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Abstract 
In geochemical anomaly classification, different mathematical-statistical models have been applied. The final classified map 

provides only one scenario. This model is not certain enough since every model provides several thresholds which are almost different 

from each other meaning dissimilarity and spatial uncertainty of the classified maps. Spatial uncertainty of the models could be 

quantified considering the difference between the associated geochemical scenarios simulated (called: ‘realizations’) by geostatistical 

simulation (GS) methods. However, the main problem with GS methods is that these methods are significantly time-consuming, and 

CPU- and memory-demanding. To improve such problems, in this research, the method of “scaling and projecting sample-locations 

(SPS)” is developed. Based on the SPS theory, first of all, the whole sample-locations were projected (centralized) and scaled into a 

box coordinated between (0,0) to (150,0) and (0,0) to (0,100), for example (they can be equal though), with the cell-size of 1 m2. 

Therefore, the time consumed and the memory demanded to generate a large number of realizations, for example, 1000 realizations 

based on the non-scaled/non-projected (NS/NP) and scaled/projected (S/P) sample locations per case-study were quantified. In this 

study, the turning bands simulation (TBSIM) were applied to geochemical datasets of three different case studies to take the area scales, 

regularity/irregularity and density of the samples into account. The comparison between NS/NP and S/P results statistically 

demonstrated the same results, however, the process and outputs of the S/P samples took a significantly shorter time and consumed a 

remarkably lower computer-memory. Therefore, experts are able to easily run this algorithm using any normal computer. 
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1. Introduction 
One of the most significant steps of geochemical 

exploration is recognition and classification of the 

geochemical anomalies, but as statistically certain as 

possible. One of the reasons why the certainty of the 

geochemical anomaly models generated in mining 

industry is quite important is the financial requirements. 

Considering this point, experts need to increase the 

certainty of the outputs (i.e., geochemical models) 

resulting in reduction of the mining and financial risks. 

Hence, to identify and classify the univariate 

geochemical anomalies, many mathematical/statistical 

methods have been applying such as traditional statistical 

(TS) methods (cf. Tennant and White 1959; Hawkes and 

Webb 1962; Sinclair 1974, 1983, 1991; Govett et al. 

1975; Miesch 1981; Aucott 1987; Stanley and Sinclair 

1989; Sinclair 1991; Grunsky et al. 1992; Harris et al. 

1997, 1999; Kitanidis 1999; Chilès and Delfiner 1999, 

2012; Davis, 2002; Mallet 2002; Ji et al. 2005), 

exploratory data analysis (EDA) (Tukey 1977), weights 

of evidence (WofE) (Good 1950; Bonham-Carter et al. 

1988, 1989; Agterberg et al. 1990), and fractal/multi-

fractal and singularity models (cf. Mandelbrot 1983;  

Agterberg et al. 1990; Agterberg 1994, 2001; Cheng et al. 

1994, 1999; Cheng 2007, 2012, 2015; Chen et al. 2007; 

Grunsky 2007, 2010; Zuo and Cheng 2008; Carranza  
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2009; Cheng and Agterberg 2009; Zuo et al. 2009, 2013; 

Carranza 2010a,b; Afzal et al. 2010, 2011, 2013, 2014; 

Zhao et al. 2011; Zuo 2011; Nazarpour et al. 2015a,b; 

Khalajmasoumi et al. 2015, 2017; Sadeghi et al. 2012a,b, 

2015, 2016, 2020; Wang et al. 2012; Xiao et al. 2012; 

Daneshvar Saein et al. 2013; Sadeghi et al. 2014; Sadeghi 

and Carranza 2015; Wang and Zuo 2015; Momeni et al. 

2016; Sanchez and Sadeghi 2018; Agterberg 2018; 

Madani and Sadeghi 2019, Sadeghi 2020; Aliyari et al. 

2020; Kouhestani et al. 2020; Solatani et al. 2020; 

Shamseddin Meigooni et al. 2020; Hajsadeghi et al. 2020; 

Pourgholam et al. 2021; Sadeghi and Cohen 2021). 

However, the outputs of all these methods are only 

individual geochemical anomaly maps. If the outputs are 

generated using different methods such as the above-

mentioned models, it turns out that none of the individual 

outputs are quite similar and they have differences in 

pixel values and thresholds. Simply, we can say even one 

pixel-difference could reflect a 100 m2 or 1000 m2 

difference, for instance, considering the map scale. This 

fact demonstrates the spatial uncertainty of the individual 

geochemical anomaly models generated by each model. 

The aforementioned spatial uncertainty has significant 

sources (cf. Mann 1993; An et al. 1994; Klir and Yuan 

1995; Fisher 1999; Costa and Koppe 1999; Bárdossy and 

Fodor 2001, 2004; Walker et al. 2003; Kreuzer et al. 

2008; McCuaig et al. 2007, 2009, 2010; Kiureghian and 

Ditlevsen 2009; Singer 2010; Singer and Menzie 2010; 

Caers 2011; Sheidt et al. 2018; Sadeghi 2020) such as 
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sampling density, geochemical data analysis errors like 

interpolation errors, in addition to inappropriate 

geological and geochemical interpretations. In order to 

quantify the spatial uncertainty of geochemical anomalies 

recognized, geostatistical simulation (GS) methods, as 

one of the most robust methods, have been applying to 

generate more than one realization (i.e., geochemical 

anomaly maps in our field) and quantify the dissimilarity 

between them. The aim of this paper is not spatial 

uncertainty quantification, but one step ahead, i.e., 

simplification of the simulations to reduce the time and 

memory required to simulate a large of scenarios, known 

as realizations. Therefore, more realizations in a quite 

shorter time with smaller pixel-sizes (i.e., 1×1 m2 instead 

of 100×100 m2, for example) could be generated. 

In summary, because the spatial GS methods, have been 

developed mainly to generate geochemical anomalies / 

concentrations and realizations, demonstrating the 

uncertainty of the phenomena (Caers 2011; Sheidt et al. 

2018; Sadeghi 2020, 2021), their process would be 

remarkably time-consuming and memory demanding. 

Therefore, we need to look for a simpler shortcut to 

reduce the time and memory required. Considering this 

aim, in this paper “the scaling and projecting sample-

locations (SPS)” method is proposed.

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Sample locations in the study areas: a) Sweden till sample locations collected from almost 75% of the country area in a regular 

network, b) Moalleman stream sediment geochemical samples collected in a regular network, and c) Khooshab litho-geochemical 

samples collected in an irregular network. 

 

2. Applied datasets 
In this study, three different datasets have been studied to 

check if the SPS method is robust enough in different 

types of data with various densities, and regular and 

irregular sampling networks. The SPS method has been 

applied to the Cu element concentrations in all the three 

case studies although the method could be applied in 

multivariate analyses as well. However, in this research 

the focus is on the method, not the geochemical 

interpretations. The first dataset applied in this study has 

been provided by Geological Survey of Sweden (SGU) 

(scale: 1:100,000). The dataset includes the till samples  

 

 

collected from 75% of the whole country of Sweden, in a 

regular sampling network (Fig 1a). 2578 till samples have 

been collected by SGU, and the samples have been 

analyzed with the confidence level of 95% at the same 

laboratory. The density of the sampling is one sample per 

150 km2 with the distance of approximately 12.5 km 

between each two samples (Andersson et al. 2014). 

Although 66 elements had been analyzed using 

inductively coupled plasma mass spectrometry (ICP-

MS), because in this research, the type of the elements is 

not the main issue, only the scale and sample locations 

have been taken into consideration. 

a b c 
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The other datasets, which are provided by Geological 

Survey of Iran, are from the Moalleman and Khooshab 

1:100,000 geological sheets. The former area is located 

in the Semnan Province (Central Iran), near to the 

Damqan city. In this area, 819 stream sediment 

geochemical samples have been collected in a regular 

sampling network, and Symmetrical sampling grid is 

based on taking a sample form a cell with 4 km2 area 

(Fig1b). Around 70 elements have been analyzed using 

ICP-MS, although as mentioned above, we mainly focus 

on the sample locations in this study. The latter dataset 

belongs to the Khooshab area, which is situated in the 

North Khorasan Province (NE Iran). In this area, 230 

litho-geochemical samples have been collected in an 

irregular sampling network (Fig 1c). Using these 

samples, 50 elements have been analyzed by ICP-MS. 

The maps have no coordinates because the method 

developed in this research is appropriate for spatial 

uncertainty quantification which could be calculated 

independently without using any coordinates, and only 

based on the dissimilarity of the realizations (Scheidt and 

Caers 2007; Scheidt et al. 2018). 

 

3. The methodology of SPS 
One of the advantages of the simulation methods is that 

they do not need the rasterized (regular or Cartesian) 

grids. In other words, simulation algorithms apply 

simulation on irregular grids such as point-sets. So, the 

conditioning data provided may or may not be on the 

simulation grid. If we apply the simulation algorithms on 

point-sets, it results in a performance penalty as the 

search for neighboring data, which is remarkably more 

important than on a Cartesian grid. It means, if the 

simulation grid is Cartesian, these simulation methods 

can relocate the conditioning data to the nearest grid 

node, then the simulation process time would be 

significantly decreased (Remy et al. 2009).  

Given the fact discussed above, in the SPS method, we 

need to project the whole samples and their locations 

considering the origin coordinates (Fig 2). Then, it would 

be easier to calculate the distance between the 

realizations to quantify their statistical dissimilarity and 

after that the spatial uncertainty. It results in saving time 

and memory demanded for the geostatistical simulations. 

Now we need to transfer/standardize the whole sample 

locations to a smaller box within the coordinates such as 

(0,0) to (150,0), (0,0) to (0,100) and (150,100) (Fig 3 and 

Table 1). The maximum ranges could be anything small 

even the same. To do so, the general equations of 1 and 2 

are proposed and applied to the dataset to project the 

available data into the new box. 

Xnew =
Xmax−Xmin

xmax−xmin
× (Xold − xmin) + Xmin     (1) 

where Xmax=150 and Xmin=0; xmax and xmin are the 

maximum and minimum values of the whole initial 

values of the X coordinate, and Xold depicts each initial 

value of the X coordinate that is going to be scaled and 

transferred to the new coordinate Xnew. 

Ynew =
Ymax−Ymin

ymax−ymin
× (Yold − ymin) + Ymin     (2) 

where Ymax=100 and Ymin=0; xmax and ymin are the 

maximum and minimum values of the whole initial 

values of the Y coordinate, and Yold represents each initial 

value of the Y coordinate that is going to be scaled and 

transferred to the new coordinate, which is Ynew. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 2. Schematic model of the sample locations. The model 

demonstrates how the real study area is scaled (i.e., 1 m2 pixel 

size) and projected based on the SPS theory. 
 

 

4. Discussion 
In geochemical data, the data distributions are mostly 

amorphous (i.e., with high entropy), so (semi)variogram-

based methods (e.g., kriging interpolation and variogram-

based simulations) are mainly applied to 

generate/simulate realizations (cf. Chilès and Delfiner 

1999, 2012; Remy et al. 2009). Given this point, in this 

study, to investigate that if the results of the SPS method 

are certain enough, both non-scaled/non-projected 

(NS/NP) and scaled/projected (S/P) outputs would be 

taken into account comparing their semi-variograms. 

The semi-variograms demonstrate the similarity (i.e., 

variance) of the data points (y-axis) at the defined 

distances between each two points (x-axis). It means the 

variograms are the simplest but accurate statistical tools 

to indicate the relation between the uncertainty (i.e., 

dissimilarity of the data points’ simulated models) and 

the point distances in spatial analysis of the data samples 

(e.g., geochemical data samples) (Chilès and Delfiner 

1999, 2012). 

Considering the variograms generated based on the 

NS/NP and S/P data samples of the case study areas, the 

structures and specifically nugget effects and sills of the 

NS/NP and S/P data samples must be compared together 

to recognize if they are similar or close enough.

 

Y 
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Fig 3. Projected and scaled sample locations: a) Sweden till samples, b) Moalleman stream sediment geochemical samples, and c) 

Khooshab litho-geochemical samples. 

 
Table 1. The details of the NS/NP and S/P models of all the case studies. 

 NS/NP S/P 

Sweden Moalleman Khooshab Sweden Moalleman Khooshab 

Max X-Coordinate 910838 317562 287908 150 150 150 

Min X-Coordinate 278302 272822 265361 0 0 0 

Max Y-Coordinate 7659696 3930649 3653986 100 100 100 

Min Y-Coordinate 6140268 3886772 3599116 0 0 0 

Length (X)= Max X-Coordinate - Min X-

Coordinate 

632536 44740 22547 150 150 150 

Length (Y)= Max Y-Coordinate - Min Y-

Coordinate 

1519428 43877 54870 100 100 100 

Cell Size 100 100 100 1 1 1 

Number of Cells X= LX/Cell Size 6325.36~

6326 

447.4~448 225.47~22

6 

150~15

1 

150~151 150~151 

Number of Cells Y= LY/Cell Size 15194.28

~15195 

438.77~440 548.7~550 100~10

1 

100~101 100~101 

 

 

c 

a d 
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Table 2. Details of the semi-variograms generated based on the NS/NP and S/P data samples of Cu in the case studies. 

NS/NP S/P 

 Sweden Moalleman Khooshab  Sweden Moalleman Khooshab 

Number of lags 50 25 30 Number of lags 100 10 15 

Lag Separation 10000 1400 800 Lag Separation 1 14 8 

Lag Tolerance 5000 700 400 Lag Tolerance 0.5 7 4 

Nugget effect 0.42 0.17 0.11 Nugget effect 0.42 0.17 0.11 

Sill 1 0.58 0.83 0.07 Sill 1 0.58 0.83 0.07 

Max 1 255000 25550 2640 Max 1 25 72.8 9.6 

Sill 2   0.82 Sill 2   0.82 

Max 2   24000 Max 2   58.8 

 

Table 3. Details of the computer applied in this research. 

Brand HP EliteDesk 800 G3 [1ME80PA] SFF Desktop PC 

Operating System Windows 10 Pro 64 

Processor Speed 3.4 GHz 

Processor Family 7th Generation Intel® Core™ i5 processor 

Processor Intel® Core™ i5-7500 Processor (3.4 GHz, up to 3.8 GHz with Intel Turbo Boost, 6 MB cache, 4 

cores) 

Graphics Intel® HD Graphics 630 

Memory Slots 4 DIMM 

Memory (RAM) 8 GB DDR4-2400 SDRAM (1 x 8 GB) 

Standard Memory Note Transfer rates up to 2400 MT/s 

Internal Storage Type 256 GB SATA SSD Storage 

 

Table 4. Time and memory consumed to generate 1000 realizations based on the Cu NS/NP and S/P data samples in the study areas. 

 NS/NP S/P 

Time (s) Memory (KB) Time (s) Memory (KB) 

Sweden 1,834,333.659,341 

(~21 days) 

844,929,936 391.318,618 

(~6.5 min) 

134,057 

Moalleman area 4,916.846,453 1,925,193 369.816,554 148,951 

Khooshab area 5,942.991,925 971,216 744.585,849 119,164 

 

 

 

Table 2 and Figs. 4 to 6 demonstrate all the details 

obtained from the variograms of the NS/NP and S/P data 

sample per study area comparing to each other. In 

Sweden case study, based on the Figure 4 and its details 

(Table 2), the NS/NP and S/P data samples have spherical 

variograms including one structure and similar nugget 

effects of 0.42 and sills of 0.58. In addition, in the 

Moalleman area, both NS/NP and S/P geochemical data 

samples have also provided spherical variograms with 

one structure and the same nugget effects of 0.17 and sills 

of 0.83 (Table 2 and Fig 5). However, the NS/NP and S/P 

geochemical data samples of Cu in Khooshab provide 

spherical variograms with two structures. In this case, the 

semi-variograms of both NS/NP and S/P geochemical 
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data samples have also the same nuggets and sills (Table 

2 and Fig 6). Based on the variograms compared above, 

we can come up with this scenario that the common 

method of using the initial data samples for simulation 

and spatial uncertainty quantification of geochemical 

data could be replaced by the SPS method and could 

provide us with the same results and accuracy, but faster 

and by demanding less memory. For example, in this 

research, the Turning Bands Simulation (TBSIM) 

method, as one of the fastest and most accurate 

simulation methods (Chentsov 1957; Emery 2008b; 

Afzal et al. 2014; Emery and Lantuéjoul 2006; Paravarzar 

et al. 2015; Sadeghi et al. 2015; Sadeghi computer used 

for this research is a HP EliteDesk 800 G3 [1ME80PA] 

SFF Desktop PC (Table 3). 

2020), was applied on the NS/NP and S/P formats of all 

the three datasets to generate 1000 realizations. The 

Based on Table 4, the time and memory consumed to 

generate the realizations based on the S/P data samples 

are significantly fewer than those of the NS/NP data 

sample realizations, no matter the datasets have regular 

or irregular sampling networks and the study areas are 

vast or limited. 

 

 

 

 
Fig 4. Semi-variograms of Sweden samples, demonstrating the 

specific structures: a) NS/NP and b) S/P Cu samples. 

 

 
Fig 5. Semi-variograms of Moalleman samples: a) NS/NP and 

b) S/P Cu samples. 

 

 

 
Fig 6. Semi-variograms of Khooshab samples: a) NS/NP and 

b) S/P Cu samples. 

 

 

 1 

(a) (b) 
 2 

Distance Distance 

  
(a)  (b) 

 1 

Distance Distance 

  
(a)  (b) 

 1 

Distance Distance 

  

(a)  (b) 

 1 

Distance Distance 

  

(a)  (b) 

 1 

Distance Distance 

a 

b 

a 

b 



Sadeghi / Iranian Journal of Earth Sciences, Vol. 13, No. 1, 2021, 21-30. 

 

 

27 

5. Conclusions 
In geostatistical simulations, the common and significant 

problem is the time required for the simulation process 

and the high memory demanded for complicated 

calculations during the simulation procedures. So, if a 

solution comes up with a simpler process but the same 

accuracy, it would be helpful to shorten the time and 

memory needed, which results in a faster simulation with 

even higher number of realizations. Therefore, even in 

the case of quantification of the uncertainty of the 

geochemical anomalies modelled, this solution could 

significantly accelerate the whole process. Considering 

the mentioned summary, the SPS method was developed 

in this research. SPS simplifies the spatial distribution of 

the samples mainly in terms of projecting sample 

locations considering the distance from the origin 

coordinates. In addition, because SPS scales the sample 

locations to a very smaller area (called ‘box’), the cell-

sizes of the S/P sample locations would be 1 m2, which is 

remarkably smaller and statistically more accurate than 

those of NS/NP sample locations. 

Based on the results, the variograms of the NS/NP and 

S/P sample locations are similar in terms of their types, 

number of the structures, nugget effects and sills. It 

obviously demonstrates that the outputs of the NS/NP and 

S/P sample locations are statistically similar. 

Considering the points mentioned above, the calculated 

time-consumed and consequently the memory demanded, 

we can apply SPS to different types of datasets, univariate 

and multivariate analyses, with either regular or irregular 

sampling networks in different scales, and consequently 

accelerate the simulation process, but keep the same 

accuracy. In addition, due to the lower memory required, 

the SPS outputs are readable/editable easily by any 

software to be visualized. 

For the future studies, the author suggests developing and 

testing the SPS model in various conditions in 2D and 

3D, e.g., in case of having anisotropy in regions, or 

having any block discretization. 

 

References 
Afzal P, Alhoseini SH, Tokhmechi B, Kaveh Ahangaran 

D, Yasrebi AB, Madani N, Wetherelt A (2014) 

Outlining of high quality coking coal by concentration–

volume fractal model and turning bands simulation in 

East-Parvadeh coal deposit, Central Iran, International 

Journal of Coal Geology 127: 88–99. 

Afzal P, Fadakar Alghalandis Y, Khakzad A, 

Moarefvand P & Rashidnejad Omran N (2011) 

Delineation of mineralization zones in porphyry Cu 

deposits by fractal concentration–volume modelling, 

Journal of Geochemical Exploration 108: 220–232. 

Afzal P, Harati H, Fadakar Alghalandis Y, Yasrebi AB 

(2013) Application of spectrum-area fractal model to 

identify of geochemical anomalies based on soil data in 

Kahang porphyry-type Cu deposit, Iran, Chemie der 

Erde 73: 533–543. 

Afzal P, Khakzad, A, Moarefvand P, Rashidnejad Omran 

N, Esfandiari B, Fadakar Alghalandis, Y (2010) 

Geochemical anomaly separation by multifractal 

modeling in Kahang (GorGor) porphyry system, 

Central Iran, Journal of Geochemical Exploration 104: 

34–46. 

Afzal P, Zia Zarifi A, Sadeghi B (2013) Separation of 

geochemical anomalies using factor analysis and 

concentration-number (CN) fractal modeling based on 

stream sediments data in Esfordi 1: 100000 Sheet, 

Central Iran, Iranian Journal of Earth Sciences 5 (2): 

100–110. 

Agterberg FP (1994) Fractal, multifractals, and change of 

support. In: R. Dimitrakopoulus (Ed.), Geostatistics for 

the Next Century, Kluwer, Dordrecht, 223–234. 

Agterberg FP (2001) Multifractal simulation of 

geochemical map patterns. In: D.F. Merriam, J.C. Davis 

(Eds.), Geologic Modeling and Simulation: 

Sedimentary Systems, Kluwer-Plenum Publishers, 

New York, 327–346. 

Agterberg FP (2018) Can multifractals be used for 

mineral resource appraisal?, Journal of Geochemical 

Exploration 189: 54–63. 

Agterberg FP, Bonham-Carter GF, Wright DF (1990) 

Statistical pattern integration for mineral exploration. 

In: Gaal G, Merriam DF (eds) Computer applications in 

resource exploration and assessment for minerals and 

petroleum. Pergamon, Elmsford, 1–21. 

Aliyari F, Afzal P, Lotfi M, Shokri S, Feizi H (2020) 

Delineation of geochemical haloes using the developed 

zonality index using multivariate and fractal analysis in 

the Cu-Mo porphyry deposits, Applied Geochemistry 

121: 104694. 

An P, Moon, WM, Bonham-Carter GF (1994) 

Uncertainty management in integration of exploration 

data using the belief functions, Non-renewable 

Resources 3: 60–71. 

Andersson M, Carlsson M, Ladenberger A, Morris G, 

Sadeghi M, Uhlbäck J (2014) Geochemical Atlas of 

Sweden, Geological Survey of Sweden (SGU), 

Uppsala. 

Aucott JW (1987) Workshop 5: geochemical anomaly 

recognition, Journal of Geochemical Exploration 29: 

375–376. 

Bárdossy G, Fodor J (2001) Traditional and new ways to 

handle uncertainty in geology, Natural Resources 

Research 10(3): 179–187. 

Bárdossy G, Fodor J (2004) Evaluation of Uncertainties 

and Risks in Geology. Springer Verlag. 

Bonham-Carter GF, Agterberg FP, Wright DF (1988) 

Integration of geological datasets for gold exploration 

in Nova Scotia, Photogrammetric Engineering & 

Remote Sensing 54: 1585–1592. 

Bonham-Carter GF, Agterberg FP, Wright DF (1989) 

Weights of evidence modeling: a new approach to 

mapping mineral potential. In: Agterberg, F.P., 

Bonham-Carter, G.F. (eds) Statistical applications in 



Sadeghi / Iranian Journal of Earth Sciences, Vol. 13, No. 1, 2021, 21-30. 

 

 

28 

the Earth sciences: geological survey, Canada paper 89 

(9): 171–183. 

Caers J (2011) Modeling uncertainty in earth sciences. 

Wiley, Chichester. 

Carranza EJM (2009) Geochemical anomaly and mineral 

prospectivity mapping in GIS. Handbook of 

Exploration and Environmental Geochemistry. 11. 

Elsevier, Amsterdam. 

Chen Z, Cheng Q, Chen J, Xie S (2007) A novel iterative 

approach for mapping local singularities from 

geochemical data, Nonlinear Processes in Geophysics 

14: 317–324. 

Cheng Q (2007) Mapping singularities with stream 

sediment geochemical data for prediction of 

undiscovered mineral deposits in Gejiu, Yunnan 

Province, China, Ore Geology Reviews 32: 314–324. 

Cheng Q (2012) Singularity theory and methods for 

mapping geochemical anomalies caused by buried 

sources and for predicting undiscovered mineral 

deposits in covered areas, Journal of Geochemical 

Exploration 122: 55–70. 

Cheng Q (2015) Multifractal interpolation method for 

spatial data with singularities, The Journal of the 

Southern African Institute of Mining and Metallurgy 

115: 235–240. 

Cheng Q, Agterberg FP, Ballantyne SB (1994) The 

separation of geochemical anomalies from background 

by fractal methods, Journal of Geochemical 

Exploration 51: 109–130. 

Cheng Q, Xu Y, Grunsky E (1999) Integrated spatial and 

spectral analysis for geochemical anomaly separation. 

In: Lippard, S.J., Naess, A. & Sinding-Larsen, R. 

(Eds.), Proc. of the Conference of the International 

Association for Mathematical Geology, Trondheim, 

Norway 1: 87–92. 

Chentsov NN (1957) Levy Brownian motion for several 

parameters and generalized white noise, Theory of 

Probability and its Applications 2(2): 265–266. 

Chilès JP, Delfiner P (2012) Geostatistics: Modeling 

Spatial Uncertainty. John Wiley & Sons, Inc (Second 

Edition). 

Chilès JP, Delfiner P (1999) Geostatistics: Modeling 

Spatial Uncertainty. John Wiley & Sons, Inc. 

Costa JF, Koppe JC (1999) Assessing Uncertainty 

Associated with the Delineation of Geochemical 

Anomalies, Natural Resources Research 8(1): 59–67. 

Daneshvar Saein LD, Rasa I, Omran NR, Moarefvand P, 

Afzal P, Sadeghi B (2013) Application of Number-Size 

(NS) Fractal Model to Quantify of the Vertical 

Distributions of Cu and Mo in Nowchun Porphyry 

Deposit (Kerman, Se Iran), Archives of Mining Sciences 

58 (1): 89–105. 

Davis JC (2002) Statistics and data analysis in geology, 

third edition. John Wiley & Sons, Inc. 

Emery X (2008) A turning bands program for conditional 

co-simulation of cross-correlated Gaussian random 

fields, Computers and Geosciences 34(12): 1850–1862. 

Emery X, Lantuéjoul C (2006) TBSIM: A computer 

program for conditional simulation of three-

dimensional Gaussian random fields via the turning 

bands method, Computers and Geosciences 32: 1615–

1628. 

Fisher PF (1999) Models of uncertainty in spatial data. 

In: Longley, P.A., Goodchild, M.F., Maguire, D.J., 

Rhind, D.W. (eds). Geographical information systems: 

principles, techniques management and applications. 

Wiley, New York. 

Good IJ (1950) Probability and the weighing of evidence. 

Griffin, London, 119 p. 

Govett GJS, Goodfellow WD, Chapman A, Chork CY 

(1975) Exploration geochemistry-distribution of 

elements and recognition of anomalies, Mathematical 

Geology 7(5–6): 415–446. 

Grunsky EC (2007) The interpretation of regional 

geochemical survey data, Advances in Regional-Scale 

Geochemical Methods 8: 139–182. 

Grunsky EC (2010) The interpretation of regional 

geochemical survey data, Geochemistry: Exploration, 

Environment, Analysis 10: 27–74. 

Grunsky EC, Easton RM, Thurston PC, Jensen LS (1992) 

Characterization and statistical classification of 

Archean volcanic rocks of the Superior Province using 

major element geochemistry in geology of Ontario. 

Ontario Geological Survey 4(2): 1347–1438. 

Hajsadeghi S, Asghari O, Mirmohammadi M, Afzal P, 

Meshkani SA (2020) Uncertainty-Volume fractal 

model for delineating copper mineralization controllers 

using geostatistical simulation in Nohkouhi 

volcanogenic massive sulfide deposit, Central Iran, 

Bulletin of the Mineral Research and Exploration 161: 

1–11. 

Harris JR, Grunsky EC, Wilkinson L (1997) 

Developments in the effective use and interpretation of 

lithogeochemistry in regional exploration programs: 

application of GIS technology. In: Gubins, A.G. (Ed.), 

Proceedings of Exploration 97: 4th Decennial Int. Conf. 

Mineral Exploration, Toronto, 285–292. 

Harris JR, Wilkinson L, Grunsky E, Heather K, Ayer J 

(1999) Techniques for analysis and visualization of 

lithogeochemical data with applications to the Swayze 

greenstone belt, Ontario, Journal of Geochemical 

Exploration 67(1–3): 301–334. 

Hawkes HE, Webb JS (1962) Geochemistry in mineral 

exploration. Harper and Row, New York. 

Ji H, Sun F, Chen M, Hu D, Shi Y, Pan X (2005) 

Geochemical evaluation for uncovered gold-bearing 

structures in Jiaodong area. J. Jilin Univ. (Earth Science 

Education) 35(3): 308–312 (in Chinese, with English 

abstract). 

Khalajmasoumi M, Lotfi M, Memar Kochebagh A, 

Khakzad A, Afzal P, Sadeghi B, Ziazarifi A (2015) 

Delineation of the radioactive elements based on the 

radiometric data using concentration-area fractal 

method in the Saghand area, Central Iran, Arabian 

Journal of Geosciences 8: 6047–6062. 

http://www.sciencedirect.com/science/article/pii/S0375674299000771
http://www.sciencedirect.com/science/article/pii/S0375674299000771
http://www.sciencedirect.com/science/article/pii/S0375674299000771
http://www.sciencedirect.com/science/article/pii/S0375674299000771
http://www.sciencedirect.com/science/article/pii/S0375674299000771


Sadeghi / Iranian Journal of Earth Sciences, Vol. 13, No. 1, 2021, 21-30. 

 

 

29 

Khalajmasoumi M, Sadeghi B, Carranza EJM, Sadeghi 

M (2017) Geochemical anomaly recognition of rare 

earth elements using multi-fractal modeling correlated 

with geological features, Central Iran, Journal of 

Geochemical Exploration, Special issue of “Critical 

metals in the Middle East and North Africa - 
Geochemistry: Exploration and Analysis” 181: 318-

332. 

Kitanidis PK (1999) Introduction to geostatistics: 

Applications to hydrogeology. Cambridge University 

Press. 

Kiureghian AD, Ditlevsen O (2009) Aleatory or 

epistemic? Does it matter? Structural Safety 31(2): 

105–112. 

Klir GJ, Yuan B (1995) Fuzzy sets and fuzzy logic: 

theory and applications. Prentice-Hall Englewood 

Cliffs. 

Kouhestani H, Ghaderi M, Afzal P, Zaw K (2020) 

Classification of pyrite types using fractal and stepwise 

factor analyses in the Chah Zard gold-silver epithermal 

deposit, central Iran, Geochemistry: Exploration, 

Environment, Analysis 20: 496–508. 

Kreuzer OP, Etheridge MA, Guj P, Maureen E, 

McMahon ME, Holden DJ (2008) Linking mineral 

deposit models to quantitative risk analysis and 

decision-making in exploration, Economic Geology 

103: 829–850. 

Madani N, Sadeghi B (2019) Capturing Hidden 

Geochemical Anomalies in Scarce Data by Fractal 

Analysis and Stochastic Modeling, Nat Resour Res 

28(3): 833–847. 

Mallet JL (2002) Geomodeling. Oxford University Press. 

Mandelbrot BB (1983. The Fractal Geometry of Nature. 

W.H. Freeman, San Francisco, CA. Updated and 

Augmented Edition. 

Mann CJ (1993) Uncertainty in Geology: Computers in 

Geology—25 years of Progress. Oxford University 

Press, New York, 241–254. 

McCuaig TC, Beresford S, Hronsky J (2010) Translating 

the mineral systems approach into an effective targeting 

system, Ore Geology Reviews 38: 128–138. 

McCuaig TC, Kreuzer OP, Brown WM (2007) Fooling 

ourselves—Dealing with model uncertainty in a 

mineral systems approach to exploration. Proceedings 

of the Ninth Biennial SGA Meeting, Dublin. 

McCuaig TC, Porwal A, Gessner K (2009) Fooling 

ourselves: recognizing uncertainty and bias in 

exploration targeting, Centre Explor Target Q News 2: 

1–8. 

Miesch AT (1981) Estimation of the geochemical 

threshold and its statistical significance, Journal of 

Geochemical Exploration 16: 49–76. 

Momeni S, Shahrokhi SV, Afzal P, Sadeghi B, 

Farhadinejad T, Mohammad Nikzad R (2016) 

Delineation of the Cr mineralization based on the 

stream sediment data utilizing fractal modeling and 

factor analysis in the Khoy 1: 100,000 sheet, NW Iran, 

Maden Tetkik ve Arama Dergisi 152: 143–151. 

Nazarpour A, Omran NR, Rostami Paydar G, Sadeghi B, 

Matroud F, Mehrabi Nejad A (2015a) Application of 

classical statistics, logratio transformation and 

multifractal approaches to delineate geochemical 

anomalies in the Zarshuran gold district, NW Iran, 

Chemie der Erde 75: 117–132. 

Nazarpour A, Sadeghi B, Sadeghi M (2015b) Application 

of fractal models to characterization and evaluation of 

vertical distribution of geochemical data in Zarshuran 

gold deposit, NW Iran, Journal of Geochemical 

Exploration 148: 60–70. 

Paravarzar S, Emery X, Madani N (2015) Comparing 

sequential Gaussian and turning bands algorithms for 

cosimulating grades in multi-element deposits, 

Comptes Rendus Geoscience 347: 84–93. 

Park K, Caers J (2007) History Matching in Low-

Dimensional ConnectivityVector Space, SCRF report 

20, Stanford University. 

Pourgholam MM, Afzal P, Yasrebi AB, Gholinejad M, 

Wetherelt A (2021) Detection of geochemical 

anomalies using a fractal-wavelet model in Ipack area, 

Central Iran, Journal of Geochemical Exploration 220: 

106675. 

Remy N, Boucher A, Wu J (2009) Applied geostatistics 

with SGeMS (A User’s Guide). Cambridge University 

Press, New York. P. 264. 

Sadeghi B (2020a). Quantification of Uncertainty in 

Geochemical Anomalies in Mineral Exploration. PhD 

thesis, University of New South Wales. 

Sadeghi B (2020b) Concentration-concentration fractal 

modelling: a novel insight for correlation between 

variables in response to changes in the underlying 

controlling geological-geochemical processes, Ore 

Geology Reviews 128 (In Press). 

Sadeghi B (2021) Evaluation of geochemical anomaly 

classification models based on the relevant 

uncertainties and error propagation per class to select 

the most robust model(s) for the follow-up exploration, 

EGU General Assembly: 19–30.  

Sadeghi B, Afzal P, Moarefvand P, Khoda Shenas N 

(2012a). Application of concentration-area fractal 

method for determination of Fe geochemical anomalies 

and the background in Zaghia area, Central Iran, 34th 

International Geological Congress (IGC), Brisbane, 

Australia, 5–10. 

Sadeghi B, Moarefvand P, Afzal P, Yasrebi AB, 

Daneshvar Saein L (2012b) Application of fractal 

models to outline mineralized zones in the Zaghia iron 

ore deposit, Central Iran, Journal of Geochemical 

Exploration 122: 9–19. 

Sadeghi B, Carranza EJM (2015) Improving geological 

logs of drill-cores by correlating with fractal models of 

drill-hole geochemical data, International Association 

for Mathematical Geosciences (IAMG) Congress, 

Freiberg (Saxony), Germany. 

Sadeghi B, Carranza EJM, Yilmaz H, Ford A (2016) 

Mapping of Au anomalies in drainage sediments by 

multifractal modeling, 35th International Geological 

https://www.journals.elsevier.com/comptes-rendus-geoscience


Sadeghi / Iranian Journal of Earth Sciences, Vol. 13, No. 1, 2021, 21-30. 

 

 

30 

Congress (IGC), Cape Town, South Africa, paper 

number 1286. 

Sadeghi B, Yilmaz H, Pirajno F (2020) Weighting of 

BLEG data with drainage and catchment properties to 

enhance Au anomalies, Geochemistry, (In Press). 

Sadeghi B, Cohen D (2021) Category-based fractal 

modelling: A novel model to integrate the geology into 

the data for more effective processing and 

interpretation, Journal of Geochemical Exploration  (In 

Press). 

Sadeghi B, Khalajmasoumi M, Afzal P, Moarefvand P 

(2014). Discrimination of iron high potential zones at 

the zaghia iron ore deposit, bafq, using index overlay 

GIS method, Iranian Journal of Earth Sciences 6 (2): 

91–98. 

Sadeghi B, Madani N, Carranza EJM (2015) 

Combination of geostatistical simulation and fractal 

modeling for mineral resource classification, Journal of 

Geochemical Exploration 149: 59–73. 

Sanchez F, Sadeghi B (2018) Multi-fractal modeling: a 

significantly useful method to recognize geochemical 

anomalies in large-scale sampling networks, IAMG 

Conference, Prague, Czech Republic. 

Scheidt C, Caers J (2007) A workflow for Spatial 

Uncertainty Quantification using Distances and 

Kernels, SCRF report 20, Stanford University. 

Scheidt C, Li L, Caers J (2018) Quantifying Uncertainty 

in Subsurface Systems. American Geophysical Union – 

Wiley. P. 279. 

Shamseddin Meigooni M, Lotfi M, Afzal P, Nezafati N, 

Kargar Razi M (2020) Detection of rare earth element 

anomalies in Esfordi phosphate deposit of Central Iran, 

using geostatistical-fractal simulation, Geopersia (In 

Press). 

Sinclair AJ (1974) Selection of threshold values in 

geochemical data using probability graphs, Journal of 

Geochemical Exploration 3(2): 129–149. 

Sinclair AJ (1983) Univariate analysis. In: R.J. Howarth 

(Ed.). Statistics and Data Analysis in Geochemical 

Prospecting, Handbook of Exploration Geochemistry, 

Vol. 2, Elsevier, Amsterdam, 59–81. 

Sinclair AJ (1991) A fundamental approach to threshold 

estimation in exploration geochemistry, Probability 

plots revisited, Journal of Geochemical Exploration 41: 

1–22. 

Singer DA (2010) Progress in integrated quantitative 

mineral resource assessments, Ore Geology Reviews 

38: 242–250. 

Singer DA, Menzie WD (2010) Quantitative Mineral 

Resource Assessments-An Integrated Approach. 

Oxford University Press. 

Soltani F, Moarefvand P, Alinia F, Afzal P (2020) 

Detection of Main Rock Type for Rare Earth Elements 

(REEs) Mineralization Using Staged Factor and Fractal 

Analysis in Gazestan Iron-Apatite Deposit, Central 

Iran, Geopersia 10(1): 89–99. 

Stanley CR, Sinclair AJ (1989) Comparison of 

probability plots and gap statistics in the selection of 

threshold for exploration geochemistry data, Journal of 

Geochemical Exploration 32: 355–357. 

Suzuki S, Caers J (2006) History matching with an 

uncertain geological scenario, SPE Annual Technical 

Conference and Exhibition, SPE 102154. 

Tennant CB, White ML (1959) Study of the distribution 

of some geochemical data, Economic Geology 54(7): 

1281–1290. 

Tukey JW (1977) Exploratory Data Analysis, Addison-

Wesley, Reading. 

Walker WE, Harremoës P, Rotmans J, van der Sluijs JP, 

van Asselt MBA, Janssen P (2003) Defining 

uncertainty: a conceptual basis for uncertainty 

management in model-based decision support, 

Integrated Assessment 4(1): 5–17. 

Wang J, Zuo R (2015) A MATLAB-based program for 

processing geochemical data using fractal/multi-fractal 

modelling, Earth Science Informatics 8(4): 937–947. 

Xiao F, Chen J, Zhang Z, Wang C, Wu G, Agterberg FP 

(2012) Singularity mapping and spatially weighted 

principal component analysis to identify geochemical 

anomalies associated with Ag and Pb–Zn polymetallic 

mineralization in Northwest Zhejiang, China, Journal 

of Geochemical Exploration 122: 101–112. 

Zhao J, Chen S, Zuo R, Carranza EJM (2011) Mapping 

complexity of spatial distribution of faults using fractal 

and multifractal models: vectoring towards exploration 

targets, Computers and Geosciences 37: 1958–1966. 

Zissimos AM, Cohen DR, Christoforou IC, Sadeghi B, 

Rutherford NF (2020). Controls on soil geochemistry 

fractal characteristics in Lemesos (Limassol), Cyprus, 

Journal of Geochemical Exploration .(In Press). 

Zuo R (2011) Identifying geochemical anomalies 

associated with Cu and Pb–Zn skarn mineralization 

using principal component analysis and spectrum–area 

fractal modeling in the Gangdese Belt, Tibet (China), 

Journal of Geochemical Exploration 111: 13–22. 

Zuo R, Cheng Q (2008) Mapping singularities – a 

technique to identify potential Cu mineral deposits 

using sediment geochemical data, an example for Tibet, 

west China, Mineralogical Magazine 72: 531–534. 

Zuo R, Cheng Q, Agterberg FP, Xia Q (2009) 

Application of singularity mapping technique to 

identification local anomalies using stream sediment 

geochemical data, a case study from Gangdese, Tibet, 

Western China, Journal of Geochemical Exploration 

101: 225–235. 

Zuo R, Xia Q, Zhang D (2013) A comparison study of the 

C–A and S–A models with singularity analysis to 

identify geochemical anomalies in covered areas, 

Applied Geochemistry 33: 165–172. 

Zhao J, Chen S, Zou R, Carranza EMJ (2011) Mapping 

complexity of spatial distribution of faults using fractal 

and multifractal models: vectoring towards exploration 

targets, Computers & Geosciences 37: 1958-1966. 

  


