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Abstract 
 
The current geological and tectonic setting of Iran is due to the ongoing convergence between the Arabian and Eurasian Plates, 

which resulted in the formation of the Iranian plateau, mountain building, extensive deformation and seismicity. The Iranian plateau 
is characterized by various domains including the continental collision and the oceanic plate seduction. Based on S receiver functions 
are provided a high resolution image of lithosphere beneath Iran. In the present work, we used data from teleseismic events (at 
epicentral distances between 60°-85° with magnitude over 5.7 (Mb)) recorded from 1995 to 2011 at 53 national permanent short 
period stations which are located in the different geological zones of Iran. The Sp phase conversion arriving at times ranging between 

8.6 and 13.0 s delay time. In order to enhance the conversions and reduce the error of the depth determination, the S receiver 
functions stacked in bins. Arrival times of Sp phases were converted into depth domain using the IASP91 reference velocity model. 
A relatively shallow LAB at about 80-90 km depth was observed beneath the whole plateau with some exceptions. A low velocity 
zone was found at about 100 km beneath the Zagros fold and thrust belt and reaching 130 km beneath the Sanandaj-Sirjan Zone, 
whereas other tectonic zones are recognized by a thin lithosphere of about 80-90 km. This technique can introduce an error up to 10 
km in the LAB depth determination. 
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1. Introduction 
The Earth's tectonic plates constitute the lithosphere so 

that no proper understanding of plate tectonics can be 

achieved without reference to the lithosphere. The 

lithosphere is generally divided into two different parts. 

The crust lithosphere includes the upper part of the 

lithosphere, whereas the mantle lithosphere located in 

the lower part moves as the high velocity lid on the top 
of the asthenosphere. Observations of low seismic 

velocities in the upper mantle are generally associated 

with the Lithosphere-Asthenosphere Boundary named 

LAB. This boundary appears as a negative contrast in 

which the seismic velocities decrease with depth. In 

contrast to the Moho depth which is usually observed at 

high resolution by different techniques such as P 

Receiver Function (PRF) method, the lower boundary of 

the mantle lithosphere is generally considered not sharp 

enough to be well observed by seismic body wave 

observations. The thickness of the lithosphere has been 

mostly obtained from low resolution surface wave 
observations. The lithosphere has a global average 

thickness of 80-100 km, ranging between zero and 200 

km beneath mid ocean ridges and stable cratons, 

respectively. However, the recently developed S 

Receiver Function (SRF) technique (Li et al. 2004; 

Kumar et al. 2005) can be optimally used to identify    

the  LAB  boundary  using higher resolution body waves  
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because this method is free of multiples. This boundary 
is almost invisible in the PRFs due to the crustal 

multiples, which arrive at the same time and heavily 

disturb the time window of the LAB arrival.  

Iranian Plateau in Southwest Asia is a mountainous land 

long looking younger Tertiary fold is formed, and Point 

of view global tectonics, is part of the Alpine-

Himalayan orogenic belt in a compressional area of 

convergence is two-plate Arabic and Eurasia, making it 

one of the largest regions of convergent deformation on 

Earth (Allen et al. 2004). Determining the depth of the 

crust and upper mantle discontinuities and knowing the 
details of crust are necessary to understand a more 

accurate determination of focal depth seismic zone, 

attenuation relationships, a more realistic model of the 

Earth's subsurface structure for each region, along with 

stress and etc. Two basic conditions for the occurrence 

of earthquakes in such areas are required. First, the 

presence of brittle materials and second movement that 

causes an accumulation of stress in the brittle materials. 

These two factors are lithospheric plates. In order to 

better understand the evolution of tectonic and 

geodynamic in each area, investigation of subsurface 
structure of the earth (crust and upper mantle) is 

essential. 

Despite the numerous studies that have been done on 

determining the structure of the crust in Iran (Asudeh 

1982; Dehghani and Makris 1984; Snyder and 

Barazangi 1986; Mangino and Priestley 1998; Javan 
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Doloei and Roberts 2003; Hatzfeld et al. 2003; Paul et 

al. 2006; Yamini-Fard et al. 2006; Sodoudi et al. 2009; 

Radjaeei et al. 2010; Taghizadeh-Farahmand et al. 2010; 

2013, 2015; Abbassi et al. 2010; Afsari et al. 2011), 

there is little information about the structure of 

lithosphere and  there is a few studies on Lithosphere 

thickness in Iran (Sodoudi et al. 2009; Taghizadeh-

Farahmand et al. 2010; Jim'enez-Munt et al. 2012; 

Priestley et al. 2012; Motavalli-Anbaran et al. 2011; 

Priestley et al. 2012; Mohammadi, et al. 2013). The 

recently developed S Receiver Function technique 

(Farra and Vinnik 2000; Li et al. 2004, Kumar et al. 
2005 a, b, 2006, 2007; Sodoudi et al. 2006 a, b,) can be 

optimally used to identify the lithosphere–asthenosphere 

boundary (LAB) with higher resolution rather than 

obtained by body waves.  

The main goal of this paper is to derive a high-

resolution image of the lithosphere in Iran using S 

Receiver Functions. According to the location of 

seismic networks and stations, the study region is 

divided into seven parts: Alborz (Tehran, Sari and 

Semnan), Northwest of Zagros (Kermanshah), Central 

Iran (Yazd and Isfahan), Northwest of Iran (Tabriz), 

Northeast of Iran (Mashhad and Quchan), Central 

Zagros (Shiraz) and Eastern of Iran (Birjand). Networks 

located in any study region are shown in parentheses. 

 

2. Data and Method 
The data used for this study were recorded by the 

Iranian Seismological Center (ISC), which consists of 

12 seismic networks with 61 permanent short-period 

seismic stations (Fig 1). Specifications of the seismic 

stations are available in the electronic database 

(http://irsc.ut.ac.ir/istn.php?lang=fa). 

 

 
 

Fig 1. Location map of the seismological stations used in this study with red triangles. Active faults are shown with brown lines 
(Hessami et al. 2003). Central Domin (CD), Sanandaj-Sirjan Zone (SSZ), Main Zagros Thrust (MZT), Zagros fold and thrust belt 

(ZFTB), Urumieh–Dokhtar magmatic arc (UDMA). 

  

The short-period networks are operated by the Iranian 

Seismological Center (ISC). They are equipped with SS-

1seismometers with a natural frequency of 1 Hz and 

sampling rate of 50 samples per second which are made 
by Nanometrics and connected to the central recording 

station via a telemetric system. More than 400 

teleseismic events (Fig 2) with magnitudes greater than 

5.7 (Mb) at epicentral distances between 60˚ and 85˚ 

have been used for the S Receiver Function analysis. 
The PRF technique searches the P to S conversions at 

http://irsc.ut.ac.ir/istn.php?lang=fa
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seismic discontinuities beneath stations, while SRF 

analysis looks for the S to P conversions at the seismic 

discontinuities. A Sp phase is generated when an 

incoming S phase crosses a velocity discontinuity 

beneath a seismic station and is converted to the P wave. 

 

 
 
Fig 2. Distribution of teleseismic events (Red solid circles) 
recorded by the national permanent stations of Iran between 
1995 and 2011.The green star represents the approximate 
position of Iran. The black solid circles mark the 60˚ and 85˚ 

epicentral distances, respectively. 

 

In a particular station, the converted Sp phase arrives 

earlier than the direct S phase (e.g. Faber and Müller 
1980; Farra and Vinnik 2000; Li et al. 2004; Kumar et 

al. 2005). Converted Sp phases from shallow 

discontinuities (like crust-mantle and lithosphere-

asthenosphere boundaries) are best observed at 

epicentral distances between 60-85° (Faber and Müller 

1980). S Receiver Functions are primarily much noisier 

than P Receiver Functions because they arrive after the 

P wave.  

They also have longer periods in comparison with the P 

Receiver Functions and do not resolve the fine structure 

within the crust and mantle lithosphere. However, they 

are precursors to S waves, whereas all the multiple 

reverberations appear later than S. This advantage 

having no multiples enables them to separate the 

primary converted phases from the disturbing multiples, 

which are not much visible. The boundaries, which are 

normally covered by multiples arriving at nearly the 
same time in the P receiver functions, can also be 

identified in the S Receiver Functions. Calculation of 

SRFs is similar to that of PRFs and includes restitution, 

coordinate rotation and deconvolution. For rotation, the 

angle of incidence is defined by the minimum of energy 

in the L component at arrival time of the S phase (see 

also Kumar et al. 2006). Final deconvolving the Q 

component from the L component results in having the 

converted S to P phases on the L component. To make 

the SRF directly comparable with PRF, we reversed the 

polarity of the S Receiver Function amplitudes as well 
as the time axis. Prior to summation, moveout correction 

for a reference slowness of 6.4 s/◦ was essentional. 

 

3. Observation 
We selected a time window of 200 s in length (100 s 

before the S onset) and calculated the S receiver 

functions (SRF). A low pass filter of 4 s was applied to 

the data. Only traces with high signal-to-noise ratio (>4) 

were considered and calculated SRFs for all the stations. 
As an example, SRFs calculated for two stations (MHI 

and DMV) are shown in figure 3. 

 

            
Fig 3. Individual SRF with summation traces for two stations (MHI and DMV). Individual seismograms are plotted equally spaced 
and sorted by increasing back azimuth. They are filtered with a low pass filter of 4 s. The S onset is fixed at zero time. The clear 
negative phase at 9-10 s on the summation trace (labeled LAB) is interpreted as the conversion from the LAB. 
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The S Receiver Functions are sorted by the increasing 

back azimuth. Negative (positive) amplitudes, plotted in 

gray (black), indicate a velocity decrease (increase) with 

depth. Two main phases can be recognized in SRFs; the 

Moho as a positive peak at 6 s. The S to P conversion 

from the Moho is well observed at 6 s in good 

agreement with the PRFs obtained from this station in 

our previous study (Taghizadeh-Farahmand et al. 2015) 

and a clear negative peak at times ranging between 9 

and 10 s that labeled LAB. This phase may represent the 

S-to-P conversion at the Lithosphere–Asthenosphere 

Boundary. The LAB conversion can be isolated in the 
SRF, since they are free of multiples. Arrival times of 

LAB phases were converted into depth domain using the 

IASP91 reference velocity model (Kennett and Engdahl 

1991). 

 

4. Discussion 
The depth of LAB was investigated by SRF beneath all 

stations. Figure 4 shows the distribution of the S-to-P 

piercing points at the depth of 100 (likely to be the 

approximate thickness of the continental lithosphere). 

The S to P conversion points are not located close to the 

stations. In order to enhance the conversions and reduce 
the error of the depth determination, the SRFs stacked in 

bins of 0.1˚ (overlapping factor of 0.05˚) and sorted 

them by longitude of piercing points the depth of 100 

km.  

 
 

 

Fig 4. Location of piercing points (blue crosses) of S receiver functions at 100 km depth. Red lines marks the location of the profiles 
used for Figs. 5 and 6. The seismological stations are shown with black triangles. 

 

Results of stacking for some networks are shown in 

figure 5a-c. The stacking method gained the S to P 

conversions by averaging the information of several 

single SRF within each bin. Negative (positive) 

amplitudes, plotted in gray (black) indicate a velocity 

decrease (increase) with depth. In upper panel, two main 

phases are visible on the summation trace: the first 

phase which is in blue, at about 6-7 s, is related to the 

Moho discontinuity. The second phase, which has 

strong negative amplitude (in red) at ~8.5-9.5 s, may 

represent the S to P conversion at the Lithosphere–
Asthenosphere Boundary (labeled as LAB).  

The migrated SRF sections obtained some seismic 

network (Fig 6a-e) which has enough SRF data. 

Location of profiles for each network is shown by red 

line in figure 4. To transform time into the depth, the 

IASP91 reference model (Kennett and Engdahl 1991) is 

used. The positive amplitudes of receiver functions are 

plotted in red, while blue color shows negative 

amplitudes. 

It should be mentioned that the results of each seismic 

network can’t be related to beneath those networks but 

these results are related to stacking of recorded 
teleseismic event in each seismic network.
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Fig 5. The stacked SRF (in bins of 0.1˚) sorted by longitude of piercing points at 100 km. a) Northwest (Tabriz), b) Alborz (Tehran, 
Sari and Semnan) and c) Northeast (Mashhad and Quchan). Negative (positive) amplitudes indicate a velocity decrease (increase) 
with depth and are plotted in gray (black) and white (gray) for the stacked data, respectively. Tow clear Sp conversions are visible in 
SRF and labeled on the summation trace (Moho and LAB). The strong Sp conversion with the negative amplitude shown in red at 
~8.5-9.5 is interpreted as the conversion from the LAB (labeled LAB)). 

 

 

In SRF, piercing points have lateral offset with station 

but in PRF the conversion in a cluster and sub-stations 

are concentrated exactly like (e.g Sodoudi et al. 2009, 

2015). Well is seen in Figure 4 that piercing points (blue 

crosses) are not located beneath the stations and the 

results calculated (Table 1) as the thickness of the 

lithosphere or low velocity layer in each region are 

related to areas in which areas are piercing points. 

According to Figure 5a for Northwest Iran, arrival time 

of Sp converted phase of Moho in SRF was about 6 s 

that is good agreement by our previous study 

(Taghizadeh-Farahmand et al. 2010, 2015) via P 

Receiver Function method, as well as the negative phase 

at the arrival time which was seen about 8.9 seconds 

(LAB) related to the converted phase Sp of the 

Lithosphere-Asthenosphere Boundary. In the figure 6a, 

2D cross-section of the depth-distance, two 

discontinuity shows, one (positive polarity) at a depth of 

45 to 55 kilometers associated with the Moho and the 

other (negative polarity) at a depth of about 80 to 100 

kilometers of LAB. Tomographic studies (Bayramnejad 

2008) estimated a significant LVZ in NW Iran, a depth 

of about 12 and 15 km for the LVZ beneath the 

volcanoes, respectively. In this case, a depth of 85 km 

seems to be very deep for the LVZ and could not be 

reasonable. Jim´enez-Munt et al. (2012) by residual 

Bouguer anomalies obtained the average lithospheric 

thickness beneath NW Iran is 100 to 120 km. Surface 

waves studies revealed a 100 km deep lithosphere 

beneath the NW Iran (McKenzie and Priestley 2008, 

Priestley et al. 2012). By using SRF beneath the eastern 

Turkey Angus et al. (2006) showed a relatively thin 

lithosphere beneath this region. According to the error 

introducing in our S Receiver Function analysis, the 

LAB depth is in good correlation with those obtained 

from previous studies. 
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Fig 6. 2D migrated SRFs along profiles AA', BB', MM', KK' and EE' for some seismic networks. a) Northwest (Tabriz), b) Alborz 
(Tehran, Sari and Semnan), c) Northeast (Mashhad and Quchan), d) Northwest of Zagros (Kermanshah) and e) Central Iran (Yazd 
and Isfahan). The positive (negative) amplitudes of receiver function are plotted in red (blue). Variation of Moho and LAB thickness 

are shown by dash line and labeled. 
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Moho conversion phase by SRF in Alborz region was 

about 5.6 s which is labeled by M (Fig 5b), the results is 

in agreement with the arrival time of Ps converted phase 

in PRFs (6.3 s) (Sodoudi et al. 2009). The result of SRF 

migrated (Figure 6b) indicates variation of lithospheric 

thickness between 80-90 km in Alborz region that fits 

well to the observed stacked data (Fig. 5b). It seems to 

be relatively thin lithosphere for this high elevated 

tectonic belt. Sodoudi et al. (2009) suggested this 

thinning is supported by asthenospheric material. These 

results are also in good agreement with other 

geophysical studies beneath the Alborz region 
(McKenzie and Priestley 2008, Motavalli-Anbaran et al. 

2011). 

Moho converted phase was seen about 5.8 s in SRF in 

Northeast Iran (Mashhad and Quchan) (Fig 5c) which is 

related to 50 to 55 km depth for Moho in 2D cross-

section depth and distance (Fig 6c) that is in good 

agreement with result of modeling via gravity data by 

Motavalli-Anbaran et al. (2011) (45-48 km) and 

Jim´enez-Munt et al. (2012) (~50 km). Migrated SRF 

sections (Fig 6c) significantly map the Moho and the 

LAB beneath the NE Iran. SRFs stacking clearly map 

the S-to-P conversions from the LAB at times ranging 

between 8.5 and 10.5 s (Fig 5c). This arrival times 

suggest lithospheric thickness of approximately 85–95 

km which seems to be relatively thin for NE Iran with 

relative high topography, which has been undergoing a 

shortening process in response to the collision of Arabia 

with Eurasia (e.g., Hollingsworth et al. 2010). It should 

be noted that the position of the piercing points are far 

from elevated region and are located in Turan plate. 

Motaghi et al. (2012) computed the Bouguer anomaly 
over a profile crossing the Kopeh-Dagh belt. Their 

modeling showed that the mountain ranges are 

supported dynamically instead of by the mechanism of 

isostasy. Previous studies from the phase velocity 

dispersion of Rayleigh waves by different authors (e.g., 

McKenzie and Priestley 2008, Priestley et al. 2012), 

who suggested a thickness of ~100 km for the 

lithosphere of NE Iran is in good correlation with this 

study. 

 

 
Table 1. Strike of Profile or Study Region /Name of network, Arrival time of Sp converted phase (Second), Depth of LAB (Km) and 

Number of SRF. 

Number of  

SRF 

depth of LAB 

 (Km) 

Arrival time of Sp phase 

(Sec.) 

 

Strike of  Profile/Study 

Region 

 

64 80 8.9 AA' 

130 85 9.5 MM' 

153 85 9.5 BB' 

60 80-110 8.6-11 EE' 

55 100-130 10-13 KK' 

15 85 9.5 East Iran (Birjand) 

 

The migrated SRF sections obtained some seismic 

network (Fig 6a-e) which has enough SRF data. 

Location of profiles for each network is shown by red 

line in figure 4. To transform time into the depth, the 

IASP91 reference model (Kennett and Engdahl 1991) is 

used. The positive amplitudes of receiver functions are 

plotted in red, while blue color shows negative 

amplitudes. 
 It should be mentioned that the results of each seismic 

network can’t be related to beneath those networks but 

these results are related to stacking of recorded 

teleseismic event in each seismic network. In SRF, 

piercing points have lateral offset with station but in 

PRF the conversion in a cluster and sub-stations are 

concentrated exactly like (e.g. Sodoudi et al. 2009, 

2015). Well is seen in Figure 4 that piercing points (blue 

crosses) are not located beneath the stations and the 

results calculated (Table 1) as the thickness of the 

lithosphere or low velocity layer in each region are 

related to areas in which areas are piercing points. 

 

5. Conclusion 
Based on S receiver functions analysis was provided a 
high resolution image of lithosphere beneath Iran. Data 

set selected from teleseismic events (Mb>5.7, epicentral 

distance between 60° and 85°) recorded from 1995 to 

2011 at all short period stations of Iranian Seismological 

Center (ISC). In order to enhance the conversions and 

reduce the error of the depth determination, the S 

receiver functions stacked in bins and sorted them by 

longitude of piercing points. To compare P and S 

receiver functions, migrated SRF sections obtained 

along some profiles. Clear image of the LAB has been 

able to present at depths ranging between 80 km beneath 
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Central Iran (Yazd) to Maximum 130 km beneath 

Sanandaj-Sirjan Zone. A relatively thin continental 

lithosphere of about 80 and 85 km are found beneath the 

northwest and northeast of Iran, respectively. 

Furthermore, relatively thick lithosphere of about 130 

km is found beneath the SSZ near the Kermanshah 

region, whereas beneath the Central Zagros (Shiraz) a 

relatively thin lithosphere was seen. The average 

thickness of the lithosphere of Alborz is estimated to be 

85 km and vary between 90-80 km from west to the 

east. 
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