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( برای پیش بینی سمیت آفت کش های QSTRسمیت )-کاربرد مدل کمی ساختار

 های مولکولیکاربامات با استفاده از روش های محاسباتی و توصیفگر

 
 3، طاهره مومنی اصفهانی*2، عصمت محمدی نسب1سیده آزاده موسوی

 
 دانشگاه آزاداسلامی، اراك، ایران واحد اراك، گروه شیمی، ،دانشجوی دکتری شیمی فیزیک -1

 دانشگاه آزاداسلامی، اراك، ایران گروه شیمی،واحد اراك، استادیار شیمی فیزیک، -2

 دانشگاه آزاداسلامی، اراك، ایران گروه شیمی،واحد اراك، ،تجزیهاستادیار شیمی  -3

 
 

 

 چکیده

دادیم تا یک مدل   * انجام13G-6ما در این مطالعه، محاسبات مکانیک کوانتومی را در سطح تئوری تابع چگالی با مجموعه پایه 

سازیم. بهترین توصیفگرهای ها ب ( مشتقات کارباماتLD50بینی دوز کشنده ) ( برای پیشQSTRسمیت )-رابطه کمی ساختار

انتخاب شدند. سپس، رابطه بین توصیفگرهای انتخاب  MATLAB( توسط نرم افزار GAمولکولی با استفاده از الگوریتم ژنتیک )

( و شبکه عصبی BW-MLRمشتقات کاربامات را با استفاده از مدل های رگرسیون خطی چندگانه گام به گام ) logLD50شده و 

-GAهای  سازی روش برای مدل R3eو  RDF010e ،WW( مورد مطالعه قرار دادیم. توصیفگرهای BP-ANNمصنوعی )

BWMLR  وGA-BPANN  استفاده شدند. مقایسه نتایج نشان داد کهR
Qو  2

برای همه مجموعه ها به طور  GA-BPANNمدل  2

(، ریشه میانگین مربع MSEعات خطای کمتر )می باشند. با توجه به مقادیر میانگین مرب GA-BWMLRقابل توجهی بالاتر از مدل 

ها از  برای مجموعه داده GA-BPANN( مدل ADD(، و میانگین مطلق انحراف )SEPبینی ) (، خطای استاندارد پیشRMSEخطا )

 دقت بالاتری برای پیش بینی سمیت کارباماتهای مورد مطالعه برخوردار می باشد.

 

 "GA-BPANN"؛"GA-BWMLR "؛"کارباماتها"؛"تسمی"؛"QSTR"؛"آفتکش": یهای کلید واژه
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Fig. (5). The plot of residuals versus experimentals logLD50 in GA-BPANN methods. 

 

 

CONCLUSION 
In this study, we performed QSAR using linear and nonlinear analyses for a series of 

carbamates with a focus on their toxicity. The GA-BPANN with a 3–4–1 (number of input, hidden, 

and output layer nodes) configuration was developed to predict the logLD50 of carbamate 

derivatives. The QSTR models showed that GA-BPANN model with satisfactory accuracy was 

appropriate to predict the logLD50, as this model had the highest R
2
, Q

2
F1, Q

2
F2, and Q

2
F3 and the 

lowest MSE, RMSE, SEP, and ADD. This new approach could be considered as an alternative and 

practical technique to evaluate the biological activity of pesticides and insecticides and further 

design of novel carbamates. Regression analysis instates a relation between a dependent variable 

representing the biologic activity and multiple independent variables, namely the molecular 

descriptors. According to the modeling descriptors, while the RDF and GETAWAY descriptors 

contributed positively, the WW descriptor belonging to 2D matrix-based descriptors showed a 

negative contribution. However, the influence of molecular descriptors is different and varies with 

the physiochemical information they encode.    

Estimating the toxicity of pesticides and insecticides is necessary to identify their harmful effects 

on humans, animals, plants, and environment. However, the toxicity testing of chemicals is 

bounded by time, ethical considerations, and financial charges. Therefore, computational methods 

can be useful to estimate the toxicity of chemicals. 
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Fig. (2). The plot of predicted versus experimental logLD50 of train set in GA-BPANN methods. 

 
 

 

 
Fig. (3). The plot of predicted versus experimental logLD50 of test set in GA-BPANN methods. 

 

 

 

 
 

Fig. (4). The plot of predicted versus experimental logLD50 of validation set in GA-BPANN methods. 

 

 

Regular Residuals 

The residuals were used to approximate the regularity of supposition. Figure 5 compares the 

residual values, which is the difference between the observed and predicted values in contrast to the 

logLD50 experimental values of carbamates. The spread of errors in both sides of zero are random. 

So, the deviations around x-axis had an almost indistinguishable spread. This affirms the 

adaptability of the GA-BPANN model for the suggested logLD50 of studied carbamates. 
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, and ky  show the measured, predicted, and mean values of the dependent 

variable, respectively. 

 
The comparison between the GA-BWMLR and GA-BPANN 

 

We calculated the values of R
2
, MSE, RMSE, Q

2
LOO, SEP, and ADD of the GA-BPANN and GA-

MLR models (Table 6). 

 
Table 6.  The regression parameters and quality of correlation of proposed GA-BWMLR and GA-BPANN methods. 

GA-BPANN GA-BWMLR 
Parameters 

Validation set Test set Training set Test set Training set 

9 9 42 15 45 N 

0.9645 0.9646 0.9550 0.705 0.447 R2 

0.0260 0.0552 0.0185 0.1129 0.2221 MSE 

0.1612 0.2350 0.1359 0.3361 0.4713 RMSE 

0.9486 0.458564 Q2
LOO(data set) 

13.9434 17.75204 SEP (data set) 

4.7184 15.83351 ADD (data set) 

 

According to the obtained values for R
2
 in both models, 70.5% and 96.46% of the logLD50 of 

test data variations could be determined in terms of one unit difference in logLD50 value, 

respectively. Also, the RMSE=0.3361 for the test set in the GA-BWMLR model was compared 

with the value of RMSE=0.2350 in the GA-BPANN model.  

The GA-BPANN model with higher values of Q
2

LOO, R
2
, and lower MSE, RMSE, SEP, and 

ADD values proved to be more precise. The comparison between the MSE, RMSE, SEP, and ADD 

values of the GA-BPANN and GA-BWMLR models for training and test sets indicated superiority 

of the GA-BPANN model over the GA-BWMLR model. The main advantage of the GA-BPANN 

model was its ability to predict the logLD50 for new carbamates; this external prediction ability was 

evaluated by using the Q
2

F1, Q
2

F2, Q
2

F3, and CCC values. These parameters were calculated as 

follows (Bhhatarai et al, 2011; Chirico, 2011; Chirico, 2012): 

Q
2

F1= 0.9505      , Q
2

F2=  0.9504    , Q
2
F3=0.9542, CCC= 0.9767 

The values of 9.0,, 2

3

2

2

2

1 FFF QQQ  and 97.0CCC indicated a fitting non-linear relationship 

between logLD50 and selected descriptors. Figures 2, 3, and 4 show the performance of the GA-

BPANN model of training, test, and validation sets, respectively. The values of R
2
 in these figures 

indicated a strong correlation between logLD50 in contrast to independent variables. 
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Table 5. Pearson Correlation coefficient between the final descriptors 
 

Pearson correlation coefficient 

R3e RDF010e WW  

-0.368 -0.499 1.000 WW 
0.097 1.000 -0.499 RDF010e 
1.000 0.097 -0.368 R3e 

 

The best linear model contains three molecular descriptors, including WW, RDF010e, and R3e 

as follows: 

logLD50= 0.210 RDF010e  – 5.449E-5 WW + 0.960 R3e+ 0.364         (equation: 1) 

The results indicated that the potential of the WW, RDF010e, and R3e descriptors in modeling 

logLD50 was better than the other descriptors. These descriptors were classified into RDF, 

GETAWAY, and 2D matrix-based descriptors, respectively. The RDF010e descriptor is a Radial 

Distribution Function -010 / weighted by Sanderson electronegativity, and belongs to RDF 

descriptors (Helguera et al, 2006). The R3e correlates to GETAWAY descriptors, and is R 

autocorrelation of lag 3 / weighted by Sanderson electronegativity (Saiz-Urra et al, 2007). The WW 

is hyper-wiener-like index (log function) from topological distance matrix, and belongs to 2D 

matrix-based descriptors category (Mansour and Schork, 2010). The results showed that RDF010e 

and R3e descriptors had positive effects, but WW descriptor had negative effects on the logLD50 of 

studied carbamates.  

      
Validation 

The values of predicted and experimental logLD50 of the test set were compared by calculating 

the MSE and R
2
 values, and the models were described by the sum of these two values. 

Computation of R
2
 and MSE of the GA-BPANN models was performed and recorded after every 

10 cycles. For each neuron number, the average of the summed MSE was recorded, and the model 

with the lowest MSE and the highest R
2
 values was chosen as the superior model. It was indicated 

that the hidden layers with four neurons had the lowest MSE and the highest R
2
 in the best model,

 

and the best signals were transmitted onto an output layer. The RMSE specifies that the descriptors 

with less estimated errors have more importance (Hyndman and Koehler, 2006). Other evaluation 

parameters such as coefficients of determination for cross-validation (leave-one-out-Q
2

LOO), the 

standard error of prediction (SEP), and absolute average deviation (AAD) were used to evaluate the 

GA-BWMLR and GA-BPANN performances (Roy et al, 2015; Saghaie et al, 2013). The cross-

validated correlation coefficient is a scale of the goodness of internal predicting power. The AAD 

of a data set shows the comparative absolute abnormality from the predicted values (Toth et al, 

2013; Popoola et al, 2018). The R
2
, RMSE, Q

2
LOO, SEP, and ADD parameters were calculated 

using the following formulas: 
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Multicollinearity  

The linear regression analysis showed that the values of R
2
 and correlation coefficient (R) were 

greater than 0.8, but collinearity needed to be checked. Therefore, the variance inflation factor 

(VIF) and Pearson’s correlation coefficient (PCC) specified for the selected descriptors of the last 

model. The VIF is the reverse value of (1-R
2
), where the R

2
 is squared correlation coefficient of 

multiple regressions between variables in the raised model. 

Collinearity occurs when two or more predictor descriptors are inter-correlated. The collinearity 

is the basis of the VIF value. If the VIF value is between 1 and 10, the related model is acceptable, 

but if VIF<1 or >10, there is collinearity and a recheck is necessary . (Pourbasheer et al, 2017).  

At each step, the descriptor with the highest VIF and its PCC with another descriptor greater 

than 0.5 is removed. Among 12 extracted descriptors, S0K, Ss, Gnar, X0v, Eeig04r, Espm01r, and 

RDF010P, which had high VIF and PCC values were removed and modeling was done again. 

These steps were repeated until 1<VIF<10 and PCC<0.5. The results of PCC, VIF, and tolerance 

for each descriptor were given in Tables 3 and 4, respectively. The results of PCC between the final 

three descriptors were given in Table 5. 

 
 

Table 3. Pearson Correlation coefficient between the molecular descriptors 
 

Pearson correlation coefficient 

 R3e RDF010e GNar 

 

WW RDF030p EEig04r ClC0 nc S0k X0v SS ESpm01r 

R3e 1.000 -0.125 -0.611 -0.213 -0.160 0.036 -0.525 0.152 0.080 -0.138 -0.395 0.481 

RDF010e -0.125 1.000 -0.339 0.235 0.324 0.200 -0.518 -0.385 0.447 -0.114 -0.622 0.381 

GNar -0.611 -0.339 1.000 -0.147 0.037 -0.078 0.808 0.019 -0.258 0.483 0.795 -0.850 

WW -0.213 0.235 -0.147 1.000 0.069 0.010 0.172 -0.547 -0.163 -0.334 -0.171 0.225 

RDF030p -0.160 0.324 0.037 0.069 1.000 0.229 -0.186 -0.248 0.386 -0.342 -0.148 0.005 

EEig04r 0.036 0.200 -0.078 0.010 0.229 1.000 -0.151 0.088 0.471 -0.326 -0.126 -0.315 

ClC0 -0.525 -0.518 0.808 0.172 -0.186 -0.151 1.000 -0.095 -0.396 0.263 0.799 -0.735 

nc 0.152 -0.385 0.019 -0.547 -0.248 0.088 -0.095 1.000 -0.335 0.125 0.356 -0.283 

S0k 0.080 0.447 -0.258 -0.163 0.386 0.471 -0.396 -0.335 1.000 -0.447 -0.566 0.117 

X0v -0.138 -0.114 0.483 -0.334 -0.342 -0.326 0.263 0.125 -0.447 1.000 0.331 -0.302 

SS -0.395 -0.622 0.796 -0.171 -0.148 -0.126 0.799 0.356 -0.566 0.331 1.000   -0.804 

ESpm01r 0.481 0.381 -0.850 0.225 0.005 -0.315 -0.735 -0.283 0.117 -0.302 -0.804 1.000 

 

 
Table 4. collinearity statistical parameters between the molecular descriptors 

 

Name 

  

Collinearity 

Statistical 

 

Mode1 

1 

 

Model 

2 

 

Model 

3 

 

Model 

4 

 Tolerance VIF VIF VIF VIF VIF 

nc 0.021 47.224 446.22 - - - 

S0K 0.012 85.096 - - - - 

Ss 0.011 93.012 - - - - 

WW 0.050 19.987 460.2 46002 963.4 969.0 

GNar 0.036 27.922 - - - - 

X0v 0.033 29.998 - - - - 

ClC0 0.021 47.530 2650. 3649. - - 

EEig04r 0.045 22.006 - -  - 

ESpm01r 0.003 307.258 - - - - 

RDF010e 0.270 3.698 96232 96430 96359 9632. 

RDF030p 0.384 2.601 - 96.44 96493 - 

R3e 0.336 2.980 965.. 965.. 96522 96522 
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Back propagation artificial neural network method 

The back propagation artificial Neural Network (BPANN), as an intelligence model, was built 

by the Neural Network Toolbox included in MATLAB R2010b (Thapliyal et al, 2018). In this 

method, MSE was used as the performance function, which consisted of three interrelated layers: 

an input, one or more hidden layer (s), and an output layer (Dreyfus, 2005; Villarrubia et al, 2018; 

Cilimkovic, 2015; Da Silva et al, 2017; Shanmuganathan, 2016). To build models, the data 

subjected to GA-BPANN analysis was randomly divided into a training set of 42 (70%) 

compounds to make the model, a test set of  nine (15%) compounds to estimate an independent 

variable, and a validation set of nine (15%) compounds. The WW, RDF010e, and R3e descriptors 

were sent to the input layer where they were consequently passed on to the nodes of the hidden 

layer for later processing. The neurons number in the hidden layer was optimized by testing the 

network implementation with different neuron numbers. The neuron number was gently increased 

from 1 to 10 for each case, and the training step was repeated more than 100 times. Finally, it was 

signified that the best nonlinear model contained four nodes in the hidden layers. In each training 

run, 15%–15% of the data were randomly chosen for testing and validation, respectively. The 

resulting networks were used to predict the logLD50 of the test set. Figure 1 shows the structure of 

the extracted GA-BPANN model. 

 

 

WW

RDF0

10e

R3e

Bias

log LD50

Hidden layerInput layer

Out put layer

 
Fig. (1). The structure of GA-BPANN model 
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The logLD50 values of all the studied compounds (as the dependent variable) and selected 

descriptors (as the independent variable) were applied.   

Then, the data set of 60 compounds was randomly divided into two groups: a training set of 45 

(75%) compounds to build the model and a test set of 15 (25%) compounds to evaluate the built 

model. The SAR model was generated using the GA-BWMLR in SPSS software and considering 

the error of 0.05. A significance level <0.05 indicated that the association between the logLD50 and 

its predictor variables was statistically meaningful.  

All models were evaluated using important statistical parameters such as correlation coefficient 

(R), squared correlation coefficient (R
2
), adjusted squared correlation coefficient (R

2
Adjust), Fisher's 

F-ratio, Durbin–Watson (DW) test, mean square error (MSE), and significant (sig) (Montgomery et 

al, 2015; Navabi and Momeni Isfahani, 2021; Kawczak et al, 2018). Model 23 showed a relation 

between the logLD50 with R3e, RDF010e, GNar, WW, RDF030p, EEig04r, CIC0, nC, S0K, X0v, 

Ss, and ESpm01r descriptors. As Table 2 shows, DW=1.067 and F=17.311 values in model 23 

indicated no autocorrelation. According to the value of R
2
=0.815 in 23

st
 model, 81.5% of logLD50 

can be described with the best model. Also, the R
2

Adjust value illustrated the real effect of applied 

independent variables on the logLD50. Thus, the value of R
2

Adjust=0.768 can be used to explain the 

logLD50 variations in terms of the values of 12 selected descriptors.  

  

14 R3e, RDF010e, GNar, R2e, WW, ESpm04d, RDF030p, 

EEig04r, EEig03r, CIC0, QXXv, nC, piPC03, S0K, X0v, Ss, 

ESpm03d, H2e, ESpm01r, RDF010u, QXXp 

0.921 0.849 0.765 0.094 10.169 0.000 

15 R3e, RDF010e, GNar, R2e, WW, ESpm04d, RDF030p, 

EEig04r, CIC0, QXXv, nC, piPC03, S0K, X0v, Ss, 

ESpm03d, H2e, ESpm01r, RDF010u, QXXp 

0.920 0.847 0.769 0.093 10.821 0.000 

16 R3e, RDF010e, GNar, WW, ESpm04d, RDF030p, 

EEig04r, CIC0, QXXv, nC, piPC03, S0K, X0v, Ss, 

ESpm03d, H2e, ESpm01r, RDF010u, QXXp 

0.919 0.845 0.771 0.092 11.458 0.000 

17 R3e, RDF010e, GNar, WW, ESpm04d, RDF030p, 

EEig04r, CIC0, QXXv, nC, piPC03, S0K, X0v, Ss, 

ESpm03d, ESpm01r, RDF010u, QXXp 

0.916 0.840 0.770 0.093 11.953 0.000 

18 R3e, RDF010e, GNar, WW, ESpm04d, RDF030p, 

EEig04r, CIC0, QXXv, nC, piPC03, S0K, X0v, Ss, 

ESpm01r, RDF010u, QXXp 

0.914 0.836 0.769 0.093 12.554 0.000 

19 R3e, RDF010e, GNar, WW, RDF030p, EEig04r, CIC0, 

QXXv, nC, piPC03, S0K, X0v, Ss, ESpm01r, RDF010u, 

QXXp 

0.913 0.834 0.773 0.092 13.537 0.000 

20 R3e, RDF010e, GNar, WW, RDF030p, EEig04r, CIC0, 

QXXv, nC, S0K, X0v, Ss, ESpm01r, RDF010u, QXXp 

0.911 0.829 0.771 0.092 14.232 0.000 

21 R3e, RDF010e, GNar, WW, RDF030p, EEig04r, CIC0, 

QXXv, nC, S0K, X0v, Ss, ESpm01r, QXXp 

0.909 0.826 0.772 0.092 15.246 0.000 

22 R3e, RDF010e, GNar, WW, RDF030p, EEig04r, CIC0, 

QXXv, nC, S0K, X0v, Ss, ESpm01r 

0.906 0.820 0.769 0.093 16.147 0.000 

23   R3e, RDF010e, GNar, WW, RDF030p, EEig04r, CIC0, 

nC, S0K, X0v, Ss, ESpm01r 

 

0.903 0.815  0.768 0.093 17.311 0.000 
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Table 2. The regression parameters of proposed models in GA-BWMLR method. 

 

  

Model Independent variables R R2 R2
adj MSE F Sig 

1 R3e, EEig04d, RDF030u, RDF010e, QXXm, GNar, 
DELS, R2e, RDF045u, BEHe5, WW, ESpm04d, 

RDF030p, piPC06, RDF025u, H2u, EEig04r, IAC, 

EEig03r, CIC0, QXXv, nC, piPC03, RDF030e, S0K, 
X0v, Ss, ESpm03d, H2e, RDF025e, ESpm02d, 

ESpm01r, RDF010u, QXXp 

0.927 0.859 0 .667 0.134 4.478 0.000 

2 R3e, EEig04d, RDF030u, RDF010e, QXXm, GNar, 
DELS, R2e, RDF045u, BEHe5, WW, ESpm04d, 

RDF030p, piPC06, RDF025u, H2u, EEig04r, IAC, 

EEig03r, CIC0, QXXv, nC, piPC03, RDF030e, S0K, 
X0v, Ss, ESpm03d, H2e, RDF025e, ESpm01r, 

RDF010u, QXXp 

0.927 0.859 0.680 0.129 4.798 0.000 

3 R3e, EEig04d, RDF030u, RDF010e, QXXm, GNar, 
DELS, R2e, RDF045u, BEHe5, WW, ESpm04d, 

RDF030p, RDF025u, H2u, EEig04r, IAC, EEig03r, 

CIC0, QXXv, nC, piPC03, RDF030e, S0K, X0v, Ss, 

ESpm03d, H2e, RDF025e, ESpm01r, RDF010u, 

QXXp 

0.927 0.859 0.692 0.124 5.134 0.000 

4 R3e, EEig04d, RDF030u, RDF010e, QXXm, GNar, 

DELS, R2e, RDF045u, BEHe5, WW, ESpm04d, 

RDF030p, RDF025u, H2u, EEig04r, IAC, EEig03r, 
CIC0, QXXv, nC, piPC03, S0K, X0v, Ss, ESpm03d, 

H2e, RDF025e, ESpm01r, RDF010u, QXXp 

0.927 0.859 0.702 0.120 5.484 0.000 

5 R3e, EEig04d, RDF030u, RDF010e, QXXm, GNar, 
DELS, R2 

 

e, RDF045u, WW, ESpm04d, RDF030p, RDF025u, 
H2u, EEig04r, IAC, EEig03r, CIC0, QXXv, nC, 

piPC03, S0K, X0v, Ss, ESpm03d, H2e, RDF025e, 

ESpm01r, RDF010u, QXXp 

0.926 0.858 0.712 0.116 5.852 0.000 

6 R3e, RDF030u, RDF010e, QXXm, GNar, DELS, R2e, 

RDF045u, WW, ESpm04d, RDF030p, RDF025u, H2u, 

EEig04r, IAC, EEig03r, CIC0, QXXv, nC, piPC03, 
S0K, X0v, Ss, ESpm03d, H2e, RDF025e, ESpm01r, 

RDF010u, QXXp 

0.926 0.858 0.721 0.112 6.253 0.000 

7 R3e, RDF030u, RDF010e, QXXm, GNar, R2e, 
RDF045u, WW, ESpm04d, RDF030p, RDF025u, H2u, 

EEig04r, IAC, EEig03r, CIC0, QXXv, nC, piPC03, 

S0K, X0v, Ss, ESpm03d, H2e, RDF025e, ESpm01r, 
RDF010u, QXXp 

0.926 0.857 0.728 0.109 6.654 0.000 

8 R3e, RDF010e, QXXm, GNar, R2e, RDF045u, WW, 

ESpm04d, RDF030p, RDF025u, H2u, EEig04r, IAC, 
EEig03r, CIC0, QXXv, nC, piPC03, S0K, X0v, Ss, 

ESpm03d, H2e, RDF025e, ESpm01r, RDF010u, 

QXXp 

0.925 0.856 0.735 0.107 7.050 0.000 

9 R3e, RDF010e, QXXm, GNar, R2e, WW, ESpm04d, 

RDF030p, RDF025u, H2u, EEig04r, IAC, EEig03r, 

CIC0, QXXv, nC, piPC03, S0K, X0v, Ss, ESpm03d, 
H2e, RDF025e, ESpm01r, RDF010u, QXXp 

0.925 0.855 0.741 0.104 7.492 0.000 

10 R3e, RDF010e, QXXm, GNar, R2e, WW, ESpm04d, 

RDF030p, RDF025u, H2u, EEig04r, EEig03r, CIC0, 
QXXv, nC, piPC03, S0K, X0v, Ss, ESpm03d, H2e, 

RDF025e, ESpm01r, RDF010u, QXXp 

0.924 0.854 0.747 0.102 7.957 0.000 

11 R3e, RDF010e, QXXm, GNar, R2e, WW, ESpm04d, 

RDF030p, RDF025u, EEig04r, EEig03r, CIC0, QXXv, 

nC, piPC03, S0K, X0v, Ss, ESpm03d, H2e, RDF025e, 

ESpm01r, RDF010u, QXXp 

0.923 0.852 0.751 0.100 8.427 0.000 

12 R3e, RDF010e, GNar, R2e, WW, ESpm04d, 

RDF030p, RDF025u, EEig04r, EEig03r, CIC0, QXXv, 

nC, piPC03, S0K, X0v, Ss, ESpm03d, H2e, RDF025e, 
ESpm01r, RDF010u, QXXp 

0.923 0.852 0.757 0.098 8.985 0.000 

13 R3e, RDF010e, GNar, R2e, WW, ESpm04d, 

RDF030p, EEig04r, EEig03r, CIC0, QXXv, nC, 
piPC03, S0K, X0v, Ss, ESpm03d, H2e, RDF025e, 

ESpm01r, RDF010u, QXXp 

0.922 0.850 0.761 0.096 9.556 0.000 
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55 Propham 

N
H

O

O

 

3.3344 

56 Carbamic acid, acetylmethyl-, 2-(1,1-
dimethylethyl)-2-methyl-1,3-benzodioxol-

4-yl ester 
N O

OO

O

O

 

3.6020 

57 Fenoxycarb 

N
H

O

O

OO

 

3.6990 

58 Felbamate 

H2N O

O

O NH2

O

 

3.6990 

59 Hydroxyphenamate 

H2N O

O

OH

 

3.6990 

60 Tiocarbazil 

N S

O

 

3.9031 

First, the structure of the carbamates derivatives was drawn by GaussView (5.0) software, and 

optimization was carried out by Gaussian 09 software (Frisch et al, 2009) with Becke, 3-parameter, 

Lee–Yang–Par (B3LYP) theory level (Tsuneda, 2014) and 6-31G* basis set (Tsuneda and Hirao, 

2014) Second, the Dragon software (online 5.4 version) was used to compute the molecular 

descriptor of studied carbamates derivatives, and traded into the MATLAB (version 2017a) 

environment (Todeschini and Consonni, 2008). Third, inappropriate descriptors were removed 

using GA method, and the most suitable ones were extracted for QSTR modeling (Ahmadi and 

Habibpour, 2017; Ahmadi and Ganji, 2016; Mirjalili, 2019; Glavanovic et al, 2016; Liu et al, 

2020). The GA is an accidental method that solves the optimization problems defined by fitness 

criteria, applying the evolution theories of Darwin, unlike genetic functions such as crossover and 

mutation (Lin et al, 2018; Niazi and Leardi, 2012; Sarkhosh et al, 2014; Leardi, 2003; Niazi and 

Leardi, 2012). Finally, the GA-BWMLR technique was performed using the Statistical Package for 

the Social Sciences (SPSS, version 22) software (Randic and Basak, 2000; Hocking, 2013), and the 

GA-BPANN model was presented with Neural Network Toolbox in MATLAB software (Sigmon 

and Davis, 2004). 

 

RESULTS AND DISCUSSION 
Multiple linear regression method 

A total of 3,224 descriptors computed by the Dragon software were traded into the MATLAB 

program. All inappropriate and repetitive descriptors were removed using the GA, and 34 

descriptors were selected for GA-BWMLR analysis. Data analysis resulted in 23 models with 34 to 

12 descriptors. Table 2 shows the regression parameters and quality of correlation of proposed 

models in GA-BWMLR method. 
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43 Hexapropymate 

H2N O

O

 

2.9542 

44 Methylpentynol carbamate 

H2N O

O

 

2.9542 

45 Ethanol, 2-chloro-, 1-carbamate 

O

H2N O
Cl

 

2.9777 

46 Carbamic acid, 

methyl((phenylthio)sulfinyl)-, 1-

naphthalenyl ester 

N O

O

S
S

O

 

3.0000 

47 Mephenesin carbamate 

H2N O

O

O

OH  

3.0211 

48 Carbamic acid, butyl-, 2-chloroethyl ester 

N
H

O

O

Cl

 

3.0334 

49 Styramate 

H2N O

O

OH  

3.0944 

50 1-Propanol, 3-(3,4-dimethoxyphenyl)-, 

carbamate (ester) 

O

H2N O O

O

 

3.1139 

51 Carbamic acid, 3-(o-

hydroxyphenyl)propyl ester 

O

H2N O

HO  

3.1300 

52 Promacyl 

N
H

O

O

O  

3.3010 

53 Carbamic acid, methyl(1-oxobutyl)-, 2,2-
dimethyl-1,3-benzodioxol-4-yl ester 

N O

O

O

O

O

 

3.3010 

54 1-Oxa-4-thiaspiro(4.5)decane-2-methanol, 
carbamate 

S

O
O NH2

O

 

3.3010 
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31 Desmedipham 

O

H
N O

O

H
N O

 

2.6990 

32 Carbamic acid, alpha-
(chloromethyl)phenethyl ester 

H2N O

O Cl

 

2.7634 

33 Carbamic acid, methyl((2-
pyridinylmethoxy)sulfinyl)-, 3-

methylphenyl ester 

N O

O

S
O

O

N

 

2.8751 

34 Carbamic acid, methyl((3-(2-

pyridinyl)propoxy)sulfinyl)-, 3-
methylphenyl ester 

 N O

O

S
O

O

N
 

2.8751 

35 Emylcamate 

H2N O

O

 

2.8808 

36 2-Propyn-1-ol, 3-phenyl-, carbamate 

(ester) 

O

H2N O

 

2.9031 

37 Betaquil 

H2N O

O

 

2.9031 

38 Tybamate 

H2N O

O

O N

O

 

2.9031 

39 Chlorphenesin carbamate 

H2N O

O

O

OH

Cl

 

2.9069 

40 Methocarbamol 

H2N O

O

O

OH O
 

2.9095 

41 Carbamothioic acid, S-(2-oxo-2-

(phenylamino)ethyl) ester 

N
H

SH2N

O

O  

2.9191 

42 Carbamic acid, methyl((2-(2-

pyridinyl)ethoxy)sulfinyl)-, 3-
methylphenyl ester 

N O

O

S
O

O

N

 

2.9395 
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20 Carbamic acid, 
methyl((phenylmethoxy)thio)-, 3-(1-

methylethyl)phenyl ester 

N O

O

S
O

 

2.3222 

21 Thiodicarb 

S N
O N

S
N O

O O

N S

 

2.3541 

22 Carbamic acid, methyl(1-oxobutyl)-, 1,3-

benzodioxol-4-yl ester 

N O

O

O

O

O

 

2.4471 

23 Carbamic acid, methyl(1-oxopropyl)-, 2,2-
dimethyl-1,3-benzodioxol-4-yl ester 

N O

O

O

O

O

 

2.4471 

24 Carbamic acid, acetylmethyl-, 2,2-

dimethyl-1,3-benzodioxol-4-yl ester 

N O

OO

O

O

 

2.4771 

25 Carbamic acid, methyl(phenylthio)-, o-

isopropoxyphenyl ester 

N O

O

S

O

 

2.4771 

26 Methylpentynol carbamate 

H2N O

O

 

2.5276 

27 Carbazic acid, 3-benzyl-, methyl ester 

N
H

O

O

H
N

 

2.5740 

28 Carbamic acid, methyl((2-
methylphenyl)thio)-, o-isopropoxyphenyl 

ester 
N O

O

S

O

 

2.6020 

29 Carbamic acid, methyl 
((methylthio)acetyl)-, o-isopropoxyphenyl 

ester 
N O

OO

S

O

 

2.6335 

30 Ethinamate 

H2N O

O

 

2.6902 
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10 Pyrolan 
 

(3-Methyl-1-phenyl-1H-pyrazol-5-yl 

dimethylcarbamate) 

N O

O

N

N

 

1.9542 

11 Carbamic acid, methyl((3-(3-

pyridinyl)propoxy)sulfinyl)-, 3-(1-

methylethyl)phenyl ester 

N O

O

S
O

O

N  

2.0000 

12 Trimethacarb 

N
H

O

O

 

2.0043 

13 Carbamic acid, methyl((2-
pyridinylmethoxy)sulfinyl)-, 3-(1-

methylethyl)phenyl ester 

N O

O

S
O

O

N

 

2.0212 

14 Carbamic acid, acetylmethyl-, 2-ethyl-2-
methyl-1,3-benzodioxol-4-yl ester 

N O

OO

O

O

 

2.0969 

15 Carbaryl 

N
H

O

O

 

2.1072 

16 Carbamic acid, methyl((2-(2-

pyridinyl)ethoxy)sulfinyl)-, 3-(1-

methylethyl)phenyl ester 
N O

O

S
O

O

N

 

2.1139 

17 Carbamic acid, methyl(phenylthio)-, m-
isopropylphenyl ester 

N O

O

S

 

2.1760 

18 N-(2-Toluenesulfonyl) carbofuran 

N O

O

S

OO

O

 

2.1760 

19 Carbamic acid, acetylmethyl-, 4-
(dimethylamino)-3,5-xylyl ester 

N O

OO
N

 

2.3010 
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Table 1. The chemical structure of studied carbamates. 

NO Name Structure Log LD50 

1 Methomyl 

N
H

O

O

N S

 

1.0000 

2 Carbamic acid, 

methyl((pentachlorophenyl)thio)-, 2,3-
dihydro-2,2-dimethyl-7-benzofuranyl 

ester N O

O

S

O
Cl Cl

Cl

Cl

Cl

 

1.3010 

3 Carbamic acid, methyl(phenylthio)-, 2,3-

dihydro-2,2-dimethyl-7-benzofuranyl 

ester 
N O

O

S

O

 

1.3979 

4 Xylylcarb 

N
H

O

O

N

S

N

O

 

1.6580 

5 Carbamic acid, methyl((1-

methylethoxy)thio)-, 2,3-dihydro-2,2-

dimethyl-7-benzofuranyl ester 
N O

O

O

O

S

 

1.7404 

6 Carbamic acid, 

methyl((phenylmethoxy)thio)-, 2,3-
dihydro-2,2-dimethyl-7-benzofuranyl 

ester N O

O

S
O

O

 

1.7708 

7 Dimetilan 

N O

O

N N

N O

 

1.7781 

8 Pirimicarb 

N O

O

N

N

N

 

1.8325 

9 Pirimicarb 

N O

O

N

N

N

 

1.8325 
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In a research, a large number of physicochemical, thermodynamics, and structural descriptors 

were calculated for pesticides. Then, several robust QSAR models with high values of coefficient 

of determination (for training and test sets) were built using a combination of molecular 

descriptors. Finally, the quantitative structure-toxicity relationship (QSTR) study was used when 

applying the modeling on toxicological or pharmacokinetic systems (Gupta, 2011; Yang et al, 

2020). Bermudez‐Saldana and Cronin used multiple linear regression (MLR) and partial least 

squares (PLS) regression methods to investigate the toxicity of a chemically heterogeneous set of 

organophosphorus and carbamate pesticides to rainbow trout (Oncorhynchus mykiss Walbaum) 

(Berudez‐Saldana et al, 2009). A structure-activity relationship (SAR) of a series of O-biphenyl 

carbamates as dual modulators of dopamine receptor and fatty acid amide hydrolase was reported 

(De Simone et al, 2017). Kumar et al. performed atom-based 3D-QSAR model for both targets, 

including acetylcholinesterase and monoamine oxidase B enzymes, which provided basis for new 

structural scaffold to serve as building blocks in designing drug-like molecules for Alzheimer’s 

disease (Kumar et al, 2014). Some 2D-QSAR studies used density functional theory (DFT) and 

Lipinski's descriptors through MLR model to explore the relationships between the structural 

features of 36 carbamate derivatives and inhibitory activity of butyrylcholinesterase agents (Nour et 

al, 2022). Also, QSAR analyses were independently performed on data sets belonging to both 

organophosphates and carbamates of insecticides . (Naik et al, 2009). The wide use of pesticides 

has received increasing attention in regulatory agencies due to their wide overuse and different 

adverse effects on all living organisms. In this regard, organizations such as the United States 

Environmental Protection Agency (EPA) and European Chemicals Agency (ECHA) put laws into 

effect that pesticides should be fully evaluated before marketing. Thus, techniques based on the 

QSAR methods using linear models such as MLR (Souyei et al, 2019; Zapadka et al, 2019) PLS 

(Chen et al, 2019; Gaullier et al, 2019) and principal component analysis (PCA) (Tripathi and 

Singal, 2019; Amari, 1990) and nonlinear models such as artificial neural networks (ANN) (Adad 

et al, 2013; Amiri et al, 2020; Bora et al 2019) and k-nearest neighbor (KNN) were successfully 

developed to model and predict the activity of chemical compounds.                                               

Accordingly, in this research, we evaluated toxicity of pesticides using genetic algorithm (GA) 

with backward stepwise multiple linear regression (GA-BWMLR) (Kutner et al, 2005) and 

backpropagation artificial neural networks (GA-BPANN) models (Thapliyal et al, 2018). 

 

EXPERIMENTAL METHOD 

The chemical structures of 60 types of carbamates and their lethal dose (LD50) values in mouse 

were obtained from an available toxicological experimental database (Table 1) (Chem ID plus). 
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INTRODUCTION 
Carbamate derivatives are generally used as insecticides, pesticides, and herbicides. The general 

formula of carbamate pesticides is RHNCOOR. They have low polarity, chemical reactivity, and 

high solubility in water (Roberts et al, 1998; Piel et al, 2019). If carbamate pesticides are used 

properly, they can increase agricultural production and protect humans and animals from insect-

vector-mediated diseases. Moreover, pesticides have relatively provided significant benefits by 

protecting humans from disease threats, and increasing the potency to produce food and fiber. 

However, overexposure of humans and animals to these compounds often results in poisonings. 

Recently, the misuse of pesticides has become a major environmental concern. Since pesticides are 

toxic to living organisms, there is major public concern over the effect of these substances not only 

on human beings but also on beneficial organisms in the environment. In this respect, it is believed 

that birds, fish, mice, and other organisms might be affected by pesticides (Testa et al, 2003; Ghosh 

and Brindisi, 2015). The mechanism of action of the carbamates and organophosphates is related to 

the inhibition of the enzyme cholinesterase. Carbamate insecticides yield their toxicity by 

inhibiting acetylcholinesterase (ACHE) enzyme (Roberts et al, 1999). which hydrolyzes the pod 

synaptic effector, acetylcholine into choline and acetic acid. The inhibition of ACHE leads to the 

buildup of acelylcholine in the postsynaptic membrane, resulting in a constant nerve stimulation 

with fatal results. 

This stimulation manifests itself by ungovernable movements and paralysis in insects 

(Ballantyne and Marrs, 2017; Pope et al, 2005; Pohanka, 2012). Quantitative structure-activity 

relationship (QSAR) technique can provide information about the relationship between chemical 

structure with biological activity of a compound, which is important in selecting the compound or 

removing the compound before its synthesis (Lee and Barron, 2016; Sun et al, 2021) especially 

when experimental testing is not possible for a compound. The QSAR technique is based on the 

assumption that similar compounds have structurally similar activities. This technique makes a 

correlation between the activity, such as toxicity of a certain chemical compound, and its structural 

properties through a definite mathematical algorithm. Then, this relationship can be used in the 

prediction, interpretation, and assessment of desired activities of new compounds with reducing 

and rationalizing time. The QSAR study suggests to identify the essential structural features and 

physicochemical properties in carbamate derivatives (Yee and Wei, 2012). It also provides the 

possibility to make predictions of designed compounds before the chemical synthesis of novel 

analogues, and at the same time helps to understand the interactions between functional group of 

designed molecules and the activity of target molecule (Toropov et al, 2015; Cappelli et al, 2015; 

Amiri et al, 2020; Fourches and Ash, 2019). Molecular descriptors are the most important 

components of the QSAR and can be obtained experimentally or through mathematical formulas, 

such as quantum mechanics and chemical graph theory. These descriptors have different kinds, 

including constitutional, steric, geometric, electrostatic, quantum chemical, lipophilic, electronic, 

and topological, which describe the structure of molecules and help to predict the activity and 

properties of molecules in complex experiences. 

  

15 



IAU Journal of Entomological Research                                                                                                    Volume 14, Issue 4, 2023, (14-35) 

833 
 

 

 

 

Applying quantitative structure-toxicity relationship (QSTR) 

model to predict the toxicity of pesticide carbamates using 

computation methods and molecular descriptors 
 

 

S. A. Moosavi
1
, E. Mohammadinasab

2*
, T. Momeni Isfahani

3 

 
1. PHD student, Department of Chemistry, Arak Branch, Islamic Azad University, P.O. BOX 38135-567, Arak, Iran 

2. Assistant Professor, Department of Chemistry, Arak Branch, Islamic Azad University, P.O. BOX 38135-567, Arak, Iran 

3. Assistant Professor, Department of Chemistry, Arak Branch, Islamic Azad University, P.O. BOX 38135-567, Arak, Iran 

 

 
 

Abstract 

 

In this study, we performed quantum mechanics computation at density function theory level 

with 6-31G* basis set to construct a quantitative structure-toxicity relationship (QSTR) model for 

predicting lethal dose (LD50) pesticide carbamates derivatives. The best molecular descriptors were 

selected using genetic algorithm (GA) by MATLAB software. Then, we studied the relationship 

between the selected descriptors and the logLD50 of carbamate derivatives using backward-

stepwise multiple linear regression (BW-MLR) and backpropagation artificial neural network (BP-

ANN) models. The RDF010e, WW, and R3e descriptors were applied for modeling the GA-

BWMLR and GA-BPANN models. The comparison of results illustrated that the R
2
 and Q

2
 of GA-

BPANN model for all set were significantly higher than the GA-BWMLR model. The GA-BPANN 

model was more accurate with lower mean square error (MSE), root-mean-square error (RMSE), 

standard error of prediction (SEP), and absolute average deviation (ADD) values of data set for 

predicting the LD50 of studied carbamates. 
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