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Abstract 
     Resources/reserves classification is crucial for block model creation utilised in mine planning and feasibility study. Selection of 
estimation methods is an essential part of mineral exploration and mining activities. In other word, resources classification is an issue 

for mining companies, investors, financial institutions and authorities, but it remains subject to some confusion. The aim of this paper 
is to determine a resources classification for a Cu block model generated by an Ordinary Kriging (OK) and a Concentration-Volume 
(C-V) fractal modelling based on estimated variance in Eastern Kahang Cu-Mo porphyry deposit, Central Iran. Variography, block 
modelling and cell declustering for dataset with respect to Cu concentrations as the main target in this deposit were conducted firstly. 
Then, Cu distribution model was carried out by the OK and estimated variances were calculated for all voxels. According to a C-V 
log-log plot, three populations for estimated variances were detected. ‗‘Measured‘‘ resources contain voxels with estimated variances 
lower than 0.08 and more than 7 samples. Estimated variances varied between 0.08 and 0.24 in which more than 3 samples were 
engaged for estimation of ‗‘Indicated‘‘ resources. ‗‘Inferred‘‘ resources include estimated variances over 0.24 which are located in 

marginal parts of this deposit. Results derived via this study reveal that the C-V fractal modelling can be used for resources 
classification in different ore deposits.  
Keywords: Ordinary Kriging (OK); Concentration-Volume (C-V) fractal model, Resources classification, Estimated variance, 
Eastern Kahang Cu-Mo porphyry deposit. 

 

1. Introduction 
The classification of geochemical populations and 

elemental distribution is important in mineral 

exploration, mineral resource classification and mine 
planning (Vural and Erdogan, 2014; Yasrebi 2014; 

Sadeghi et al. 2015). Mineral Resources as well as 

occurrences of intrinsic economic interest based on 

quality and quantity are reasonable prospects for 

eventual economic extraction (Armstrong and Boufassa 

1988; Clark 1999; Afzal et al. 2016; Yasrebi et al. 

2017). Mineral exploration in a mining district is a 

challenging operation because it is followed by a 

correspondingly rise in cost and risk of targeting 

deposits at increasingly great depths which requires 

further detailed data and more expensive computational 
methods (Houlding 2007; De Kemp et al. 2011; Wang et 

al. 2011a; Wang et al. 2011b). Combing geostatistical 

methods, 3D and mathematical analysis (e.g., fractal 

modeming in this scenario) helps in improving and 

consequent understanding of the distribution of mineral 

resources at depth and their relationships among 

geostatistical parameters for mineral exploration (Wang 

et al. 2013). 3D modelling is an important technology in 

quantitative assessment and prediction of mineral 

resources on a district scale. As a result, conventional 

geostatistics  has  been   developed   to  use 3D   reverse/  

--------------------- 
*Corresponding author. 

E-mail address (es): a.b.yasrebi@aut.ac.ir 

 

 

resource estimation (Wilson et al. 2011). Although 

various factors of mineral deposit formation control the 

variability in geochemical data such as grades or 

concentrations of ore elements have been considered a 

normal (Gaussian) or log-normal distribution in 

traditional statistical methods for data analysis 

(Armstrong and Boufassa 1988; Clark 1999; Limpert et 

al. 2001). However, many scientists and researchers 
have suggested and developed the frequency 

distributions of elemental concentrations which are 

commonly not normally distributed (Reimann and 

Filzmoser 2000; Li et al. 2003; Bai et al. 2010; He et al. 

2013; Luz et al. 2014). Mineral resources are further 

sub-divided into three classes of ―Inferred‖, ―Indicated‖ 

and ―Measured‖ classes, as depicted in Fig 1 (Wang et 

al. 2013; Sadeghi et al. 2015). ―Measured‖ and 

―Indicated‖ categories have high level exploratory and 

geological data and modelling with a proper level for 

operation a mining project. ―Inferred‖ resources are 
estimated with a low level of confidence based on 

tonnage, grade and mineral content (JORC 2012). 

Several international standards were proposed for 

resources classification such as Council of Mining and 

Metallurgical Institutions (CMMI) which was 

established in 1994 comprising representatives from 

mining and metallurgical institutions from the United 

States (SME), Australia (AusIMM), Canada (CIM), the 

United Kingdom (IMM) and South Africa (SAIMM)  
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 (CRIRSCO 2013). Resources and reserves 

classification is utilised commonly for feasibility study, 

mine planning and equipment selection. Resources 

classes are determined based on level of geological 

knowledge and confidence (David 1970; Mwasinga 

2001; Asghari and Madani Esfahani 2013; Maleki et al. 

2013; Shahbeik et al. 2014). Most of these methods 

have been established on geostatistical modelling and 

simulation (Emery et al. 2004; Emery 2005). Separation 

of ―Measured‖ and ―Indicated‖ from ―Inferred‖ 

resources is essential because summation of ―Measured‖ 

and ―Indicated‖ levels are considered as positive 
significance for feasibility study and a Net Present 

Value (NPV) calculation (Yasrebi 2014).  

 

 
Fig 1. Relationship between exploration results, mineral 

resources and reserves (CRIRSCO 2013). 

 

Fractal and multifractal methodology was established by 

Mandelbrot (1983) and has been utilised in mining 
engineering (Mandelbrot 1983; Agterberg et al 1993; Li 

et al. 2003; Carranza 2009; Carranza 2011; Afzal et al. 

2013; Yasrebi et al. 2013). Several fractal models have 

been used for delineation of different attributes in 

various ore deposits based on geochemical, geophysical, 

geomechanical and economical parameters. A 

Concentration-Volume (C-V) fractal model was 

proposed by Afzal et al. (2011) for delineation of 

various mineralised zones in porphyry deposits (Afzal et 

al. 2011). This method is carried out for detection of 

different zones according to various regionalised 
variables.  

Estimated variance for interpolation methods such as 

kriging is utilised as a classification approach (Sinclair 

and Blackwell, 2002). David (1988) used a relative 

kriging standard deviation (SD) which is applied as the 

ratio between kriging standard deviation and resource 

classification for an estimated block model. Arik (1999) 

proposed a classification for combination of the 

ordinary kriging variance and weighted average of 

squared difference between estimated grade of a voxel 

and raw data values. Yamamoto (2000) suggested a 
classification method based on estimated variance for an 

ordinary kriging technique. Emery et al. (2004) 

introduced interpolation variance as a criterion for 

mineral resource classification. Silva and Boisvert 

(2014) proposed a resource classification method based 

on kriging variance. In this study, the C-V fractal model 

is used for recognition of different resources 

classification in Eastern Kahang Cu-Mo porphyry 

deposit (Central Iran) based on geostatistical parameters 

especially estimated variances. 

 

2. Methodology 
2.1. C-V fractal modelling 
The C-V fractal model was proposed by Afzal et al. 

(2011) for detection of various populations from 

background (known as the first population) in various 

ore deposits is addressed as: 

V (ρ≤υ) ρ -a1 ;   V(ρ≥υ) ρ -a2                    Equation 1  

where V (ρ≤υ) and V (ρ≥υ) indicate two volumes with 

concentration values (e.g., ore grade, density of rocks, 

estimated variance in this scenario) less than/equal to 

and greater than/equal to the value ρ; υ reveals the 

threshold value of a zone (or volume); and a1 and a2 are 

characteristic exponents. To calculate V(ρ≤υ) and 

V(ρ≥υ) enclosed by an estimated variance contour in a 

3D model was used for this study. Volumes V(ρ≤υ) and 

V(ρ≥υ) are equal to the unit volume of a voxel (or 

volume cell) multiplied by the number of voxels with 
estimated variances (ρ) that are, respectively, smaller 

and greater than a certain estimated variance threshold 

value (υ). A log–log plot of the estimated variances 

contours versus the corresponding volumes [V(ρ≤υ) and 

V(ρ≥υ)] follows a power–law relationship. Depicted 

arrows in the log–log plot show threshold values. 

 

2.2. Ordinary Kriging (OK) 

Kriging is introduced as a geostatistical methods‘ group 

for the interpolation of different regionalised variable 

values which includes OK, universal kriging, indicator 
kriging, co-kriging and others (Emery 2005; Bayraktar 

and Turalioglu 2005; Hormozi et al. 2012; Vural 2018). 

The select of which kriging method to be utilised 

depends on the data characteristics and the type of 

spatial model. The most commonly geostatistical 

method is the OK which was employed for this study. 

The necessities of this method include high values of 

data, boreholes and a dense grid drilling for generation 

of proper variogram. In this study, 48 boreholes with 

7146 core samples were used for variography and 

estimation. The OK plays a special role because of its 

compatibility with a stationary model which involves a 
variogram. The OK estimates based on a moving 

average of the variable of interest satisfy various 

dispersion forms of data e.g. sparse sampling points. 

Moreover, it is a linear model based on local 

neighbourhood structure. Variograms and anisotropic 

ellipsoids are a set of widely used statistical tools for 

spatial estimation and interpolation, which are the 

fundamental components for geostatistical modelling, 

especially the OK (Ver Hoef and Cressie 1993).  
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2.2.1 Kriging variance 

The kriging variance is dependent only on the 

estimation location, the position of samples and the 

variogram. The most common classification approaches 

require the definition of thresholds to differentiate 

categories. The advantage of using kriging variance as 

an index for classification is related to spatial structure 

of the variable and the redundancy between samples. 

Closest sample location as the kriging variance is very 

low, resulting in patches of ‗‘Measured‘‘ resources 

(Silva and Boisvert, 2014).  

 

3. Case study 
The Kahang deposit is located about 73 km NE of 

Isfahan, Central Iran. This deposit contains more than 

100 million tonnes of sulphide ore with an average 

grade of 0.2 wt.% and 50 ppm for Cu and Mo, 

respectively. The deposit is situated on the Cenozoic 

Urumieh-Dokhtar magmatic belt, depicted in Fig 2 

(Berberian and King 1981; Alavi 2004; Yasrebi 2014). 

This deposit is mainly composed of Eocene volcanic-

pyroclastic rocks, which were intruded by porphyritic 

quartz diorite, dacite, andesite as the major lithological 

units. These intrusions are roots of acidic to 

intermediate domes within the Kahang porphyry 

deposit. Studies of the pattern of zonation in the eastern 

part of Kahang deposit demonstrate that the most 

significant mineralisation (in terms of ore zone size) is 

hypogene containing a high percentage of chalcopyrite 
accompanied by pyrite. The major alteration zones of 

potassic, phyllic, argillic and propylitic types have been 

accompanied by the vein to veinlets fillings of quartz, 

quartz-magnetite and Fe-hydroxides (Yasrebi 2014; 

Afzal et al. 2011; Afzal et al. 2016). 

 
Fig 2.  a) Geological map of the Kahang area, scale: 1: 10,000 (Tabatabaei and Asadi Haroni 2006; Yasrebi et al. 2013),  b) structural 
map of Iran, showing the Urumieh-Dokhtar volcanic belt (Alavi 1994). 
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4. Assay Quality Assurance and Quality Control 
Sampling is the fundamental part in a geochemical 

investigation for different stages of mineral exploration 

and environmental purposes. The optimum sampling 

strategy should be based on geochemical methods 

followed by the field observations, variety of sampling, 

sample preparation and analytical approaches. The 

estimate of reproducibility (precision) allows us to 

quantify variation of sampling and laboratory analysis 

which is an integral part of the geochemical data 
interpretation. As a result, any mistake in sampling and 

sample preparation may influence the results of the 

survey (Thompson and Howarth 1978; Fletcher 1981; 

Demetriades 2014). 

From 48 drill holes in the Kahang deposit, 7146 

lithogeochemical samples have been collected at 2 m 

intervals. These samples were analysed using ICP-MS 

for 48 elements by ALS Chemex (ALS Canada Ltd) and 

Zarazma Mineral Studies Company certified by 

Geostats Pty Ltd (Australia). Detection limits for Cu and 

Mo are 0.2 ppm and 0.05 ppm, respectively. Moreover, 
399 randomised samples for Cu determination were 

selected and analysed for quality assurance and quality 

control purposes, assessed using Thompson-Howarth 

error analysis. The following procedure is suggested for 

estimation of precision from a minimum of 50 pairs of 

duplicate samples (Thompson and Howarth 1978): 

(1) From the duplicate analyses, obtain a list of the 

means and absolute difference. 

(2) Arrange a list (in Excel software) in increasing order 

of concentration means. 

(3) From the first 11 results obtain the mean 

concentration and absolute difference of the two results 

(controlling samples) from that group (each group 

contains 11 duplicated/reanalysed samples). 

(4) Repeat step 3 for each successive group of 11 
results, ignoring any remainder less than 11. 

(5) The mean of each replicate pair is plotted against the 

absolute difference between the two analyses. 

The highest value up the % scale on the right axis gives 

the precision. A precision around 5% is normal. If the 

precision is around 1%, the Y axis has not been properly 

calculated with respect to the procedure mentioned 

above. The precision greater than 5% may have cause 

for concern and reconsideration. However, the precision 

for Cu is around 2% in the Kahang deposit with respect 

to 399 duplicated sample for Cu (Fig 3). 

 

Fig 3. Precision estimation of Cu analyses using diagram of Thompson and Howarth (1978). The mean of the replicate pairs is 
plotted along the X-axis, the absolute difference of the two results along the Y-axis. 

 

 

4.1. Comparison of Geochemical Data Variances via F-

Distribution 

F-distribution test is used to identify variances equality 

of duplicated samples (e.g., geochemical data). This is 
the theoretical distribution of values which are expected 

by randomly sampling from a normal population and 

calculating, for all possible pairs of sample variances, 

the ratios as follow (Davis 1987; Deutsch and Journel 

1998; Emery 2012): 

  
  
 

  
                   S1 ≥ S2                               Equation 2 

Where F, S1 and S2 represent F-distribution or 

continuous probability distribution and variances for 

pair of samples (S1 = 0.222 and S2 = 0.219). The 

variances of double samples vary if the number of 

observations used in their calculation is small. 

Therefore, the shape of the F-Distribution is expected to 

change with changes in terms of samples amounts. 
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The F-Distribution has two degrees of freedom equal to 

n1-1 and n2-1 in which n1 and n2 represent the number 

of observations equal to 398. Fisher showed that 

significance level, 1-α (α: probability value) is 

calculated in the cases of one-tailed and two-tailed 

distributions depending on the defining alternative 

hypothesis. The hypotheses are as follows (Fisher and 

Tippett 1928; Emery 2012): 

Null hypothesis:        
    

                     Equation 3 

Alternative hypothesis:        
    

          Equation 4 

Where σ1 and σ2 denote variances of populations. 

Based on the F-test, F(398,398)   1.015  which is less 

than 1.2175 (Emery 2012). With respect to the 

confidence level of 97.5% (α = 0.025). As a result, the 

Null hypothesis is acceptable representing that two 

variances obtained from the paired samples are almost 

equal to each other. 

4.2. Comparison of Geochemical Data Means via 

Paired T-Test 
A paired T-test is utilised to compare between means of 

two populations. The paired sample T-tests typically 

include a sample of matched pairs of similar units (e.g., 

Cu wt.% in this scenario), or one group of units that has 

been tested twice (Davis 1987; Emery 2012). 

The correct rejection of the null hypothesis (no 

difference between mean values) can become much 
more likely. Because half of the sample now depends on 

the other half, the paired version of Student's T-test has 

only "n/2–1" degrees of freedom (n is the total number 

of observations). Pairs are individual test units and the 

sample has to be doubled to achieve the same number of 

degrees of freedom. 

To achieve the null hypothesis which the true mean 

difference is zero, the procedure is as follows: 

1. Calculate the difference between the two observations 

on each pair as follow:  

di = yi – xi                                                       Equation 5 

2. Calculate the mean difference of the pair samples in 

terms of their grades ( ̅). The grades‘ means for the 

paired samples are 0.194% and 0.196% so  is 0.002%.  

3. Calculate the differences of standard deviation (Sd 

=   
 -     

  ) for the pair of samples. To do this, the 
standard deviation of each sample (Sd1 and Sd2) was 

calculated and they are equal to 0.468 and 0.472, 

respectively. Subsequently, standard error of the mean 

difference was calculated (Equation 6) which is 0.47 

SE ( ̅   
  

√ ̅
                                               Equation 6 

Where   is equal to 2 because there is a pair of samples. 

4. Calculate the T-test statistic under the null hypothesis, 

this statistic follows a T-distribution with n − 1 degrees 

of freedom. 

T =  
 ̅

    ̅ √
 

 ̅

                                                     Equation 7 

Where   is the number of paired samples which is 399.   

5. Use table of the T-distribution to compare value for T 
to the Tn−1 distribution. This will give a T critical (p-

value), defined as the smallest level of significance at 

which the null hypothesis would be rejected for a 

specific test, for the paired T-test (Davis 1987). The 

calculated T from paired samples is -0.06 according to 

the Equation 7 and the T critical for ―two-tailed test‖ 

with respect to confidence level (probability value for α 

= 0.025) of 97.5% is equal to ∓1.9629 which indicates 

that the Null hypothesis is again acceptable. Therefore, 

the mean values of the paired samples are equal (Emery 
2012). Consequently, results derived from T- and Fisher 

tests show that there is no significant difference between 

results obtained via raw and controlling samples giving 

an analytical accuracy in this deposit. 

 

5. Discussion 

5.1. Statistical Characteristics 
In the studied deposit, 7146 core samples were collected 

from 48 boreholes at 2 m intervals, and analysed by 

ICP-MS for Cu and Mo. The Cu and Mo distribution 

functions are not normal, with Cu and Mo averages of 

0.166 wt.% and 28 ppm, respectively, derived via 

RockWorksTM v. 15 (Fig 4a and b). The elemental 

distributions show an L shape with most of the volume 

of the deposit containing low grades for Cu and Mo. 

Most values of Cu and Mo are lower than 1 wt.% and 

200 ppm, respectively. Variation between maximum and 

minimum of these data shows a wide range among 

elemental concentrations (Table 1). Based on the 
abnormal elemental distributions, Cu and Mo medians 

are assumed to be equal to threshold values for 

separation of ‗barren‘ host rocks and mineralisation 

which are 0.087 wt.% for Cu and 9.9 ppm for Mo 

(Davis 1987). Figure for the original data sets used for 

Cu (as the main target in this deposit) values has been 

generated using MATLAB software, as depicted in Fig 4c.

  

 

 

 

 

 

Elements 

Grades 

Minimum 

Value 

Maximum 

Value 
Range Mean 

Standard 

Deviation 
Median Variance Skewness Kurtosis 

Cu (wt.%) 0.0003 4.92 4.91 0.16 0.271 0.087 0.073 6.6 74.5 

Mo (ppm) 0.5 1,479 1,478.5 28.27 76.178 9.9 5,803.132 8.4 96.1 

Table 1. Statistical characteristics for Cu and Mo 
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Fig 4. Histograms for data from the Kahang deposit:  a) Cu wt.%,  b) Mo ppm and c) 3D map of original datasets for Cu wt.% 
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5.2. Block modelling and cell declustering 

It is necessary to select an optimal voxel size with 

respect to the deposit geometry and drilling pattern 

because most of the geostatistical software, e.g. 

Datamine Studio which was employed in this study, 

estimates an ultimate block model based on the closest 

points considering parameters such as ore element 

concentrations (Yasrebi et al. 2015). In other words, 

choosing a suitable voxel size for evaluation of a 

reserve/resource is crucial for minimising errors 

(Asghari and Madani Esfahani 2013; Shahbeik et al. 

2014). This problem has been assessed for estimated 
block models using ordinary kriging (OK). Results 

obtained by the estimation methods relate to the 

determination of voxel size in block modelling (Cressie 

1993; Soltani Mohammadi et al. 2012). Utilising a 

larger voxel size will increase the averaging effect in the 

estimated block model in terms of concentrations 

(Emery and González 2007; Emery and Ortiz 2011). 

Additionally, a smaller voxel size will show more 

details, but potentially more error in an anisotropic 

environment. As a result, reducing the voxel size results 

in an increase in estimated errors (variance and standard 
deviation) for a final block model. Moreover, increasing 

the voxel size in the block model changes the higher or 

lower grades of mineralised zones by smoothing of 

these points with high or low values within a large voxel 

(Yasrebi et al. 2015). Therefore, it is necessary to select 

an optimal voxel size because estimation of an ultimate 

block model is based on the closest points considering 

particular parameters such as ore element 

concentrations. David (1970) proposed an applicable 

method for an operation based on geometrical 

particulars of the different types of ore deposits and grid 

drilling. Based on the method, voxel dimensions are 

calculated as follows: 

a) Length and width of each voxel is equal to between 

half and quarter of the distance between the drill cores 

according to along the least variability deposit. 

b) Height of each voxel is delineated due to the type of 

the deposit. In ‗massive‘ deposits such as magmatic 

deposits (e.g., porphyry deposits), the parameter is equal 

to the height of excavating benches in the open pit 

mines (Hustrulid and Kuchta 2006). The 3D map which 

indicated the location of 48 boreholes drilled in the 

Kahang deposit was constructed by MATLAB software 
package (Fig 4c). As can be seen, the grid drilling 

pattern within this deposit is not uniform and systematic 

so the geochemical data need to be declustered. The 

Kahang deposit was modelled with 489,927 voxels and 

each voxel has a dimension of 4 × 4 × 10 m, 

corresponding the project dimensions of 600, 660 and 

780 m, in the X, Y and Z directions, respectively. 

Data are often spatially clustered because of preferential 

sampling which makes it difficult to determine whether 

they are representative of the entire area of interest. To 

obtain a representative distribution, one approach is to 
assign declustering weights whereby values in cells with 

more data receive less weight than those in sparsely 

sampled areas. As mentioned above, data need to be 

declustered. This operation was carried out using the 

Declus program which incorporates the GSLIB library 

(Fig 5). In addition, Cu mean of above-mentioned voxel 

size should be close to Cu mean value obtained from the 

declustered data (Deutsch and Journel 1998; Richmond 

2002; Olea 2007; Sadeghi et al. 2015).  The Cu mean 

and standard deviation of the declustered data are 0.145 

wt.% and 0.22077% (Fig 5).  
 

 

 

 

 
Fig 5. Cu histogram based on declustered data. 
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5.3. Variography and anisotropic ellipsoid 

The experimental variograms in horizontal (Azimuth: 0 

and Dip: 0) and vertical (Azimuth: 0 and Dip: -90) 

directions were generated using MATLAB software 

with respect to log transformations of Cu grades (Fig 6). 

The horizontal and vertical ranges for Cu are 56 m and 

270 m, respectively. The spherical model was fitted to 

the experimental variograms. Accordingly, the 

theoretical variogram for Cu grade values is as: 

                                 
                                                        Equation 8 
 

 
 
Fig 6. Experimental and theoretical variograms for Cu. 
 

Anisotropic ellipsoid was calculated based on 

variograms. The horizontal and vertical ranges were 

recognised based on the combined variograms with 

lags‘ spacing of 15 m and 8 m for horizontal and 

vertical directions with respect to the theoretical 

variograms. 

Subsequently, a Cu block model with voxel size of 4 m 

× 4 m × 10 m, according to David (1970) method as 

mentioned above, was generated by OK utilising 
Datamine Studio software. For validation of the chosen 

voxel dimension, standard deviation (SD) and an 

average Cu value have been calculated for the block 

model with voxel dimension of 4 m × 4 m × 10 for X, Y 

and Z, respectively.  

The Cu mean and standard deviation values for this 

block model are 0.15823 wt.% and 0.20134% which are 

relatively close to the Cu average and SD value obtained 

from the declustered data (e.g., 0.145 wt.% and 

0.22077%; Table. 2). 

 

5.4. OK application 

After variography, determination of estimation 

parameters and providing block model, the Cu values in 

the deposit was estimated by the OK technique. 

Maximum and minimum samples are 10 and 2 which 

used for the OK estimation. There are 489,927 estimated 

voxels in the Kahang deposit. Cu values, estimated 

variances and engaged samples‘ number were calculated 

for total voxels in the studied deposit (Fig 7). A 3D 

model for estimated variances revealed that this 

parameter is increased in marginal part of this deposit, 

as depicted in Fig 7. Estimated variances are important 

for resources classification in this research. 

 
Table 2. Comparison between standard deviation and average 

values for pre-estimated Cu and declustered data. 
 

 

Standard Deviation 

(%) 

Cu Average 

(wt.%) 

Block Model 

Dimensions 

4 × 4 × 10 (m
3
) 

0.20134 0.15823 

Declustered Data 0.22077 0.145 

 

 

 
 
Fig 7. 3D models for Cu values (a) and estimated variances (b) 

in this studied deposit. 
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5.5. Application of the C-V fractal modelling 

A C-V log-log plot was generated based on estimated 

variances block model, as depicted in Fig 8. There are 

three populations with two threshold values for 

estimated variances corresponding to 0.08 and 0.24, 

respectively. ―Measured‖ resources contain low values 

of estimated variances based on high density of 

boreholes and data. Voxels with estimated variances 

lower than 0.083 (first population) are named as 

―Measured‖ resources (Fig 9a). However, engaged 

samples in estimation process for the ―Measured‖ 

resources are more than 7 and 3 boreholes. This 
category is situated in the central part of this deposit 

with high density of boreholes. In addition, ―Indicated‖ 

resources is determined as the second population with 

estimated variances between 0.08 and 0.24. These 

voxels are located within the marginal and NE parts of 

the deposit, as depicted in Fig. 9b. Voxels of this class 

consist of more than 3 samples which were engaged for 

estimation. Moreover, ―Inferred‖ category which 

includes voxels with estimated variances higher than 

0.24 is located in the marginal, NE and NW parts of this 

deposit, as shown in Fig 9c. Summation of the 

―Measured‖ and ―Indicated‖ classes contain Cu values 

between 0.075% and 0.686% (Fig 10). 
 

 

 
Fig 8. C-V log-log plot for estimated variances. 

 

 
 

Fig 9. 3D models for  a) Measured,  b) Indicated  and  c) Inferred resources. 
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Fig 10. Cu values in the Measured and Indicated resources of 
the Kahang deposit. 

 

6. Conclusions 
Results obtained by this study represent that the C-V 

fractal modelling is a proper method for classification of 

different resources based on estimated variances. 

Estimated variance is a fundamental parameter for 

resources classification because it is related to density 

and frequency of samples and boreholes in a studied 
deposit.  The ―Measured‖, ―Indicated‖ and ―Inferred‖ 

categories were detected using a C-V fractal modelling 

based on an OK estimated block model for Cu in the 

Eastern part of Kahang deposit.  Threshold values for 

estimated variances, with respect to the C-V log-log 

plot, are 0.08 and 0.24. The resulted classes were 

correlated with engaged samples for estimation and 

boreholes. There is a direct correlation between 

increasing of levels with samples number and boreholes. 

Furthermore, ―Measured‖, ―Indicated‖ and ―Inferred‖ 

classes are located from central to marginal parts of this 

deposit, respectively. Finally, results obtained by this 
methodology indicate that this method can be suggested 

for other ore deposits in detailed exploration stage. 
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