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Abstract 
 

It is now a common practice in the mining industry to deal with several correlated exploratory attributes, which need to be jointly 
simulated to reproduce their correlations and assess the multivariate grade risk. Approaches to multivariate simulation, which remove 

the correlation between attributes of interest prior to simulation and re-imposing of the relationship afterward, have been gaining 
popularity over the more common joint simulation methodologies. This is due to their better accuracy and computational efficiency 
as the number of attributes for simulation increases. Principal component analysis (PCA) is one of these approaches. However,  PCA 
suffers from some drawbacks such as the factors that are uncorrelated just for collocated locations. Minimum/maximum 
autocorrelation factors (MAF) is a modification of the PCA method where the factors are uncorrelated for two lags. As an 
expectation, when the linear co-regionalization model contains only two nested structures, the factors do not have any spatial 
correlations. The main aim of this research is to compare the results of the MAF approach with some traditional approaches for  
multivariate simulation (co-simulation and independent simulation approaches). To this end, two variables have been simulated with  
three different methods and are then compared based on some yardsticks such as the ability to reproduce the original correlat ion 

coefficient between two variables. The results showed that MAF has the capability to reproduce the intrinsic correlation between the 
variables.   
Keywords: Geostatistical simulation, co-simulation, MAF, correlation 

 

 

1. Introduction 
Geostatistical analysis has been widely used in the 

process of ore body evaluation. Simulation conveys an 

important part of uncertainty, which leads to 

quantifying risk in the mining and petroleum industry 

such as the grades of elements of interest, 

petrophysical properties of the subsoil, or 

geometallurgical properties (work index, acid 

consumption, metal recoveries) (Emery 2005; Emery et 

al. 2005; Emery and Lantuéjoul 2006; Ortiz 2006; 

Emery 2007; Chiles and Delfiner 2009; Emery and 

Robles 2009; Emery 2012; Montoya et al. 2012; 
Boisvert et al. 2013; Maleki-Tehrani et al. 2013; Rossi 

and Deutsch 2013). The practical implementation of 

geostatistical modelling requires specifying a 

stochastic model, which describes the spatial 

distribution of the exploratory co-regionalized 

variables (what should be simulated) and an algorithm, 

which aims at constructing realizations of the 

prescribed model (how it should be simulated: Chiles 

and Delfiner (2009); Lantuéjoul (2013)). Independent 

simulation in multi-element deposits does not consider 

the intrinsic correlation coefficient between the 
variables. Instead, co-simulation appreciates this 

parameter by calculating the cross-variograms.  

--------------------- 
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Maximum/minimum autocorrelation factor (MAF) 

analysis (Switzer and Green 1984; Desbarats and 

Dimitrakopoulos 2000; Boucher and Dimitrakopoulos 

2009; Lopes et al. 2011) is a factor-based approach that 
considers the uncorrelated factors to independently 

simulate and acknowledge the correlation coefficient 

internally (Desbarats and Dimitrakopoulos 2000). For a 

two-structure linear model of co-regionalization, the 

approach has the attractive feature of producing 

orthogonal factors ranked in the order of increasing 

spatial correlation.  

The purpose of this paper is to assess the performance 

and check the accuracy of three methods of simulation 

(independent simulation, co-simulation, and MAF) in 

the multi-element deposits when there is a significant 
correlation between the exploratory variables, through 

actual case studies located in Rio Blanco-Los Bronces 

copper deposits in Chile. 

 

2. Simulation methodologies 
2.1. Independent simulation and co-simulation 

An independent simulation of the random variables 

Z(x) is simply a realization of Z(x), randomly selected 

from the set of all possible realizations. Its construction 
requires the knowledge of the spatial continuity of this 

random variable characterized by direct-variograms at 
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the most minimum simplicity (Chiles and Delfiner 

2009; Lantuéjoul 2013). 

However, it is often interesting to construct numerical 

models that reproduce the joint distribution of several 

co-regionalized variables at unsampled locations, 

conditionally to the information available at sampling 

locations (conditional co-simulation). Because the 

variables are usually spatially cross-correlated, it is not 

sufficient to simulate each variable separately. Instead, 

a multivariate approach can be used and one needs to 

calculate the cross-variograms associated with direct-

variograms for each variable (Emery 2008; Paravarzar 
et al. 2015). 

However, in multivariate geostatistics such as co-

simulation, a crucial and frequent problem is finding a 

model of the co-regionalization matrix that fits 

adequately in the mathematical sense to the empirical 

cross-variogram matrix (Goulard and Voltz 1992).  

 

2.2. Minimum/maximum autocorrelation factors 

(MAF) 

MAF is another methodology in the substitution for co-

simulation that is a principal component-based 
approach (in fact, it is a modification of PCA). It 

transforms the original variables into factors, 

uncorrelated at any lag distance (Chiles and Delfiner 

2009). In fact, MAF is mainly based on two successive 

spectral decompositions. The MAF factors are ranked 

in order of increasing spatial correlation. There are two 

ways to obtain the factors:  

Model-based MAF Approach: This requires the direct 

and cross-spatial continuity of input data to be 

modelled by using a specific linear model of co-

regionalization in order to derive the uncorrelated 

factors. Data-driven MAF approach: This method does 
not require a linear model of co-regionalization to 

obtain the corresponding factors. 

With respect to the first approach (model-based MAF 

approach), one should follow the steps below: 

In the first step, the original data should be transformed 

into the normal standard Gaussian data. Then, by using 

the linear model of co-regionalization (LMC), we 

should model the direct and cross variogram of 

transformed data: 

  ( )      ( )  (    )  ( )              (1) 

where B is a correlation matrix between transformed 

data and   ( ): variogram 

Then, one should perform spectral decomposition of 

the variance-covariance matrix of        and the 

obtaining matrixes of Q and  . 

                                                            (2) 

The multiplication by     ⁄  and the multi-Gaussian 
assumption ensures that all derived factors have a 

standard normal distribution.  

      ⁄                                                     (3) 
The PCA factors are then defined as: 

        ( )   
   ⁄    ( )                     (4) 

To calculate the MAF factors, one should derive the 

second rotation matrix. The matrix of B1 will be 

obtained from the LMC fitted model. So, the matrix    

and    could be obtained easily: 

{
      

 

        
                                                   (5) 

            

        
   ⁄    ( ) 

        ( ) 
M is the matrix for transforming the input data into 

factor. 

With respect to the second approach (data-driven MAF 

approach), the only difference is that matrix   will be 

obtained by the decomposition of matrix     ( ) 
(variogram matrix of principle component). In fact, the 

eigenvectors of matrix     ( ) are equal to the 

eigenvectors of matrix  . Therefore, since     ( ) can 
be computed using only the input data, there is no need 

to fit the LMC. Note that the eigenvectors of     ( ) 
depend on the separation distance and its selection is a 

delicate task (Chiles and Delfiner 2009; Wackernagel 

2013). 

 

3. Geological Setting 
The Los Bronces-Rio Blanco deposit is located on the 
west side of the Andes in Central Chile about 70 km 

from Santiago in Chile (Fig. 1). Los Bronces is a 

breccia complex superimposed on the west side of an 

earlier major porphyry copper system (Warnaars et al. 

1985). The Rio Blanco mine is currently exploiting the 

north-central part of this porphyry deposit and has 

started operating a large copper-bearing tourmaline 

breccia, Sur-Sur, about 2km south of the present mine. 

The Los Bronces-Rio Blanco deposit was formed on 

the east side of the San Francisco batholith. This 

intrusion is strongly peraluminous and has a calc-

alkaline composition with an alkali-calcic affinity. The 
batholith took a minimum of 11.5m.y. to form from the 

early Miocene (20.1m.y.) to the late Miocene 

(8.6m.y.). The porphyry copper mineralization, 

alteration, and copper tourmaline breccias were formed 

over a period of at least 2.5m.y. between 7.4 and 

4.9m.y. ago. A post-mineral volcanic neck or diatreme 

at La Copa had erupted within, and removed a large 

segment of the northern part of the porphyry copper 

system, thus marking the last evidence of magmatic 

activity in the area. K-Ar age determinations of biotites 

indicate the diatreme erupted in the early Pliocene 
between 4.9 and 3.9m.y. ago. The pre-breccia porphyry 

system exhibits propylitic, sericitic, silicic, and 

potassic alterations. A unique alteration feature of this 

system is the replacement of mafic minerals by 

specularitc and/or tourmaline within the propylitic 

zone. The porphyry system contains disseminated and 

stockwork copper-iron-molybdenum sulphide 

mineralization within an area of about 12km2. 
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Fig. 1: Schematic map and a cross-section of the Rio Blanco-Los Bronces ore deposits (Warnaars et al. 1985) 

 

 Los Bronces is composed of at least seven different 

copper-bearing tourmaline breccias that form one large 
contiguous kidney-shaped body about 2km long and 

0.7km wide, at the present erosion surface. The breccia 

body crops out at elevations between 4,150m and 

3,450m. The various breccias are characterized by their 

locations, matrices, clasts, shapes, types, and degrees 

of mineralization and alteration. The breccias are 
usually monolithic, but in some cases are bilithic or 

heterolithic with most clasts consisting of quartz 

monzonite or andesite with locally minor amounts of 

quartz latite porphyry, monzodiorite, and vein quartz 
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(Warnaars et al. 1985). The breccia matrices consist of 

variable amounts of quartz, tourmaline, specularit, 

anhydrite, pyrite, chalcopyrite, bornite, molybdenite, 

sericite, chlorite, and rock flour. The seven different 

breccia types are identified from the oldest to the 

youngest as Ghost, Central, Western Infiernillo, 

Anhydrite, Fine Gray, and Donoso. The breccia 

complex has sharp contacts with the surrounding 

intrusive rocks and andesites. Internally, the breccia 

contacts are locally well-defined, but elsewhere they 

coalesce, inter-finger or display gradational contacts. 

The breccias at Los Bronces are interpreted as being 
emplaced explosively, followed by the collapse after 

pressure release of hydrothermal fluids. The primary 

mineral distribution is best known in the Donoso 

breccias, which has been the centre of mining activity 

since its discovery in 1864. In spite of the coarse and 

irregular nature of the sulphides in the matrix, 

chalcopyrite, pyrite, and specularit at the 3,670-m, 

open-pit operating level show a tendency to be 

distributed in irregular shells in which one of the three 
minerals predominates in any one shell. The transitions 

between shells are rapid. Several semi-ellipsoidal 

shells of alternating high and low copper grades are 

also apparent from the copper distribution of 

underground level 3640m and from various cross 

sections. The shells are approximately vertical and sub-

parallel to the Donoso breccia contacts, which dip 

inward. Secondary enrichment enhanced the primary 

grade in the southern two-thirds of the Los Bronces 

breccia complex and in much of the surrounding 

porphyry copper systems. The degree and depth of 

enrichment are the functions of breccia and fracture 

permeability, and it extends to a depth of more than 

500m in certain favourable sectors. The shape and 

depth of the enrichment blanket and overlying leached 

capping suggest that the enrichment process is related 
to the present ground-water regime and is still active 

(Warnaars et al. 1985). 
 

4. Exploratory Data Analysis 
The data for the analysis were gathered from 9,999 

exploratory boreholes through the Rio Blanco-Los 

Bronces copper deposits. They were then composited 

to 3m in order to homogenize the support of the 

original data used in the process of geostatistical 
modelling. This procedure also reduces the variability 

of the dataset (Rossi and Deutsch, 2014). The area 

covered is about 2,822,791.5m2 by drill holes 

conveying an acceptable distribution for sampling all 

parts over the deposit (Fig. 2). Exploratory data 

analysis was done through the composited dataset for 

two elements (SiO2 and Cr) and the statistical 

parameters of this available data are presented in Table 
(1). Here, they are necessary beyond any decision-

making. 

 

 

 

 

 
Fig. 2: 3D view of boreholes dataset; blue represents the low-grade areas and red the high grade areas; the grades are increasing from 

blue to red. 

 

 

The goal of this research is to compare the 

conventional method of simulation and co-simulation 
with the new methodology entitled MAF. Therefore, an 

important key parameter for this examination is 

considering the correlation coefficient between these 

two variables (Chiles and Delfiner 2009). This 

coefficient summarizes the linear relationship 

(proportionality relationship) between two variables 

SiO2 and Cr through a value between -1 and 1. This 

coefficient is -83.51% and one can conclude that there 

is a considerable relationship between these two 
variables.  

The scatter plot is also helpful in intuitively 

determining the dependence relationship between two 

variables and detecting possible anomalous data. As 

can be seen from Figure 3, this negative relationship is 

strong as enough to implement the co-simulation.  
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Table 1: Statistical parameters for two underlying variables; these parameters are calculated through the sampling points. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 
Fig. 3: Scatter plot between two variables SiO2 and Cr 

 

5. Variogram Analysis 
Spatial continuity for implementing the co-simulation 

should be characterized by the cross-variogram 

associated with analysing the direct-variograms for the 
variables, respectively. The cross-variogram was first 

introduced by Matheron (1965) as the natural 

generalization of the variogram (Chiles and Delfiner 

2009). This experimental cross-variogram matrix then 

should be modelled as a trial-error methodology. This 

theoretical model is entitled ‘Linear Co-regionalization 

Model (LCM)’ and it is applicable to any multivariate 

spatial data analysis (Golard and Voltz, 1992; 
Wakernagell, 2014). It is worth mentioning that these 

instructions require the data to be normally distributed 

and declustered (Chiles and Delfiner 2009). The 

declustering technique has been done prior to any 

analysis to allow us to assign each datum a weight 

based on the closeness to the surrounding data for 

alleviating the high-pseudo frequency occurring in 

high-graded areas. The declustered data is then 
transformed to the standard normal distribution. 

Direct and cross-variogram for SiO2 and Cr are 

depicted in Figure 4. The theoretical models of LCM 

are also fitted to the experimental ones as provided by 

Table 2.  

6. Simulation and co-simulation 
In this step, two variables of SiO2 and Cr are modelled 
via two methodologies. The first considers the 

independent simulation for each variable and the 

second one acknowledges the correlation coefficient 

between two variables by co-simulation. As mentioned 

above, both variables are transformed to the Gaussian 

space with mean 0 and variance 1 (N(0,1)) and the 

variogram analysis has been done over the normal 

standard data. Note that for independent simulation, 
one just needs to apply the direct-variograms of SiO2 

and Cr, while the co-simulations deal with the cross-

variogram as well as the direct ones. The simulation 

methodology in this study is turning the band (Emery 

and Lanteljoul 2006), in which it prioritizes other 

approximate approaches of simulation (Paravarzar et 

al. 2015). The most important parameters of 

simulations are provided as below: 
Block Properties: 

Volume in 3D: 2 408 540    
Dimension in the east direction: 1.5m; Number of 

blocks in the east direction: 125 

Statistics Min Max Mean 

Cr 0.18% 4.46% 1.5% 

SiO2 2.1% 78.51% 28.94% 
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Dimension in the north direction: 1.5m; Number of 

blocks in the east direction: 138 

Dimension in the elevation direction: 2m; Number of 

blocks in the east direction: 38 

So, the total number of blocks is 655,500 through the 

region. 

Number of realizations: 100  

Seed for random number generation: 98457638 

Dividing data into octant with three pieces of data per 

octant. 

Kriging type; independent simulation: Simple kriging 

& Co-simulation: Co-kriging  

Number of lines in turning band simulation: 1,000 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 
Fig. 4: Experimental and theoretical variogram and cross variogram of normal score data; blue: horizontal; red: vertical 

 
 

 
 
 

 
 
 
 
 
 
 
 
 

 

Co-regionalization model formulae:  
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6.1. Comparison between independent simulation 

and co-simulation 

In order to make a comparison, one can examine the 

statistical parameters of the produced realizations to 

see to what extent they are close to or far from the 

statistical parameters of the original row data. The 

following graphs (Figs. 5 and 6) show the box plot of 

the mean and variance of realizations for two variables 
(Cr and SiO2), which were obtained from two different 

approaches (simulation and co-simulation). In terms of 

the mean, the obtained mean for both variables from 

the simulation and the co-simulation method is not 

very close to the mean of the raw data. However, the 

obtained variances from simulation and co-simulation 

for both variables are approximately close to the 

variance of raw data. Generally, with respect to the 
obtained mean and variance from these two 

approaches, there is no substantial difference between 

co-simulation and simulation, and one can just see 

subtle differences between these two methods. 

In contrast to the mean and variance, there is a 

significant difference between simulation and co-

simulation if one considers the correlation coefficient 

as a yardstick for comparing these two approaches. The 

reproduced correlation coefficient (Table. 3), which is 

obtained from simulation, is very far from the 

correlation coefficient of raw data (-0.8351). However, 

the co-simulation approach can reproduce the 

dependency between two variables better than 

independent simulations and the obtained correlation 
coefficient with the co-simulation method is somehow 

close to the correlation coefficient of raw data.  So far, 

we have had some criteria for comparing the current 

simulation approaches (independent simulation, and 

co-simulation). In terms of reproducing variance and 

mean, we saw that there is no significant difference 

between independent simulation and co-simulation. 

However, if one considers the correlation coefficient as 
a yardstick, there is a substantial difference between 

these two approaches and one can say that the co-

simulation is more capable of reproducing the 

dependency of two variables.  

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

Fig 5. Box plot of mean of 100 realizations 
 
 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 

Fig 6. Box plot of variance of 100 realizations 
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Table 3: Correlation coefficient between Cr and SiO2 in some realizations for two different methods through just 100 

realizations. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 

 

7. MAF method for simulation of variables 
In order to obtain uncorrelated factors at any lags, we 

have to use just two nested structures (Wakernagel, 

2014). So, we need to perform variogram analysis 

again for deriving the theoretical models with two 
nested structures. 

Co-regionalization model with two nested structures 

(Chiles and Delfiner, 2009): 

(
             
           

)                                              (7)    

 (
         
        

)    (          ) 

 (
            

          
)    (          ) 

To obtain the factors, we need two transformation 

matrices (PCA and MAF transformation matrix): 

PCA = *
             
              

+ 

MAF = *
             
            

+ 

As mentioned earlier, the obtained factors should be 
uncorrelated. Matrix K shows the correlation 

coefficients between the factors. 

K = *
          

          
+ 

Also, the obtained factor should have a standard 
Gaussian distribution. This table shows the histogram 

of obtained factors and, as can be seen, both the factors 

have standard Gaussian distribution (Fig. 7). 

Fig 7. Histogram of MAF factors 

As mentioned, in the MAF methodology, the factors 

should be uncorrelated for any lag. So, we calculated 

the cross correlogram between the factors in order to 

see whether the factors are uncorrelated. The table 

below shows the cross correlogram between two 
factors for different lag separation distances (Fig. 8). 

 

 
Fig 7. Histogram of MAF factors 

 

                      Simulation Co-simulation 

No.10 -0.04 -0.68194 

No.11 0.011 -0.63628 

No.12 0.057 -0.66218 

No.13 -0.06 -0.69872 

No.14 -0.063 -0.64814 

No.15 0.003 -0.61169 

No.16 -0.031 -0.68712 

No.17 0.052 -0.66861 

No.18 -0.028 -0.66363 

No.19 -0.078 -0.67638 
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Cross correlogram for h=4m Cross correlogram for h=5m 

  

Cross correlogram for h=6m Cross correlogram for h=8m 

 
 

Cross correlogram for h=10m Cross correlogram for h=12m 

 

Fig 8. Cross correlogram between two factors 
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7.1. Comparison between three methodologies 

In this part, for making an intuitive comparison 

between the three approaches applied (i.e. independent 

simulation, co-simulation, and MAF), following the 

previous section, the box plot of variance and the mean 

of variables have been drawn for these three 

approaches. Closeness to the statistical parameters of 

raw data is a significant yardstick for this comparison. 
As depicted in Figures 9 and 10, it can be deduced that 

the variance and mean of variables, which is obtained 

from the MAF method, is closer to the variance of raw 

data in comparison to the other methods (simulation 

and co-simulation). After the MAF method, one can 

say that the results of the co-simulation method are 

closer to the original raw dataset.  

Figure 10 shows the box plot of correlation coefficient 
as another important key factor to make a comparison, 

which is obtained from different methods (MAF, co-

simulation and independent simulation). As can be 

seen from Figure 11, the obtained correlation 

coefficient from MAF is closer to the correlation 

coefficient of raw data. As expected, after the MAF 

approach, the obtained correlation coefficient from co-

simulation is closer to the correlation coefficient of the 

raw data. 
In Figure 12, it is worth showing the two section maps 

obtained from averaging between 100 realizations. 

Here, one can see the negative relationship as expected 

between the variables (Cr and SiO2). In the high-graded 

area over the SiO2, one can find the low-graded 

boundary in the Cr map. So, it can be an interesting 

result for reproducing the underlying correlation 

coefficient in the MAF methodology.  
 

 

 

 

 
Fig 9. Mean of SiO2 and Cr using different methods 

 

 

 

 
Fig 10. Variance of SiO2 and Cr using different methods 
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Fig 11. Obtained correlation using different methods 

 

 

.   

Cr- MAF (obtained from 100 realizations) SiO2- MAF (obtained from 100 realizations) 

Fig. 12: Map of Cr and SiO2 obtained from MAF methodology; blue: low-grade area; red: high-grade area; from blue to red, the 
grades are in increasing order. 

 

8. Conclusion 
In this study, three different approaches of simulations 

(independent simulation, co-simulation, and MAF) are 

compared. One can choose different criteria and 
compare these three methods. By considering the 

correlation coefficient as a yardstick for comparing 

these three methods, we can see substantial differences 

between the three methods. Independent simulation of 

each variable could not reproduce the correlation 

coefficient between the variables (the obtained 

correlation is very far from the real correlation 

coefficient). The MAF method can reproduce the 
dependency of variables better than the co-simulation 

approach. However, the obtained correlation 

coefficient is not exactly identical with the correlation 

coefficient of raw data, but close to this and better than 

other methods.  

Furthermore, in terms of variance and mean, there is no 

significant difference between these three methods. 
However, the obtained variance and mean of the MAF 

approach is closer to the variance and mean of the 

original data. Despite all advantages that are 

considered using the MAF method, it also has some 

drawbacks. The main drawback of the MAF approach 

is that this method only produces uncorrelated factors 

at any lag, if and only if we use the co-regionalization 

model with two nested structures. This is a huge 

restriction, especially when the data has a complex 

spatial continuity that can be modelled only with more 
than two nested structures. 
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