219
2.3 Without noise 10.32 10.67  10.48 10.49 0.175
with noise 10.36 10.83  10.66 10.62 0.238
24 Without noise 10.55 10.87  10.63 10.683 0.166
) with noise 10.75 11.14  10.83 10.91 0.206

4. Real data

4.1. Geological Survey of Iran (Geophysics Site)

In order to study geomagnetic studies, an anomaly have
been buried in the geophysical site of the Geological
Survey of Iran that the information’s of this anomaly are
shown in Table 6. It should be noted that, the inside and
outside of the buried anomaly is metal. Fig 12, show a
picture of anomaly on the geophysics site of the
geological survey of Iran. The magnetic measurements of
the study area were shown in Tehran geological map on
the scale of 1:100000 .Most of geological units in the
study area are, alluvial sediments and Fans (Fig. 13).
Also, Fig 14 shows the location of the study area (red
square) and access routes.

Table 6. The information’s of the magnetic anomaly

depth from deEg:J:,gm
shape of diameter of Earth's
Lengths of surface to
the . the surface to the
. the magnetic . center of
magnetic magnetic lower surface
anomaly the
anomaly anomaly of anomaly
anomaly
(ITI) (m)
B 18 0.56 2.06 178
Cylinder

4.2. Geophysical data acquisition and data processing

The magnetic surveying, with one device (GSM-19T
Proton Precession magnetometer) were measured in the
field. In this site, spacing between profiles (East- West)

and stations were selected as 0.5 m. Survey extent in
geophysics site is 8 m*8.5 m that profiles number and
stations number were measured 17 and 323, respectively.
Fig 15, shows the total magnetic intensity map and the
maximum and minimum values of the total magnetic
intensity equals 47048nT and43645nT , respectively. For
the correction of the magnetic data in this site, the
magnetic residual map, local magnetic residual map (by
remove a trend surface first- order) and reduced to
magnetic pole map was prepared that Fig 16, show the
reduced to magnetic pole map (according to the IGRF,
regional magnetic field=48451nT , inclination=54.66°
and declination=4.82°).

4.3. Application of the third- order moving average
method

To analyze the magnetic field by the third- order moving
average method, we introduce profile AA” with length
equal to 6.625 m on the local residual magnetic map
(Figl7). According to the equation (15), the third- order
moving average method with different window lengths
was determined and plotted. Fig 18 and Table. 7 show the
magnetic anomaly diagram and the calculated depth
values  for  successive  window lengths  (
s =0.1,0.125,0.15,0.175and 0.2 spacing units) for

profile  AA” using the third- order moving average
method, respectively.
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Fig 17. The profile AA” on the local residual magnetic map

According to the Table 7, the minimum standard
deviation for the estimated depths with different window
lengths was obtained based on the shape factor equal to 2
the factor which is a horizontal cylinder structure. So
based on the third- order moving average method, the
mean depth of the anomaly for magnetic data obtained
was 1.676 m.

4.4. Application of the least- square method

Using by equation 23, were determined and plotted
numerical second horizontal derivative anomalies for
successive window lengths (s =0.1,0.125,0.15,0.175
and 0.2 spacing units) for profile AA” by utilizing the
least- square method. Fig 19, shows the numerical second
horizontal derivative magnetic anomalies. Results of the
inversion with the least squares method for shape factor
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1, 2 and 2.5 were show in table 8. This method is based
on computing the variance of depths that are determined
from all residual magnetic anomalies for each value of
the shape factor with successive window length.

According to the Table 8, the minimum variance for the
estimated depths with successive window lengths

s =0.1,0.125,0.15,0.175 Was obtained based on the shape

factor for equal to 1, that show the shape of the anomaly
is dike. Also, the estimated depth for this model, is 0.11m.
While, according to prior information, the shape and
depth of the anomaly in the geophysics site, is horizontal
cylinder and 1.2m, respectively.

T T T T T T T
—e—5=0.1
10F | ——s=0.125m
——ss=0.15 m
—+—5=0.175m
sl [——s=0.2
P~
£
o 0O
<
=
'_
5
10+
| | | | | | | |
25 -2 -15 -1 0 05 1 15 2

Distance {m)
Fig 18. The magnetic anomaly by third- order moving average method (TMAR)
(profile AA")

Second derivative anomaly (nT/km2)

Distance (km)
Fig 19. The numerical second horizontal derivative magnetic anomalies (profile AA")

Table 7. The calculated shape factor and depth values for successive window lengths (s =0.1,0.125,0.15,0.175 and 0.2 spacing
units) for profile AA” by utilizing the third- order moving average method. (The closest depth to the actual depth is shown in bold)

shape s=01 $=0.125 $=0.15 $=0.175 $=02 U STEITEER
factor (m) deviation (m)
1.7 1.82 1.54 1.49 1.45 1.6 1.58 0.1454
1.8 1.84 1.56 151 1.49 1.64 1.608 0.1420
1.9 1.86 1.59 1.53 151 1.67 1.632 0.1418
2 19 1.63 1.577 1.557 1.72 1.676 0.1398
21 191 1.64 1.58 1.56 1.73 1.684 0.1426
2.2 1.93 1.65 1.6 1.58 1.77 1.706 0.1454
2.3 1.95 1.68 1.63 1.6 1.8 1.732 0.1438
2.4 1.97 1.7 1.64 1.63 1.81 1.75 0.1423
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Table 8. The values of the depth for magnetic anomaly by least- squares method for profile AA” with successive window lengths
(s =0.1,0.125,0.15,0.175and 0.2 spacing units) and different values of the shape factor. (The least variance shown in bold)

221

Depth calculated for Depth calculated for Depth calculated for Depth calculated for
window q=1 q=2 g=25 q=25
length S (m) Dike model Horizontal cylinder Sphere Sphere
(all fields) (all fields) (vertical field) (horizontal field)
0.1 0.12 1.83 0.32 1.83
0.125 0.11 0.4 0.31 1.56
0.15 0.1 0.53 1.8 1.61
0.175 0.11 1.45 2 1.71
0.2 0.11 1.8 2.4 1.91
Average
vl (?n) 0.11 1.2 111 1.724
variance (m?) 0.00004 0.382 0.774 0.0172

5. Conclusions

The results showed that third- order moving average
method, gives more accurate response in the absence of
noise by the horizontal cylinder model for synthetic data
and also shows a 2.3% error margin in the combined
shape (horizontal cylinder, sphere (vertical field) and thin
sheet models). Also, in the presence of noise for
horizontal cylinder model and combination of horizontal
cylinder, sphere (vertical field) and thin sheet models,
errors were calculated 1.87% and 1.1%, respectively. But
result of the least squares methods, can be shown that in
the absence of noise by the horizontal cylinder model and
combined shape for synthetic data, were errors calculated
3.63% and 29.93%, respectively. Also, this value with
noise data, were obtained 34.06% and 1.37% error,
respectively. The third- order moving average and least
square methods has shown that for real magnetic data
with 5% and 90.8% error, respectively (According to
table 6).

Comparing the third- order moving average and least
square methods defined that the third- order moving
average is a powerful tool for estimating of shape and
depth of the synthetic models and real data in the
presence and absence of noise.
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