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ABSTRACT 

In many practical problems, we face situations where the data ratio is important 

for the decision-maker (DM). Data envelopment analysis ratio-based (DEA-R) 

and ratio analysis models are presented to deal with the above issue in data envel-

opment analysis (DEA). If the data is uncertain, it is no longer possible to use the 

basic DEA-R and ratio analysis models to evaluate the efficiency of decision-

making units (DMUs). In this paper, we will first discuss robust optimization 

modelling based on DEA-R models. In this regard, we consider a case where the 

inputs have an uncertain numerical value and the outputs have certain values. In 

the following, we present the ratio analysis model based on the set of common 

weights of all the ratios of input to output components and obtain this model for 

robust optimization. To show the validity of the proposed approach, we use it to 

evaluate the efficiency of 38 excellent banks that compete in the global market 

and compare the results of the proposed approach in this paper with the results of 

previous approaches. 

 

 

1 Introduction 
DEA is a non-parametric linear programming technique developed by Charnes et al. [14] to evaluate 

the efficiency of a set of homogeneous DMUs that use several inputs to produce several outputs. Clas-

sical DEA models evaluate the efficiency of units under evaluation in the form of envelopment and 

multiplier models. Envelopment DEA models depict the DMU under evaluation on the efficiency fron-

tier of the production possibility set (PPS). These models obtain the target DMU corresponding to the 

inefficient DMUs. Inefficient DMUs must reach the level of their inputs and outputs at the level of 

inputs and outputs from their corresponding target DMUs in order to obtain the desired performance 

level. The multiplier models consider a weight corresponding to each of the input and output compo-

nents. These models obtain the optimal weights in such a way that the efficiency score of the under 

evaluation DMU is maximized compared to other DMUs. Based on traditional multiplier models, the 

efficiency score of DMUs is not evaluated under the same conditions. (Dyson and Thanassoulis, [21]). 

To deal with the above issue, DEA models were presented based on a set of common weights. The main 

goal of DEA models with the set of common weights is to evaluate all DMUs under the same conditions. 

These models obtain the efficiency score of all DMUs with only a set of common weights corresponding 

to each of the input and output components, while the weight corresponding to each of the input and 
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output components can be different for distinct DMUs based on multiplier models (Kao and Hung [37]). 

Omrani [49] presented an approach to measuring the efficiency score of DMUs in the presence of un-

certain data based on robust optimization. In his approach, he used the set of common weights of input 

and output components in the DEA model when we evaluate DMUs in the same condition. Salahi et al. 

[60] presented DEA models in envelopment and multiplier forms in the presence of uncertain data. 

Their approach obtained a different rank than the approach presented by Omrani [49] for all DMUs. At 

first, they presented their model for the CCR model in an envelopment form based on robust optimiza-

tion. In the following, they proposed a model based on the method presented by Kao and Hung [37] for 

generating a set of common weights. Their model evaluates DMUs in the same conditions. They showed 

the superiority of their models over Omrani's model [49] statistically. In classic DEA models, all inputs 

and outputs have definite and exact and certain values. However, in the real world, we face many cases 

where the input and output data do not have exact values. As we know, a small disturbance in the data 

may have a great impact on the optimality and feasibility of the solution of these models. Therefore, the 

development of these traditional DEA models is important to deal with uncertain data. Many studies 

have been done to deal with uncertain data in DEA, for example, we can mention the following studies: 

DEA with fuzzy data (Hatami-Marbini et al. [29]; Zhou et al. [77]), DEA with random data or sto-

chastic DEA (Olesen and Petersen [47]), DEA based on the bootstrap technique (Odeck [45]), Impre-

cise DEA in the presence of interval data (Zhu [78]), DEA based on the robust DEA (RDEA) optimi-

zation technique (Sadjadi and Omrani [57]; Tavana et al. [67]). Imprecise DEA received a flurry of 

interest from its introduction where the uncertain data are characterized by bounded intervals. The main 

drawback of imprecise DEA methods is that the upper and lower efficiency bounds are merely deter-

mined and no information within the efficiency interval is provided (Zhu [78]). The other approach is 

stochastic DEA approach. This approach is based upon stochastic optimization to deal with stochastic 

uncertainty. This approach requires the determination of a probability distribution function for noisy 

data, although in real-world problems this assumption may not work properly because there is insuffi-

cient empirical evidence to choose a specific distribution function. Furthermore, it is difficult to apply 

stochastic optimization in DEA when the sample size is small (Olesen and Petersen [47]). Bootstrap 

DEA investigates the statistical properties of the efficiency measures estimated by DEA models using 

bootstrap algorithms. This approach has two main difficulties: (1) the number of iterations required in 

this algorithm and (2) finding a suitable value of the smoothing parameter (Odeck [45]). The other 

approach is fuzzy DEA. It handles vague and ambiguous data such as linguistic variables. The existing 

methods can be classified into (1) 𝛼 −cut-based approach, (2) tolerance approach, (3) fuzzy ranking 

approach, (4) possibility approach. Notably, the applicability of fuzzy DEA is often questionable be-

cause there is no clear way to define the membership functions of fuzzy inputs and outputs, as well as 

little theoretical and computational complexity in fuzzy mathematical programming problems (Hatami-

Marbini et al. [29]). The robust DEA is a suitable approach to deal with some drawbacks of the aforesaid 

methods. In this paper, we consider uncertain data in the framework of robust optimization. The robust 

optimization technique was first presented by Soyster [65] and then developed by Mulvey et al. [43], 

Ben-Tal and Nemirovski [7–9], and Bertsimas and Sim [10-12]. Ben-Tal and Nemirovski [9] replaced 

an uncertainty linear programming problem with its robust counterpart (RC) programming problem and 

obtained robust solutions to an uncertain LP problem by solving a RC. This approach can estimate the 

robust solution probability when the uncertain coefficients follow some natural probability distribu-

tions. It was also more conservative than the Soyster [65] approach. The weakness of the Ben-Tal and 

Nemirovski [9] approach is that it turns LP models such as DEA into second-order conical programming 
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(for more details, see Ben-Tal and Nemirovski [9]). Bertsimas and Sim (BS) [13] and Bertsimas, Pa-

chamanova, and Sim [10] introduced a new approach where the DM can make a trade-off between the 

level of protection for the constraints and the degree of conservatism of the solution. Contrary to the 

approach of Ben-Tal and Nemirovski [9], the RC problem proposed by Bertsimas and Sim [13] is a 

linear programming (LP) problem. At first, Sadjadi and Omrani [57] introduced DEA model in the 

presence of uncertain data. In DEA literature, DEA models in the presence of uncertain data are called 

Robust DEA (RDEA) model. Subsequently, several studies were conducted in this field. Sajjadi and 

Omrani [58] applied a bootstrap model for estimating the efficiency score of communication companies.  

Salahi et al. [60, 62] proposed a robust optimization approach based on common weights in DEA. Om-

rani et al. [50] applied RDEA to evaluate supply chain performance in the presence of uncertain data. 

Toloo and Mensah [68] presented robust optimization with non-negative variables based on DEA. 

Hatami-Marbini and Arabmaldar [33] developed RDEA for cost and revenue concepts in DEA. Toloo 

et al. [69] proposed a general RDEA based on the duality concept. Dehnokhalaji et al. [20] proposed a 

box-uncertainty in DEA and a robust performance measurement framework. In classic DEA models, 

data are absolute numerical values. However, in the real world, we may face many cases where the data 

is a ratio. For example, in evaluating the efficiency of university units, the ratio of the number of grad-

uating students in an academic course to the total number of students enrolled in that course can be 

considered ratio data. The studies conducted to deal with ratio data in DEA include three categories: 

The first category includes articles that use ratio data as decimal numbers in the model. These article 

use of ratio and volume data in the model simultaneously. Among the studies done in this field, articles 

of Olesen et al. [46, 48] can be mentioned. The second category includes articles that use the simulta-

neous presence of ratio and volume data in the model but the ratio data are replaced in the model as 

fractional numbers that have a specific numerator and denominator. These models use the numerator 

and denominator of fractions in the evaluation model. Among the studies carried out, we can mention 

the articles of Emrouznejad and Amin [22] and Hatami-Marbini and Toloo [31]. In the third category, 

we can refer to articles where the data are not inherently ratio and we only use the ratio of input to 

output components or vice versa as ratio data. These articles were initially presented as ratio analysis 

models and later as DEA-R models. Thanassoulis et al. [66] used ratio analysis and DEA models as a 

tool to evaluate the performance of DMUs. They also compared the results of these models. Fernandez-

Castro and Smith [23] proposed ratio analysis model as linear model for evaluating the performance of 

DMUs. In the discussion of ratio analysis and DEA-R models, the input and output parameters are not 

ratios, and all parameters are absolute, but their ratios are used to define efficiency and calculate the 

efficiency score. Also, Chen and McGinnis [16] proposed a mathematical relationship between the DEA 

technique and ratio analysis. They described the relationship between metric ratio efficiency and tech-

nical efficiency in detail. Liu et al. [38] first proved the relationship between ratio analysis models and 

output-oriented DEA models without explicit inputs in VRS technology. Then, they compared the effi-

ciency scores in ratio analysis and DEA for 15 basic research institutes in the Chinese Academy of 

Sciences (CAS). On the other hand, Despic et al. [19] developed DEA-R models by combining DEA 

and ratio analysis. Then, Wei et al. [74] evaluated 21 medical centres in Taiwan and, in addition to 

ranking the DMUs, studied the relationship between weights in multiplier models in DEA-R. In DEA-

R theory, the efficiency function is defined as a weighted sum of outputs to inputs components (the 

output-oriented) or vice versa. Gerami et al. [27] developed slack based measure (SBM) DEA models 

based on DEA-R models to gain efficiency and super efficiency scores. It can be said that the main 

contribution of this paper is as follows: In this paper, DEA-R models presented in the input orientation 

under uncertainty conditions based on the BS approach. In this regard, we obtain the RC of the DEA-R 
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model in the envelopment form. The efficiency score obtained corresponding to each DMU under the 

conditions that inputs and outputs have uncertain and certain values, respectively. In the following, the 

ratio analysis models examined and developed based on the set of common weights of all the ratios of 

input to output components. Also, the ratio analysis model obtained with a set of common weights under 

uncertainty conditions based on the BS approach. Also, The RC model is obtained corresponding to 

this model. The robust ratio analysis model is provided to find a set of common weights from all the 

ratios of input to output components corresponding to all the DMUs when input components have un-

certain values but output components have certain values, respectively. In the end, to show the validity 

of the proposed approach in the paper, it has been used to evaluate the efficiency of 38 branches of 

Premium Bank that operate in the global competitive market and compare the results of the proposed 

approach in this paper with the results of previous studies in this field.The rest of this paper is organized 

as follows: In the second section, we review the previous studies done in the following subjects: the set 

of common weights, robust DEA, and ratio data in DEA. In the third section, DEA-R models examined 

and presented under uncertainty based on the BS approach. In the fourth section, ratio analysis models 

are provided based on a set of common weights from all ratios of input to output components corre-

sponding to all DMUs, and we obtain these models in uncertainty based on the BS approach. In the fifth 

section, the proposed approach used in this paper to evaluate the efficiency of 38 excellent banks that 

are active in the global competitive market, and at the end, the results of this paper are presented. 

 

2 Literature Review 

In this section, we review the studies conducted in the following subjects: the set of common 

weights, robust DEA, ratio data in DEA. 

2.1 The set of Common Weights in DEA 

Roll et al. [55-56] proposed one of the early studies in the field of assigning a set of common weights 

in DEA. They presented an approach to finding an appropriate bound on the weights to reduce the 

deviation in importance according to the same factor for different DMUs. Roll and Golany [55] pre-

sented a conceptual framework for the behaviour of weights in DEA. They put a bound on the weights 

and then limited the range of the weights. Kao and Hung [37] presented a nonlinear programming model 

to generate a common set of weights for all DMUs. Their method obtains a vector of efficiency scores 

closest to the corresponding efficiency scores generated from traditional DEA models. Makui et al. [39] 

presented an approach to obtaining the set of common weights based on multi-objective linear program-

ming (MOLP) and obtaining the efficiency scores of the DMUs. Chen et al. [15] presented a model to 

generate a set of common weights to evaluate the efficiency of DMUs based on changes in inputs and 

outputs. Zohrehbandian et al. [79] improved the method of Kao and Hung [37] by using the multiple 

criteria decision-making (MCDM) model and presented a nonlinear model to find the set of common 

weights. They showed that their method has a high correlation with the method of Kao and Hung [37]. 

Hosseinzadeh Lotfi et al. [35] proposed a suitable method for finding the set of common weights in 

DEA and used it for allocating fixed cost. Hatami-Marbini et al. [35] developed common weight models 

for central resource reduction and target setting. Jahanshahloo et al. [36] proposed a suitable method 

for fixed cost allocation in DEA based on the principles of the set of common weights and efficiency 

deviation. Ghazi and Hosseinzadeh Lotfi [24] presented a model based on the set of common weights 

in DEA for evaluating and allocating budgets from natural gas distribution companies in Iran. Zarei 

Mahmoudabadi and Emrouznejad [76] presented balanced performance evaluation models under un-

certainty based on models with common weight structures in the presence of fuzzy data. Soltanifar et 
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al. [64] presented a new approach for resource allocation and target setting in DEA based on a set of 

common weights and multi-objective optimization. They calculate the efficiency of DMUs based on 

the ratio of output to input weights .They also used bargaining theory to evaluate DMUs. Afsharian et 

al. [1] presented a study and review of a collection of articles that used the set of common weights in 

DEA models to evaluate performance. They separated these models based on functional aspects and 

model form. Contreras et al. [17] and Contreras [18] reviewed the studies conducted in the DEA articles 

based on the set of common weights technique. Hatami-Marbini and Saati [32] presented network effi-

ciency evaluation models based on the method of a set of common weights in DEA. Omrani et al. [51] 

presented different models to evaluate the efficiency of DMUs based on the strategy of the best and 

worst solution in DEA. They used the DM's superiority information in the common weights model. 

2.2 Robust DEA 

Sadjadi and Omrani [57] introduced a new DEA model for dealing with uncertain data. These models 

called robust DEA (RDEA) in the literature DEA. They applied their model for evaluation of electric 

distribution companies in presence of uncertain input and output data. Sadjadi and Omrani [58] used a 

bootstrap model to estimate the efficiency of communication companies in Iran. Their approach was 

used to deal with imprecise data in an uncertain environment. Wang and Wei [70] presented RDEA 

models in the presence of uncertain data based on the MCDM programming structure. Sadjadi et al. 

[59] presented a robust super efficiency DEA model for evaluating and ranking provincial gas compa-

nies. They showed that the model presented by them is superior to the chance-constrained programming 

models from the computational point of view, and all the DMUs with uncertain inputs and outputs can 

be ranked. Omrani [49] presented an ideal planning technique with robust optimization to study a set 

of common weights in DEA. He presented a DEA model with the structure of the set of common weights 

in the presence of uncertain data based on a robust optimization approach. He presented a RC to the 

DEA model. He obtained the ideal solution for each DMU and then obtained a set of common weights 

for all DMUs using the optimal programming technique. He used the provided approach to evaluate the 

efficiency of provincial gas companies in Iran. Salahi et al. [60, 62] presented a robust optimization 

approach based on the set of common weights in DEA. They presented the RC corresponding to the 

CCR model in envelopment and multiplier forms. They showed that these models are equivalent. They 

showed that by choosing the common weights strategy, we can have an evaluation under the same 

conditions for all DMUs. In this regard, they presented robust solutions corresponding to their RDEA 

model based on the set of common weights and compared the results of their approach with the results 

of previous approaches by considering the ideal solution. Omrani et al. [50] presented supply chain 

performance evaluation models in the presence of uncertain data based on robust optimization. Arab-

maldar et al. [2] presented a robust super-efficiency DEA model. Salahi et al. [61] obtained Russell's 

non-radial measure in DEA to measure the performance of interval and ellipsoidal uncertainty sets in 

the best and worst cases. Toloo and Mensah [68] presented robust optimization with non-negative var-

iables based on DEA. They presented a new framework for RDEA with the idea of reducing the com-

putational aspect. They presented RDEA based on reduced RC. They used their approach to evaluate 

the performance of 250 banks operating in the European Union. They showed that the models provided 

by them reduce the number of calculations by 50% to solve DEA problems with non-negative variables. 

Their approach would reduce the number of calculations without changing the optimal solution. Shirazi 

and Mohammadi [63] developed a new RDEA approach in the presence of undesirable outputs. They 

calculated the efficiency of the airlines and presented a corrective plan to the top managers of these 

companies to improve their performance. Salahi et al. [62] developed RDEA models in the envelopment 

and multiplier forms. At first, they proposed a new DEA model in the constant returns to scale (CRS) 
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technology in the presence of uncertain data. They obtain the RC model corresponding to the CCR 

model. In the following, using the Kao and Hung [37] method to determine a set of common weights, 

they obtained the CCR multiplier model in the presence of uncertain data. They showed that it is pos-

sible to obtain more correct ranks for the DMUs based on the provided approach than the method pro-

vided by Omrani [49]. They increased the discriminating power of the weights based on the provided 

models. Arabmaldar et al. [3] presented a robust worst-practice interval DEA model in the presence of 

non-discretionary factors. They reviewed the worst-practice frontier (WPF) DEA model fundamentally 

and presented a new robust WPF-DEA model in the presence of interval data and non-discretionary 

factors. Their approach was presented based on robust optimization and considering uncertain data. 

They used Monte-Carlo simulation to calculate the conformity of rankings in the efficiency interval as 

well as determine the price of robustness in order to select the worst-performing suppliers. Wu et al. 

[57] provided models for evaluating efficiency in presence of data uncertainty in DEA. Nasrabadi et al. 

[44] presented RDEA models based on interval data. Further they analyzed the robustness of the effi-

ciency score. Hatami-Marbini and Arabmaldar [33] presented cost and revenue efficiency evaluation 

models in the presence of uncertain data based on robust optimization. They chose two different sce-

narios in this regard. In the first scenario, the input and output data are uncertain, and in the second 

scenario, the price corresponding to the input and output is also uncertain. They presented a general 

framework for measuring economic efficiency based on robust optimization. Toloo et al. [69] presented 

a general framework for RDEA based on the concept of duality in optimization problems. They pre-

sented robust optimization for the fractional form of DEA models, and these models were presented in 

input and output orientation and presented the relationships between the solutions to primal and dual 

problems in RDEA. They used two perspectives: pessimistic and optimistic. Omrani et al. [51, 53] 

presented a novel best-worst method for robust DEA. They provided information on the superiority of 

the DM in the process of evaluating the efficiency of the DMUs in an uncertain environment. The 

proposed model endeavors to provide a novel efficiency score that is more reliable and compatible with 

real problems by taking advantage of the best-worst method to use experts' opinions and RDEA to 

model uncertainty. Hatami-Marbini et al. [34] developed a new robust productivity growth and effi-

ciency measurement in presence of undesirable outputs and applied it for the evidence from the oil 

industry. Omrani et al. [54] presented a robust credibility DEA model with a degree of fuzzy confusion. 

At the beginning, they presented a fuzzy credibility approach to building fuzzy data and a fuzzy set and 

used robust optimization to solve it. They considered the degree of turbulence in an exact and fuzzy 

manner. They used their approach to evaluate the efficiency of 28 hospitals in northwest Iran. Omrani 

et al. [52] proposed a robust credibility DEA model with Fuzzy Perturbation degree and applied it for 

evaluating hospitals performance. Dehnokhalaji et al. [20] presented a new RDEA model in the pres-

ence of uncertain data based on a robust optimization approach. They obtained the efficiency score of 

DMUs with interval inputs and outputs. They presented two different methods for ranking DMUs, 

which were different from the previous methods. They applied their approach to evaluate the perfor-

mance of a set of hospitals. Arabmaldar et al. [4] proposed a generalized robust DEA model based on 

directional distance function. They obtained PPS in the robust environment. Arabmaldar et al. [5] pro-

posed a new Robust DEA with variable budgeted uncertainty. They obtained a novel robust DEA model 

with variable budgeted uncertainty that is less conservative than extant robust DEA models. Also, they 

suggested a solution for specifying the probabilistic bounds for constraint violations of the uncertain 

parameters in robust DEA models. 

 



Gerami  

 
 

 

 
Vol. 9, Issue 3, (2024) 

 
Advances in Mathematical Finance and Applications  

 

[783] 

 

2.3 Ratio data in DEA 

In general, in DEA, we encounter three categories of ratio data. In the first category, the vector 

corresponding to inputs and outputs of the DMUs can be considered as 𝐷𝑀𝑈𝑗 = (𝑋𝑗
𝑣 , 𝑋𝑗

𝑅 , 𝑌𝑗
𝑣 , 𝑌𝑗

𝑅), 𝑗 =

1,… , 𝑛. 𝑋𝑗
𝑣 and 𝑌𝑗

𝑣are input and output components that have absolute numerical values and are non-

ratio numbers. Also, 𝑋𝑗
𝑅 and 𝑌𝑗

𝑅 are input and output components that have ratio values. In this way, 

we have volume (absolute) numbers in some input and output components and ratio numbers in others. 

The studies in the first category include those that have ratio data in the form of decimal numbers that 

are obtained from the result of dividing two numbers. The numerator and denominator of fractions 

corresponding to these decimal numbers may not be available. From this category, the studies conducted 

by Olesen et al. [46, 48] can be referred, as pointed out. Olesen et al. [46, 48] developed constant and 

variable returns to scale technology in the presence of ratio data. They showed that in the presence of 

ratio data, the convexity axiom in building the PPS is not satisfying to produce in the presence of abso-

lute and ratio data at the same time. They presented the axioms for building the PPS in these conditions 

and obtained efficiency evaluation models in radial and non-radial forms. 

The studies of the second category include studies that have ratio data in the form of fractions, and 

the numerator and denominator corresponding to these fractions are available. From the studies con-

ducted to deal with the data in this category, the studies conducted by Emrouznejad and Amin [22], 

Hatami-Marbini, and Toloo [31] can be refereed. In this category, the ratio data can be expressed as 

𝑋𝑗
𝑅 =

𝑛𝑗

𝑑𝑗
 and 𝑌𝑗

𝑅 =
𝑝𝑗

𝑞𝑗
 . We consider that the numbers 𝑛𝑗, 𝑑𝑗, 𝑝𝑗, and 𝑞𝑗 corresponding to the numerator 

and denominator of these fractions are absolute and accessible numbers. For example, in evaluating the 

efficiency of hospital units, one of the input components can be considered as the ratio of the number 

of successful operations performed to the total number of operations performed in a period of time. This 

input component can be considered ratio data. In this case, 𝑛𝑗 represents the number of successful op-

erations and 𝑑𝑗 represents the total number of operations. Emrouznejad and Amin [22] showed that the 

convexity axiom of the underlying assumptions for estimating the PPS is not established in the presence 

of ratio data in variable returns to scales (VRS) technology. They developed performance evaluation 

models in the presence of ratio data. They presented two different strategies as the first and second 

solutions. In the first solution, they put the numerator and denominator with ratio input components as 

numbers 𝑛𝑗, and 𝑑𝑗 as new input and output components in the evaluation model, respectively. Also, 

they put the numerator and denominator corresponding to the ratio output component in the form of 

numbers 𝑝𝑗, and 𝑞𝑗 as new output and input components in the evaluation model, respectively. In their 

second solution, they put the convex combination of 𝑛𝑗 numbers, i.e., numerators, and the convex com-

bination of 𝑑𝑗 numbers, i.e., denominators, in the model separately. Hatami-Marbini and Toloo [31] 

showed that the efficiency evaluation models proposed by Emrouznejad and Amin [22] have problems. 

They developed these models to deal with the presence of ratio data and included the numerator and 

denominator with ratio data as discretionary and nondiscretionary data in the evaluation model. They 

solved the problems related to the models presented by Emrouznejad and Amin [22]. 

In the third category, the inputs and outputs of the DMUs can be considered as follows: 

𝐷𝑀𝑈𝑗 = (𝑋𝑗
𝑣 , 𝑌𝑗

𝑣) where 𝑋𝑗
𝑣 and 𝑌𝑗

𝑣 are input and output components that have absolute numerical 

values and are non-ratio numbers. In this category, the ratio numbers as 
𝑋𝑗

𝑣

𝑌𝑗
𝑣, 

𝑌𝑗
𝑣

𝑋𝑗
𝑣,  numbers cab be con-

sidered. It should be noted that 𝑋𝑗
𝑣 and 𝑌𝑗

𝑣 are available input and output components. The numerator 

and denominator corresponding to these fractions are the input and output components. In this category, 
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we define ratio data as the ratio of all input components to output components, or vice versa. In our 

evaluation model, we use all these ratios to evaluate efficiency. The convexity axiom of the underlying 

assumptions for estimating the PPS is established in the presence of ratio data in the third category. 

Several papers have been presented evaluating the efficiency of DMUs for dealing with ratio data in 

this category. Despic et al. [19] presented DEA-R models in the input orientation to measure efficiency 

of DMUs based on all ratios of input to output components. They obtained the relationship between the 

efficiency score of the CCR and DEA-R models. Wei et al. [72–74] obtained DEA-R models in the 

input orientation based on the ratios of input to output components They showed that DEA-R models 

compared to traditional DEA models that have an intrinsic weight restriction. DEA-R models can avoid 

problems such as efficiency underestimation and pseudo-inefficiency in traditional DEA models such 

as CCR. They presented new relationships between the DEA and DEA-R models. They showed that 

the efficiency scores obtained from DEA-R models are greater than or equal to their corresponding 

scores obtained from DEA models in the input orientation.  

Mozaffari et al. [40] presented the relationship between DEA-R models and DEA models without 

obvious inputs. Mozaffari et al. [41] developed DEA-R models to evaluate cost and revenue efficiency. 

Mozaffari et al. [42] obtained the PPS in the presence of ratio data from two CRS and VRS technologies. 

They obtained efficient faces for these sets. Gerami et al. [25] obtained two-stage network efficiency 

evaluation models based on DEA-R models. They chose three strategies: black box, free link, and fix 

link. Gerami et al. [26] evaluated the efficiency of hospital supply chains based on DEA-R models. 

They presented a general model in the presence of all ratios of input to output components in a multi-

stage network structure. Gerami et al. [27] presented non-radial DEA-R models as slack-based measure 

DEA-R (SBM-DEA-R) models in input and output orientations. They obtained the relationship between 

the DEA-R, SBM-DEA-R, and DEA models. They obtained super efficiency models corresponding to 

SBM-DEA-R models to rank efficient DMUs. Wanke et al. [71] developed DEA-R models to evaluate 

the efficiency of a two-stage network in the presence of random data. They also included undesirable 

outputs in the evaluation model. Ghiyasi et al. [28] proposed a novel in-

verse DEA- model with application in hospital efficiency evaluation.  

 

3 Robust optimization DEA-R 

In this section, the RC of DEA-R model in the input orientation based on the BS approach are pre-

sented. Consider n DMUs as 𝐷𝑀𝑈𝑗 = (𝑋𝑗 , 𝑌𝑗) ∈ 𝑅𝑚+𝑠 , 𝑗 = 1,… , 𝑛. These DMUs use the input vec-

tor 𝑋𝑗 = (𝑥1𝑗, … , 𝑥𝑚𝑗) ∈ 𝑅𝑚,   𝑗 = 1,… , 𝑛,  to generate the output vector 

𝑌𝑗 = (𝑦1𝑗 , … , 𝑦𝑠𝑗) ∈ 𝑅𝑠,   𝑗 = 1,… , 𝑛. Also suppose that 𝐷𝑀𝑈𝑜 = (𝑋𝑜, 𝑌𝑜) is the DMU under eval-

uation. The DEA-R model in the input orientation is as follows (Gerami et al. [27]). 

𝜃𝑅∗
= 𝑀𝑖𝑛  𝜃𝑅 

  𝑠. 𝑡.   ∑ 𝜆𝑗
𝑛
𝑗=1 (

𝑥𝑖𝑗

𝑦𝑟𝑗
) ≤ 𝜃𝑅(

𝑥𝑖𝑜

𝑦𝑟𝑜
),      𝑖 = 1,… ,𝑚,  𝑟 = 1,… , 𝑠,                    

           ∑ 𝜆𝑗
𝑛
𝑗=1 = 1,     𝜆𝑗 ≥ 0,   𝑗 = 1,… , 𝑛. 

 

(1) 

 

Definition 3.1 𝐷𝑀𝑈𝑜 = (𝑋𝑜, 𝑌𝑜) is called DEA-R efficient if 𝜃𝑅∗
= 1  otherwise 𝐷𝑀𝑈𝑜 = (𝑋𝑜, 𝑌𝑜) is 

DEA-R inefficient. 

In robust optimization which used in this paper, we consider only the input vector value as uncertain 
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numbers and the output vector values as certain numbers. Also suppose that 𝑁𝑖
𝑥  are the set of indices 

related to the DMUs that have an uncertain value in the i-th component of their input. In this paper, the 

BS approach used to define input components that have uncertain values. Suppose that the scaled devi-

ation of a nominal input value from the i-th input of 𝐷𝑀𝑈𝑗 i.e. 𝑥𝑖𝑗  is as Γ𝑖𝑗
𝑥 =

�̃�𝑖𝑗−𝑥𝑖𝑗

𝑥𝑖𝑗
, 𝑖 = 1,… , 𝑚, 𝑗 =

1,… , 𝑛. �̃�𝑖𝑗 is the i-th uncertain input from 𝐷𝑀𝑈𝑗 and  𝑥𝑖𝑗 = 𝑒𝑥𝑥𝑖𝑗  is the estimation accuracy. 𝑒𝑥 shows 

the uncertainty level (percentage of perturbation). We assume that scaled deviation means Γ𝑖𝑗
𝑥 is a ran-

dom variable that has an unknown value. However, it has a symmetrical distribution and its values are 

in the range [-1,1]. If the scaled deviation variable is equal to zero, that is, Γ𝑖𝑗
𝑥 = 0, then �̃�𝑖𝑗 has a certain 

value. In this case, 𝑗 ∉ 𝑁𝑖
𝑥. The aggregated scaled deviation for the i-th expression, i.e. ∑ Γ𝑖𝑗

𝑥𝑛
𝑗=1   can 

choose any value in the interval [−|𝑁𝑖
𝑥|, |𝑁𝑖

𝑥|]. But it bounded to ∑ Γ𝑖𝑗
𝑥𝑛

𝑗=1 < ℎ𝑖
𝑥, where ℎ𝑖

𝑥is a parameter 

and is not necessarily an integer and any value in the interval [0, |𝑁𝑖
𝑥|]. In this paper, its value consid-

ered to be an integer for simplicity. The purpose of choosing the parameter ℎ𝑖
𝑥 is to adjust the level of 

the robustness of the proposed approach against the level of conservatism of the solution and is called 

the budget of uncertainty of constraint 𝑖. The DEA-R model considered in the input orientation in the 

presence of input components from DMUs that have uncertain values. Also, the output components 

considered that to be certain numbers.  

Theorem 3.1 The RC of DEA-R model in the input orientation based on BS approach is as follows. 

𝜃𝑅𝑜
𝑅 ∗

= 𝑀𝑖𝑛  𝜃𝑅𝑜
𝑅  

  𝑠. 𝑡.   ∑ 𝜆𝑗
𝑛
𝑗=1 (

𝑥𝑖𝑗

𝑦𝑟𝑗
) − 𝜃𝑅𝑜

𝑅 (
𝑥𝑖𝑜

𝑦𝑟𝑜
) + ∑ 𝛼𝑖𝑗

𝑥
𝑗∈𝑁𝑖

𝑥 + ℎ𝑖
𝑥𝛾𝑖

𝑥 ≤ 0,   𝑖 = 1,… ,𝑚,  𝑟 = 1,… , 𝑠,         

           ∑ 𝜆𝑗
𝑛
𝑗=1 = 1,     𝜆𝑗 ≥ 0,   𝑗 = 1,… , 𝑛,                                                        

                  𝛼𝑖𝑗
𝑥 + 𝛾𝑖

𝑥 ≥ 𝜆𝑗 (
𝑥𝑖𝑗

𝑦𝑟𝑗
),     𝑖 = 1,… ,𝑚,  𝑗 ∈ 𝑁𝑖

𝑥, 𝑗 ≠ 𝑜,  𝑟 = 1,… , 𝑠,   

                𝛼𝑖𝑜
𝑥 + 𝛾𝑖

𝑥 ≥ (𝜃𝑅𝑜
𝑅 − 𝜆𝑜) (

�̂�𝑖𝑜

𝑦𝑟𝑜
), 𝑖 = 1,… ,𝑚, 𝑜 ∈ 𝑁𝑖

𝑥, 

                   𝛼𝑖𝑗
𝑥 ≥ 0, 𝛾𝑖

𝑥 ≥ 0, 𝑖 = 1,… ,𝑚,  𝑗 = 1,… , 𝑛. 

 

(2) 

Proof: Consider the first constraint of model (1). By replacing uncertain input values as �̃�𝑖𝑗 = Γ𝑖𝑗
𝑥�̂�𝑖𝑗 +

𝑥𝑖𝑗 in this constraint , we will have: 

∑ 𝜆𝑗

𝑛

𝑗=1
(
�̃�𝑖𝑗

𝑦𝑟𝑗
) − 𝜃𝑅𝑜

𝑅 (
�̃�𝑖𝑜

𝑦𝑟𝑜
) = ∑ 𝜆𝑗

𝑛

𝑗=1
(
𝑥𝑖𝑗

𝑦𝑟𝑗
) − 𝜃𝑅𝑜

𝑅 (
𝑥𝑖𝑜

𝑦𝑟𝑜
) + ∑ 𝜆𝑗Γ𝑖𝑗

𝑥 (
𝑥𝑖𝑗

𝑦𝑟𝑗
)

𝑗≠𝑜

𝑗∈𝑁𝑖
𝑥

+ 

        (𝜆𝑜 − 𝜃𝑅𝑜
𝑅 )Γ𝑖𝑜

𝑥 (
𝑥𝑖𝑜

𝑦𝑟𝑜
), 𝑖 = 1,… ,𝑚,  𝑟 = 1,… , 𝑠,    𝑜 ∈ 𝑁𝑖

𝑥 ,      and         

  ∑ 𝜆𝑗
𝑛
𝑗=1 (

�̃�𝑖𝑗

𝑦𝑟𝑗
) − 𝜃𝑅𝑜

𝑅 (
�̃�𝑖𝑜

𝑦𝑟𝑜
) = ∑ 𝜆𝑗

𝑛
𝑗=1 (

𝑥𝑖𝑗

𝑦𝑟𝑗
) − 𝜃𝑅𝑜

𝑅 (
𝑥𝑖𝑜

𝑦𝑟𝑜
) + 

 ∑ 𝜆𝑗Γ𝑖𝑗
𝑥 (

𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑗≠𝑜

𝑗∈𝑁𝑖
𝑥

,  𝑖 = 1,… ,𝑚,  𝑟 = 1,… , 𝑠,    𝑜 ∉ 𝑁𝑖
𝑥 ,                   

 

Where ∑ |Γ𝑖𝑗
𝑥|𝑗∈𝑁𝑖

𝑥 ≤ ℎ𝑖
𝑥 and −1 ≤ Γ𝑖𝑗

𝑥 ≤ 1. 

 

(3) 

  

Therefore, the RC corresponding to model (1) will be as follows: 
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𝑀𝑖𝑛  𝜃𝑅𝑜
𝑅  

  𝑠. 𝑡.   ∑ 𝜆𝑗
𝑛
𝑗=1 (

𝑥𝑖𝑗

𝑦𝑟𝑗
) − 𝜃𝑅𝑜

𝑅 (
𝑥𝑖𝑜

𝑦𝑟𝑜
) + 

max
∑ |Γ𝑖𝑗

𝑥 |𝑗∈𝑁𝑖
𝑥 ≤ℎ𝑖

𝑥,

−1≤Γ𝑖𝑗
𝑥 ≤1

{∑ 𝜆𝑗Γ𝑖𝑗
𝑥 (

𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑗≠𝑜

𝑗∈𝑁𝑖
𝑥

+ (𝜆𝑜 − 𝜃𝑅𝑜
𝑅 )Γ𝑖𝑜

𝑥 (
𝑥𝑖𝑜

𝑦𝑟𝑜
)} ≤ 0,   𝑖 = 1,… ,𝑚,  𝑟 = 1,… , 𝑠, 𝑜 ∈

𝑁𝑖
𝑥 ,         

 ∑ 𝜆𝑗
𝑛
𝑗=1 (

𝑥𝑖𝑗

𝑦𝑟𝑗
) − 𝜃𝑅𝑜

𝑅 (
𝑥𝑖𝑜

𝑦𝑟𝑜
) + 

max
∑ |Γ𝑖𝑗

𝑥 |𝑗∈𝑁𝑖
𝑥 ≤ℎ𝑖

𝑥,

−1≤Γ𝑖𝑗
𝑥 ≤1

{∑ 𝜆𝑗Γ𝑖𝑗
𝑥 (

𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑗≠𝑜

𝑗∈𝑁𝑖
𝑥

} ≤ 0,   𝑖 = 1,… , 𝑚,  𝑟 = 1,… , 𝑠, 𝑜 ∉ 𝑁𝑖
𝑥          

           ∑ 𝜆𝑗
𝑛
𝑗=1 = 1,     𝜆𝑗 ≥ 0,   𝑗 = 1,… , 𝑛. 

(4)   

 

 As can be seen, model (4) includes inner optimizations problems. To solve these problems, some 

variables of the outer problem are considered as constant values in the inner problem. Also, the value 

of the optimal objective function of the inner problem is a part of the outer problem. To solve inner 

problems in model (4), the problem solved in such a way that model (4) becomes a linear programming 

(LP) model. In inner problems from model (4), the variables 𝜃𝑅𝑜
𝑅   and 𝜆𝑗 are decision variables from 

model (4) and we put them as parameters in inner problems. In inner problems from model (4), Γ𝑖𝑗
𝑥 

considered as decision variables. In order to solve inner problems, we use the property of strong duality 

in optimization problems. (For more detail see Bazaraa, Jarvis, and Sherali [6]). The absolute function 

is removed in the inner problem of model (4). First, the following feasible region of inner problem 

substitutes as follows. 

{Γ𝑖𝑗
𝑥| ∑ |Γ𝑖𝑗

𝑥|𝑗∈𝑁𝑖
𝑥 ≤ ℎ𝑖

𝑥 , −1 ≤ Γ𝑖𝑗
𝑥 ≤ 1 } by {Γ𝑖𝑗

𝑥| ∑ Γ𝑖𝑗
𝑥

𝑗∈𝑁𝑖
𝑥 ≤ ℎ𝑖

𝑥, 0 ≤ Γ𝑖𝑗
𝑥 ≤ 1 }. 

Therefore, the first constraint of model (4) rewrite in an equivalent form as follows: 

 

∑ 𝜆𝑗
𝑛
𝑗=1 (

𝑥𝑖𝑗

𝑦𝑟𝑗
) − 𝜃𝑅𝑜

𝑅 (
𝑥𝑖𝑜

𝑦𝑟𝑜
) + max

∑ Γ𝑖𝑗
𝑥

𝑗∈𝑁𝑖
𝑥 ≤ℎ𝑖

𝑥,

0≤Γ𝑖𝑗
𝑥 ≤1

{∑ 𝜆𝑗Γ𝑖𝑗
𝑥 (

�̂�𝑖𝑗

𝑦𝑟𝑗
)𝑗≠𝑜

𝑗∈𝑁𝑖
𝑥

+ (𝜆𝑜 − 𝜃𝑅𝑜
𝑅 )Γ𝑖𝑜

𝑥 (
𝑥𝑖𝑜

𝑦𝑟𝑜
)} ≤ 0,  

 𝑖 = 1,… ,𝑚,  𝑟 = 1,… , 𝑠, 𝑜 ∈ 𝑁𝑖
𝑥 , 

(5)   

 

The inner problem in relation (5) can be written as the following LP. 

 max  ∑ 𝜆𝑗Γ𝑖𝑗
𝑥 (

𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑗≠𝑜

𝑗∈𝑁𝑖
𝑥

+ (𝜆𝑜 − 𝜃𝑅𝑜
𝑅 )Γ𝑖𝑜

𝑥 (
�̂�𝑖𝑜

𝑦𝑟𝑜
) 

          ∑ Γ𝑖𝑗
𝑥

𝑗∈𝑁𝑖
𝑥 ≤ ℎ𝑖

𝑥,  

             Γ𝑖𝑗
𝑥 ≤ 1,   𝑗 ∈ 𝑁𝑖

𝑥,                                                                                                 (6) 

             0 ≤ Γ𝑖𝑗
𝑥, 𝑗 ∈ 𝑁𝑖

𝑥. 

 

In model (6), 𝜆𝑗 and 𝜃𝑅𝑜
𝑅  are parameters and Γ𝑖𝑗

𝑥, 𝑗 ∈ 𝑁𝑖
𝑥 are decision variables. The dual model (6) 

is written as follows. 
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𝑚𝑖𝑛  ∑ 𝛼𝑖𝑗
𝑥

𝑗∈𝑁𝑖
𝑥 + ℎ𝑖

𝑥𝛾𝑖
𝑥 

 𝑆. 𝑡.    𝛼𝑖𝑗
𝑥 + 𝛾𝑖

𝑥 ≥ 𝜆𝑗 (
𝑥𝑖𝑗

𝑦𝑟𝑗
), 𝑖 = 1,… ,𝑚, 𝑟 = 1,… , 𝑠,  𝑗 ∈ 𝑁𝑖

𝑥, 𝑗 ≠ 𝑜 

         𝛼𝑖𝑜
𝑥 + 𝛾𝑖

𝑥 ≥ (𝜃𝑅𝑜
𝑅 − 𝜆𝑜) (

𝑥𝑖𝑜

𝑦𝑟𝑜
), 𝑖 = 1,… ,𝑚, 𝑟 = 1,… , 𝑠,  𝑜 ∈ 𝑁𝑖

𝑥,                                     (7)     

         𝛼𝑖𝑗
𝑥 ≥ 0, ℎ𝑖

𝑥 ≥ 0, 𝑖 = 1,… , 𝑚, 𝑗 ∈ 𝑁𝑖
𝑥. 

 

𝛼𝑖𝑗
𝑥  and 𝛾𝑖

𝑥 are dual variables corresponding to the first and second constraints of model (6). There-

fore, constraint (5) will be as follows. 

 

∑ 𝜆𝑗
𝑛
𝑗=1 (

𝑥𝑖𝑗

𝑦𝑟𝑗
) − 𝜃𝑅𝑜

𝑅 (
𝑥𝑖𝑜

𝑦𝑟𝑜
) + ∑ 𝛼𝑖𝑗

𝑥
𝑗∈𝑁𝑖

𝑥 + ℎ𝑖
𝑥𝛾𝑖

𝑥 ≤ 0,   𝑖 = 1,… ,𝑚,  𝑟 = 1,… , 𝑠,         

        𝛼𝑖𝑗
𝑥 + 𝛾𝑖

𝑥 ≥ 𝜆𝑗 (
𝑥𝑖𝑗

𝑦𝑟𝑗
),     𝑖 = 1,… ,𝑚,  𝑗 ∈ 𝑁𝑖

𝑥, 𝑗 ≠ 𝑜,  𝑟 = 1,… , 𝑠,   

         𝛼𝑖𝑜
𝑥 + 𝛾𝑖

𝑥 ≥ (𝜃𝑅𝑜
𝑅 − 𝜆𝑜) (

𝑥𝑖𝑜

𝑦𝑟𝑜
), = 1,… ,𝑚, 𝑜 ∈ 𝑁𝑖

𝑥,                                                                (8) 

          𝛼𝑖𝑗
𝑥 ≥ 0, 𝛾𝑖

𝑥 ≥ 0,  𝑖 = 1,… ,𝑚,  𝑗 ∈ 𝑁𝑖
𝑥, 𝜆𝑗 ≥ 0,  𝑗 = 1,… , 𝑛. 

 

Similarly, the second constraint of model (4) will be as follows: 

 

∑ 𝜆𝑗
𝑛
𝑗=1 (

𝑥𝑖𝑗

𝑦𝑟𝑗
) − 𝜃𝑅𝑜

𝑅 (
𝑥𝑖𝑜

𝑦𝑟𝑜
) + ∑ 𝛼𝑖𝑗

𝑥
𝑗∈𝑁𝑖

𝑥 + ℎ𝑖
𝑥𝛾𝑖

𝑥 ≤ 0,   𝑖 = 1,… ,𝑚,  𝑟 = 1,… , 𝑠,         

        𝛼𝑖𝑗
𝑥 + 𝛾𝑖

𝑥 ≥ 𝜆𝑗 (
𝑥𝑖𝑗

𝑦𝑟𝑗
),     𝑖 = 1,… ,𝑚,  𝑗 ∈ 𝑁𝑖

𝑥,  𝑟 = 1,… , 𝑠,                                                    (9) 

         𝛼𝑖𝑗
𝑥 ≥ 0, 𝛾𝑖

𝑥 ≥ 0,  𝑖 = 1,… ,𝑚,  𝑗 ∈ 𝑁𝑖
𝑥,  𝜆𝑗 ≥ 0,  𝑗 = 1,… , 𝑛. 

 

By placing relations (8) and (9) in model (4), model (2) is obtained, and the proof is complete.∎ 

 

4 Robust ratio analysis based on the set of common weight 

In this section, at first, the ratio analysis model presented to evaluate the efficiency of the DMU 

under evaluation in the presence of ratio data. We consider the weight corresponding to the ratio of the 

i-th input component to the r-th output component as 𝑤𝑖𝑟. The ratio analysis model to evaluate the 

efficiency of 𝐷𝑀𝑈𝑜 = (𝑋𝑜, 𝑌𝑜) as the DMU under evaluation is as follows: (Chen and McGinnis [16]). 

 

 min  ∑ ∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑜

𝑦𝑟𝑜
)𝑚

𝑖=1
𝑠
𝑟=1  

 𝑠. 𝑡.  ∑ ∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 ≥ 1,                                                                                          (10) 

                       𝑤𝑖𝑟 ≥ 𝜖, 𝑖 = 1,… ,𝑚,  𝑟 = 1,… , 𝑠.    

       

Definition 4.1 𝐷𝑀𝑈𝑜 is called ratio-efficient based on model (10) if an optimal solution of model (10) 

is 𝑤𝑖𝑟
∗ > 0,= 1,… ,𝑚,  𝑟 = 1,… , 𝑠, so that the score of the optimal objective function of model (10) is 

equal to one. 

Now, we present multiple objective linear programming (MOLP) for calculating the efficiency 

score of all DMUs based on the ratio analysis model. This model is based on the set of common 
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weights of all ratios of input components to all output components as follows: 

 

 min {∑ ∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 , 𝑗 = 1,… , 𝑛}   

 𝑠. 𝑡.  ∑ ∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 ≥ 1,                                                                                          (11) 

                       𝑤𝑖𝑟 ≥ 𝜖, 𝑖 = 1,… ,𝑚,  𝑟 = 1,… , 𝑠.   

   

 Considering that the model (11) is a MOLP model, the weighted sum method can be used to solve 

this model. Therefore, the model (11) will be in the form of a single-objective model as follows: 

 

 min ∑ ∑ ∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1

𝑛
𝑗=1   

 𝑠. 𝑡.  ∑ ∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 ≥ 1,                                                                                          (12) 

                       𝑤𝑖𝑟 ≥ 𝜖, 𝑖 = 1,… ,𝑚,  𝑟 = 1,… , 𝑠.    

   

Model (12) determines the set of common weights of all ratios of input components to all output 

components in such a way that the efficiency of all DMUs is maximized based on these weights. Ac-

cording to the strategy of a set of common weights, all DMUs are evaluated based on a set of common 

weights. In other words, all DMUs are evaluated in the same condition. Let (𝑤𝑖𝑟
∗ : 𝑖 = 1,… ,𝑚, 𝑟 =

1,… , 𝑠) is an optimal solution of model (12). The efficiency score 𝐷𝑀𝑈𝑗 resulting from model (4.3) 

defined based on a set of common weights as follows. 

 
1

∑ ∑ 𝑤𝑖𝑟
∗  (

𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1

                                                                                                                            (13) 

 

 

Definition 4.2 𝐷𝑀𝑈𝑜 is called ratio-efficient based on model (12) if  
1

∑ ∑ 𝑤𝑖𝑟
∗  (

𝑥𝑖𝑜
𝑦𝑟𝑜

)𝑚
𝑖=1

𝑠
𝑟=1

= 1. 

 

 

In this section, the method of Kao and Hung [33] used to find the set of common weights from all 

ratios of input components to all output components from all DMUs based on the robust optimization 

approach under conditions where input components are uncertain and output components are certain. 

The norm 1 applied to measure the distance between the robust DEA-R efficiency scores obtained from 

model (2). The efficiency score obtained from the ratio analysis model based on the set of common 

weights, namely model (12). The model (14) presented with the aim of minimizing the distance between 

the efficiency scores obtained from models (2) and (12) based on the set of common weights of all ratios 

of input components to all output components as follows: 

 

 

 



Gerami  

 
 

 

 
Vol. 9, Issue 3, (2024) 

 
Advances in Mathematical Finance and Applications  

 

[789] 

 

min∑ |𝜃𝑅𝑗
𝑅 −

1

∑ ∑ 𝑤𝑖𝑟 (
𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1

|𝑛
𝑗=1   

𝑆. 𝑡.   ∑ ∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 ≥ 1,                                                                                        (14) 

                       𝑤𝑖𝑟 ≥ 𝜖, 𝑖 = 1,… ,𝑚,  𝑟 = 1,… , 𝑠.      

 

In model (14),  𝑤𝑖𝑟 is the weight corresponding to the ratio of the i-th input component to the j-th 

output component and 𝜃𝑅𝑗
𝑅  is the robust DEA-R efficiency score obtained from model (2) in the evalu-

ation of 𝐷𝑀𝑈𝑗. 𝜖 is a positive parameter that prevents the weights from becoming zero? This number 

is non-Archimedean. The objective function score of the model (14) is the same for all values of 𝜖. 

Now, in order to transform the model (14) into a linear model, we use the fact that 

𝜃𝑅𝑗
𝑅 ≥

1

∑ ∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1

 

or equivalently 

 (𝜃𝑅𝑗
𝑅 (∑ ∑ 𝑤𝑖𝑟  (

𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 ) − 1) ≥ 0. 

The above relationship is established because 

∑ ∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 ≥ 0. 

Therefore, we have the following linear programming which minimizes sums the deviations 

namely (𝜃𝑅𝑗
𝑅 (∑ ∑ 𝑤𝑖𝑟  (

𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 ) − 1) from zero for all DMUs. 

 

min ∑ (𝜃𝑅𝑗
𝑅 (∑ ∑ 𝑤𝑖𝑟  (

𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 ) − 1)𝑛

𝑗=1   

𝑆. 𝑡.   ∑ ∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 ≥ 1,                                                                                        (15) 

                       𝑤𝑖𝑟 ≥ 𝜖, 𝑖 = 1,… ,𝑚,  𝑟 = 1,… , 𝑠.   

        

In the models presented in the third section in the envelopment form, the slack corresponding to the 

ratios of input to output components are not considered for the convenience of presenting the formula-

tion of the robust optimization model based on the DEA-R model. However, we suppose that the weight 

corresponding to the ratio of the i-th input component to the r-th output component is greater than or 

equal to 𝜖 in the ratio analysis model in the multiplier form. 

Now we obtain the formulation of the robust optimization problem corresponding to model (15). 

Assume that 𝐼𝑁𝑗
𝑥represents the set of input indices from 𝐷𝑀𝑈𝑗 that have uncertain values. Also as-

sume that Γ𝑖𝑗
𝑥  is also defined as in the second section.  

Also, assume that   ∑ |Γ𝑖𝑗
𝑥|𝑖∈𝐼𝑁𝑗

𝑥 ≤ 𝛽𝑗
𝑥, 𝑗 = 1, . . , 𝑛, where the parameter 𝛽𝑗

𝑥 ∈ [0, |𝐼𝑁𝑗
𝑥|], 𝑗 =

1, . . , 𝑛, is not necessarily an integer, but for simplicity, we assume that it is an integer. Now, in Theo-

rem (4.1), an RC of model (15) are provided. 

 

Theorem 4.1 Assume that 𝑖 ∈ 𝐼𝑁𝑗
𝑥 and the uncertain input components are defined as �̃�𝑖𝑗 = Γ𝑖𝑗

𝑥𝑥𝑖𝑗 +

𝑥𝑖𝑗 as in the second section, and the output components also have definite and certain values. The RC 
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model corresponding to model (15) based on BS approach will be as follows. 

 

min∑ (𝜃𝑅𝑜−𝑗
𝑅 (∑ ∑ 𝑤𝑖𝑟  (

𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 ) − 1)𝑛

𝑗=1 + ∑ 𝜑𝑖𝑗
𝑥

𝑖∈𝐼𝑁𝑗
𝑥 + 𝜓𝑗

𝑥𝛽𝑗
𝑥  

𝑆. 𝑡.   ∑ ∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 − ∑ 𝑡𝑖𝑗

𝑥
𝑖∈𝐼𝑁𝑗

𝑥 − 𝑓𝑗
𝑥𝛽𝑗

𝑥 ≥ 1, 𝑗 = 1, . . , 𝑛,                                  (16) 

                            𝑡𝑖𝑗
𝑥 + 𝑓𝑗

𝑥 ≥ −(∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑠

𝑟=1 ),   𝑖 ∈ 𝐼𝑁𝑗
𝑥,   𝑗 = 1, . . , 𝑛, 

                            𝜑𝑖𝑗
𝑥 + 𝜓𝑗

𝑥 ≥ (∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑜

𝑦𝑟𝑜
)𝑠

𝑟=1 ) 𝜃𝑅𝑗
𝑅 ,   𝑖 ∈ 𝐼𝑁𝑗

𝑥,   𝑗 = 1, . . , 𝑛, 

                         𝑤𝑖𝑟 ≥ 𝜖, 𝑖 = 1,… ,𝑚,  𝑟 = 1,… , 𝑠,  

                              𝜑𝑖𝑗
𝑥 , 𝜓𝑗

𝑥 , 𝑡𝑖𝑗
𝑥 , 𝑓𝑗

𝑥 ≥ 0.  

 

Proof: Assume that the input components are uncertain as �̃�𝑖𝑗 = Γ𝑖𝑗
𝑥�̂�𝑖𝑗 + 𝑥𝑖𝑗  , 𝑖 = 1,… ,𝑚,  𝑟 =

1,… , 𝑠,  and the output components have certain values. These values will replace in model (15). The 

objective function and constraints of the model (15) will be as follows. 

 

 

(𝜃𝑅𝑗
𝑅 (∑ ∑ 𝑤𝑖𝑟  (

𝑥𝑖𝑗+Γ𝑖𝑗
𝑥 𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 ) − 1) = [𝜃𝑅𝑗

𝑅 (∑ ∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 −

∑ ∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 Γ𝑖𝑗

𝑥) − 1],                                                                                             (17)     

 

 

And 

 

  ∑ ∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑗+Γ𝑖𝑗

𝑥 𝑥𝑖𝑗

𝑦𝑟𝑗
) =𝑚

𝑖=1
𝑠
𝑟=1 ∑ ∑ 𝑤𝑖𝑟  (

𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 + ∑ ∑ 𝑤𝑖𝑟  (

𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 Γ𝑖𝑗

𝑥  ≥ 1, where 

∑ |Γ𝑖𝑗
𝑥|𝑖∈𝐼𝑁𝑗

𝑥 ≤ 𝛽𝑗
𝑥, 𝑗 = 1, . . , 𝑛.                                                                                        (18) 

 

 According to relations (17) and (18), model (15) can be presented as follows. 

 

   min ∑

[
 
 
 
 

𝜃𝑅𝑗
𝑅 (∑ ∑ 𝑤𝑖𝑟  (

𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 ) − 1 + max

∑ |Γ𝑖𝑗
𝑥 |𝑖∈𝐼𝑁𝑗

𝑥 ≤𝛽𝑗
𝑥,

−1≤Γ𝑖𝑗
𝑥 ≤1

{𝜃𝑅𝑗
𝑅 (∑ ∑ 𝑤𝑖𝑟  (

𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 ) Γ𝑖𝑗

𝑥}

]
 
 
 
 

𝑛
𝑗=1 ,  

 𝑆. 𝑡.  ∑ ∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 + min

∑ |Γ𝑖𝑗
𝑥 |𝑖∈𝐼𝑁𝑗

𝑥 ≤𝛽𝑗
𝑥,

−1≤Γ𝑖𝑗
𝑥 ≤1

{∑ ∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 Γ𝑖𝑗

𝑥}  ≥ 1,                           (19) 

                     𝑤𝑖𝑟 ≥ 𝜖, 𝑖 = 1,… ,𝑚,  𝑟 = 1,… , 𝑠. 

 

According to the explanations in the proof of Theorem (3.1) about solving inner problems, we con-

sider the inner problem in the objective function of model (19). According to the discussion in solving 

the inner problem in the proof of Theorem (3.1), the constraints can be replaced as follows. 
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∑ |Γ𝑖𝑗
𝑥|𝑖∈𝐼𝑁𝑗

𝑥 ≤ 𝛽𝑗
𝑥, −1 ≤ Γ𝑖𝑗

𝑥 ≤ 1, by ∑ Γ𝑖𝑗
𝑥

𝑖∈𝐼𝑁𝑗
𝑥 ≤ 𝛽𝑗

𝑥 ,  0 ≤ Γ𝑖𝑗
𝑥 ≤ 1, respectively.  

First, consider the inner problem of the objective function of model (19) as follows. 

 

 max {𝜃𝑅𝑗
𝑅 (∑ ∑ 𝑤𝑖𝑟  (

𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 )Γ𝑖𝑗

𝑥} 

 𝑆. 𝑡.   ∑ Γ𝑖𝑗
𝑥

𝑖∈𝐼𝑁𝑗
𝑥 ≤ 𝛽𝑗

𝑥,   𝑗 = 1, . . , 𝑛,         

                        Γ𝑖𝑗
𝑥 ≤ 1,   𝑖 ∈ 𝐼𝑁𝑗

𝑥,   𝑗 = 1, . . , 𝑛,                                                                     (20) 

                        0 ≤ Γ𝑖𝑗
𝑥,  𝑖 ∈ 𝐼𝑁𝑗

𝑥,   𝑗 = 1, . . , 𝑛, 

 

The dual model (20) is as follows. 

 

min ∑ 𝜑𝑖𝑗
𝑥

𝑖∈𝐼𝑁𝑗
𝑥 + 𝜓𝑗

𝑥𝛽𝑗
𝑥  

𝑆. 𝑡.              𝜑𝑖𝑗
𝑥 + 𝜓𝑗

𝑥 ≥ (∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑜

𝑦𝑟𝑜
)𝑠

𝑟=1 )𝜃𝑅𝑗
𝑅 ,   𝑖 ∈ 𝐼𝑁𝑗

𝑥,   𝑗 = 1, . . , 𝑛,                             (21) 

                   𝑤𝑖𝑟 ≥ 𝜖,  𝜑𝑖𝑗
𝑥 , 𝜓𝑗

𝑥 , 𝑡𝑖𝑗
𝑥 , 𝑓𝑗

𝑥 ≥ 0, 𝑖 ∈ 𝐼𝑁𝑗
𝑥, 𝑟 = 1,… , 𝑠, ,   𝑗 = 1, . . , 𝑛. 

 

Similarly, the inner problem of the constraints of model (19) can be written as follows: 

 min ∑ ∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑚

𝑖=1
𝑠
𝑟=1 Γ𝑖𝑗

𝑥 

𝑆. 𝑡.   ∑ Γ𝑖𝑗
𝑥

𝑖∈𝐼𝑁𝑗
𝑥 ≤ 𝛽𝑗

𝑥,   𝑗 = 1, . . , 𝑛,         

                        Γ𝑖𝑗
𝑥 ≤ 1,   𝑖 ∈ 𝐼𝑁𝑗

𝑥,   𝑗 = 1, . . , 𝑛,                                                                   (22) 

                        0 ≤ Γ𝑖𝑗
𝑥,  𝑖 ∈ 𝐼𝑁𝑗

𝑥,   𝑗 = 1, . . , 𝑛.  

 

The dual model (22) is as follows. 

 

 max  −∑ 𝑡𝑖𝑗
𝑥

𝑖∈𝐼𝑁𝑗
𝑥 − 𝑓𝑗

𝑥𝛽𝑗
𝑥 

𝑆. 𝑡.            𝑡𝑖𝑗
𝑥 + 𝑓𝑗

𝑥 ≥ −(∑ 𝑤𝑖𝑟  (
𝑥𝑖𝑗

𝑦𝑟𝑗
)𝑠

𝑟=1 ),   𝑖 ∈ 𝐼𝑁𝑗
𝑥,   𝑟 = 1,… , 𝑠,  𝑗 = 1, . . , 𝑛, 

                    𝑤𝑖𝑟 ≥ 𝜖, 𝑖 = 1,… ,𝑚,  𝑟 = 1,… , 𝑠,                                                                  (23) 

                               𝑡𝑖𝑗
𝑥 , 𝑓𝑗

𝑥 ≥ 0,  𝑖 ∈ 𝐼𝑁𝑗
𝑥,   𝑟 = 1,… , 𝑠,  𝑗 = 1, . . , 𝑛. 

 

By placing models (21) and (23) instead of the inner problems of model (19), the model (16) is ob-

tained, and the proof is complete.∎ 

 

5 An Application for Commercial Banks in The Global Competitive Market 

In this section, an application of the proposed approach in this paper has been shown. For this pur-

pose, we evaluated 38 commercial banks that operate in a globally competitive market in 2020. These 

banks belong to 38 different countries. These banks have the same activity in the global market. The 

dataset mainly covers the variables from the balance sheet and income statement. The data for commer-

cial banks is taken from the Fitch Solutions database (https://www.fitchsolutions.com/fitch-connect). 

In many cases, the data may not be available in the real world as exact numbers, and the data may have 

a small fluctuation over a period of time. Therefore, in order to evaluate the correct efficiency, we must 

use DEA models in the presence of uncertain data. In evaluating the efficiency of commercial banks, 

https://www.fitchsolutions.com/fitch-connect
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considering that the input data can have a small fluctuation during a period of time, the robust DEA and 

robust DEA-R models used to evaluate the efficiency of banks. To evaluate the banks, we assume that 

the input and output data have uncertain and certain values, respectively. The input and output variables 

in the evaluation of banks are as follows: 

Inputs: personnel expenses, total interest expenses, and non-interest expenses. 

Outputs: net interest income, non-interest income. 

The inputs are defined as follows: 

Personnel Expenses: This cost includes salaries and benefits related to bank employees. 

Total interest expenses: These expenses include the expenses that the bank pays to customers for 

bank interest. 

Non-interest expenses: These expenses include expenses that the bank spends on administrative, 

general, depreciation, and doubtful claims. 

Also, the outputs are defined as follows: 

Net interest income: The income from the difference between interest paid and interest received is 

the main source of bank income. The income from the interest difference means interest income minus 

interest expense. According to another definition, a certain amount of money that the borrower must 

pay to the lender is called interest. This money is separate from the principal of the amount exchanged 

between the two parties as a loan. In other words, the interest must be paid in excess of the principal. 

In other words, the interest rate is the rate that is charged by the borrower to prevent a decrease in the 

value of money. This is due to the difference in the value of money at two different times. It means that 

the purchasing power of the money exchanged is greater at the time of receiving the loan than at the 

time of paying it back. Also, in normal market conditions, in order to compensate for the lender's in-

vestment opportunities, an amount may be added to this rate as the lender's expected minimum profit. 

Therefore, the net interest income includes the bank's income through the bank's interest that it receives 

from its customers. 

Non-interest income: These incomes include the bank's income from fees such as deposit fees, 

transaction fees, insufficient funds fees, annual account fees, monthly account service fees, credit card 

issuance fees, and the cost of late loans. Interest-free income is one of the solutions to increase income 

and delay the liquidity of the bank in the event of an increase in these rates. 

The data sets and characteristics of commercial banks are given in Tables 1 and 2.  

To evaluate the efficiency of banks, at first the results of the DEA model in the input orientation is 

obtained. The results are in the fourth column of Table 2. As can be seen, banks B1, B6, B10, B13, B16, 

B20, B22, B29, B30, and B37 are efficient banks, and other banks are inefficient. Also, to evaluate the 

efficiency of banks, we obtain the results of the DEA-R model in the input orientation. The results are 

in the fifth column of Table 2. As can be seen, similar to the results of the DEA model, banks B1, B6, 

B10, B13, B16, B20, B22, B29, B30, and B37 are efficient banks, and other banks are inefficient. As 

can be seen, all the efficiency scores related to all the banks based on the DEA-R model are greater or 

equal to their corresponding scores obtained from the DEA model in the input orientation. As previously 

stated, DEA models have an inherent weight restriction and may not truly calculate efficiency scores. 

To face the problems created, such as underestimation of efficiency and pseudo-inefficiency (Wei et al. 

[72–74]), we can use DEA-R models instead of DEA models, and the results show this well. As can be 

seen in the fourth and fifth columns of Table 2, the ranking of each bank based on the efficiency scores 

obtained from the DEA and DEA-R models is shown in parentheses next to their efficiency scores. The 

rank corresponding to each bank based on the DEA and DEA-R models is not the same. For example, 
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the rank corresponding to Bank B36 obtained from the DEA and DEA-R models is equal to 7 and 11, 

respectively. The scatter plot used to check the possible relationship between two sets of numbers. In 

Figure 1, a relationship between the ranking scores of the DEA and DEA-R models for different banks 

is provided. There is a positive and linear relationship between the ranking scores.  

Table 1: European Banks Data 
Bank Name Country Bank Inputs 

Personnel 

Expenses 

Total Interest 

Expenses 

 

Non-Interest 

Expenses 
 

Macquarie Group Limited Australia B01 3286.95 2035.9 4954.2 

Erste Group Bank AG Austria B02 3066.68 2183.55 5402.92 

KBC Group NV Belgium B03 2833.46 2186.23 5186.36 

Banco Safra S.A. Brazil B04 588.55 1074.57 921.6 

National Bank of Canada Canada B05 2037.09 2495.12 3460.73 

Bank of China Limited China B06 13670.29 52663.7 25457.93 

Banco Nacional de Costa Rica Costa Rica B07 221.71 357.06 338.12 

Ceskoslovenska Obchodni Banka a.s. 

(CSOB) Czech Republic 

B08 

426.83 441.77 906.19 

Jyske Bank A/S Denmark B09 487.59 644.77 887.17 

AS SEB Pank Estonia B10 53.04 12.41 76.04 

Nordea Bank Abp Finland B11 3348.08 2204.48 5648.67 

Deutsche Bank AG Germany B12 12739.02 7640.25 25259.04 

Alpha Services and Holdings S.A. Greece B13 590.9 646.99 1408.82 

OTP Bank Plc. Hungary B14 1037.94 656.5 2383.59 

Arion Banki hf Iceland B15 96.94 161.72 192.13 

ICICI Bank Limited India B16 1097.68 5509.15 3026.66 

PT Bank Central Asia Tbk Indonesia B17 946.46 797.01 2124.25 

Bank of Ireland Ireland B18 1239.72 605.87 2699.63 

Banca Monte dei Paschi di Siena 

S.p.A. Italy 

B19 

1835.48 856.12 4291.31 

The Howa Bank, Ltd. Japan B20 24.57 1.92 59.7 

JSC Rietumu Banka Latvia B21 25.79 18.98 47.69 

AB SEB Bankas Lithuania B22 59.86 29.44 97.45 

BGL BNP Paribas Luxembourg B23 582.26 318.63 953.45 

Cooperatieve Rabobank U.A. Netherlands B24 5698.55 6803.23 8884.83 

ANZ Bank New Zealand Limited New Zealand B25 652.38 1522.65 1138.36 

DNB Bank ASA Norway B26 1401.45 1916.31 2585.54 

Bank Pekao S.A. Poland B27 552.53 175.36 1221.43 

Caixa Geral de Depositos, S.A. Portugal B28 538.71 555.26 955.4 

The Saudi National Bank Saudi Arabia B29 946.59 734.53 1861.31 

Slovenska sporitelna, a.s. Slovakia B30 192.59 36.01 411.94 

Nova Ljubljanska banka d.d. Slovenia B31 200.74 67.64 393.08 

FirstRand Limited South Africa B32 1851.92 3677.82 3266.35 

Woori Bank South Korea B33 1957.44 2944.24 3205.31 

Banco Santander, S.A. Spain B34 13118.6 16724.6 41211.1 

Skandinaviska Enskilda Banken AB 

(publ) Sweden 

B35 

1803.25 1497.29 2846.6 

Credit Suisse Group AG Switzerland B36 11114.23 8957.69 18444.68 

Turkiye Halk Bankasi A.S. Turkey B37 528.57 4739.71 1008.21 

NatWest Group plc United Kingdom B38 5264.67 3116.13 10608.52 

 

Figure 2 compares the efficiency scores of the DEA and DEA-R models. As can be seen, the disper-

sion between the ranking scores of the DEA and DEA-R models is less. Now, the results of the robust 

DEA-R model (model 2) have been analysed. As mentioned earlier, we assume that the input data are 

uncertain numbers and the outputs are certain numbers. In order to include uncertainty in the input data, 

the BS approach used. We assume that there is 5% disturbance in this data. According to the BS ap-

proach, we put ℎ𝑖
𝑥 = 1 + 𝜑−1(1 − 𝜏𝑖)√𝑛𝑖 to solve the robust DEA-R model and choose the correct ℎ𝑖

𝑥. 
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In this regard, 𝜑−1 is cumulative distribution of standard Gaussian variable. 𝜏𝑖 shows the amount of 

confusion in the data. Also, in the first constraint of model (2), we have 𝑛𝑖 = 38. If we put 𝜏𝑖 = 0.05, 

the value of ℎ𝑖
𝑥 = 11 is obtained. By solving the robust DEA-R model for ℎ𝑖

𝑥 = 11, the results are 

shown in the second column of Table 3. As can be seen, banks B1, B4, B6, B10, B13, B16, B 17, B20, 

B21, B22, B25, B27, B29, B30, B35, and B37 are efficient banks and other banks are inefficient. 

 

Table 2: European Banks Data and Efficiency Scores 

Bank 
Outputs Efficiency (CRS Technology) 

Net Interest Income Non-Interest Income DEA DEA-R 

B01 1147.93 6260.22 1 (1) 1 (1) 

B02 5833.23 2879.45 0.5572 (23) 0.5948 (23) 

B03 5499.03 3241.02 0.623 (19) 0.6584 (18) 

B04 1299.36 106.02 0.5721 (22) 0.5721 (25) 

B05 3194.92 2757.17 0.6887 (15) 0.6887 (17) 

B06 64502.75 17437.3 1 (1) 1 (1) 

B07 391.37 143.67 0.5179 (26) 0.5324 (28) 

B08 1204.6 420.74 0.6291 (17) 0.6416 (19) 

B09 835 555.3 0.5985 (21) 0.6232 (21) 

B10 142.46 70.2 1 (1) 1 (1) 

B11 5492.95 4870.05 0.7413 (12) 0.7413 (13) 

B12 14022.53 15211.15 0.6025 (20) 0.6025 (22) 

B13 1879.16 1265.87 1 (1) 1 (1) 

B14 2633.84 1453.13 0.785 (8) 0.8382 (7) 

B15 244.93 154.12 0.8212 (6) 0.8504 (6) 

B16 4581.77 2012.86 1 (1) 1 (1) 

B17 3867.18 1461.25 0.9496 (2) 0.9834 (2) 

B18 2522.01 670.35 0.5249 (24) 0.5398 (27) 

B19 1559.32 1981.23 0.5724 (21) 0.5724 (24) 

B20 69.85 1.38 1 (1) 1 (1) 

B21 41.36 46.96 0.9085 (2) 0.9085 (4) 

B22 138.69 116.55 1 (1) 1 (1) 

B23 1530 425.57 0.7081 (14) 0.7081 (15) 

B24 9956.65 3137.61 0.4705 (27) 0.4731 (29) 

B25 2153.9 553.99 0.7637 (11) 0.7637 (12) 

B26 4498.76 1669.42 0.7828 (9) 0.8131 (10) 

B27 1416.15 702.59 0.9019 (3) 0.9184 (3) 

B28 1270.5 754.05 0.77 (10) 0.8177(9) 

B29 4476.56 1374.35 1 (1) 1 (1) 

B30 528.25 204.02 1 (1) 1 (1) 

B31 364.61 261.93 0.8297 (5) 0.8297 (8) 

B32 3414.83 2593.51 0.7169 (13) 0.7304 (14) 

B33 4890.29 522.59 0.6239 (18) 0.6239 (20) 

B34 39399.58 14262.2 0.6787 (16) 0.694 (16) 

B35 3027.45 2958.94 0.8614 (4) 0.8677 (5) 

B36 6684.27 17064.67 0.7853 (7) 0.7853 (11) 

B37 2630.84 252.98 1 (1) 1 (1) 

B38 10399.16 4125.31 0.5199 (25) 0.5432 (26) 

 
The rank corresponding to each of the banks is given in parentheses next to their efficiency scores. 

If we consider the rank of efficient banks as one, the rank of inefficient banks is based on their efficiency 

scores. Among the inefficient banks, banks B23, B26, and B15 have a higher rank than other banks. 

According to the results, all the scores related to the efficiency scores obtained from the robust DEA-R 

model are greater than or equal to their corresponding values obtained from the DEA-R model. As can 

be seen, the corresponding ranking of banks based on robust DEA-R (model 2) and DEA-R models 

(model 1) is not the same. For example, bank B36 has a rank of 6 based on the robust DEA-R model, 
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while it has a rank of 11 based on the DEA-R model. In Figure 3, a relationship between the ranking 

scores of DEA-R and robust DEA-R models for different banks is proposed. There is a positive and 

almost linear relationship between the ranking scores. As can be seen, the dispersion between the rank-

ing scores of DEA-R and robust DEA-R models is less. Figure 4 compares the efficiency scores of the 

DEA-R (model 1) and robust DEA-R (model 2) models. 

 

 
Fig. 1: Scatter Plots for Various Ranking Scores of Dea and Dea-R Models 

 

 
 

Fig. 2: Columns Plots for Efficiency Scores of DEA and DEA-R Models 

 

 
 

Fig. 3: Scatter Plots for Various Ranking Scores of DEA-R and Robust DEA-R Models 
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Fig. 4: Columns Plots for Efficiency Scores of DEA-R and Robust DEA-R Models 

 

 

Now, comparing the results of the robust DEA model presented by Salahi et al. [62] by choosing 

ℎ𝑖
𝑥 = 11. The results of this approach are shown in the third column of Table 3. Salahi et al. [62] as-

sumed that all input and output components are uncertain numbers. Banks B1, B6, B10, B13, B17, B16, 

B15, B20, B22, B21, B27, B29, B31, B30, B35, and B37 are efficient banks, and other banks are inef-

ficient, based on the approach results of Salahi et al. [62]. The rank corresponding to each of the banks 

is given in parentheses next to their efficiency scores. By comparing the results of the DEA model and 

the approach provided by Salahi et al. [62], we see that the results of robust DEA and DEA models are 

not the same. The efficiency scores obtained from the robust DEA model (Salahi et al. [62]) are larger 

than the corresponding scores obtained from the DEA model. 

Now, in order to compare the results of robust DEA and robust DEA-R models under the condition 

that the input and output components are uncertain and certain numbers, respectively, we solve the 

robust DEA model of Salahi et al. [62] by putting Γ𝑖
𝑥 = 11. The results related to the model of Salahi 

et al. [62] are given in the last column of Table 3. By comparing the robust DEA (Salahi et al. [62]) and 

robust DEA-R (model (2)) models, it can be seen that all the efficiency scores obtained from the robust 

DEA-R model are greater or equal to their corresponding efficiency scores obtained from the robust 

DEA model. This result shows that the robust DEA-R model avoids the problem of underestimation of 

efficiency available in the robust DEA model. The robust DEA-R model introduces banks B4, B25, 

B27, and B33 as efficient banks, while these banks are inefficient according to the robust DEA model 

of Salahi et al. [62]. This result shows that the robust DEA-R model prevents pseudo-inefficiency in 

contrast to the robust DEA model. As can be seen, the corresponding ranking of banks based on robust 

DEA (Salahi et al. [62]) and robust DEA-R (model (2)) models are not the same. For example, bank 

B23 has a rank of 2 based on the robust DEA-R model, while it has a rank of 12 based on the robust 

DEA model. In Figure 5, a relation between the ranking scores of robust DEA (Salahi et al. [62]) and 

robust DEA-R (model (2)) models for different banks is provided. There is a positive and almost linear 

relationship between the ranking scores. The dispersion between the ranking scores of robust DEA and 

robust DEA-R models is almost zero. Figure 6 compares the efficiency scores of robust DEA and robust 

DEA-R models. 
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Table 3: The Efficiency Scores of Robust DEA and DEA-R 

Bank 

Efficiency (CRS Technology) 

Robust DEA-R approach 

(model (2)): 𝚪 = 𝟏𝟏. 

Robust  DEA approach 

(Salahi et al. [62]) : 𝚪 = 𝟏𝟏 

Robust  DEA approach by only input uncertain 

(Salahi et al. [62]) : 𝚪 = 𝟏𝟏. 
B01 1 (1) 1 (1) 1 (1) 

B02 0.6892 (18) 0.6807 (19) 0.6159 (22) 

B03 0.7507 (16) 0.7610 (14) 0.6885 (17) 

B04 1 (1) 0.6989 (18) 0.6323 (21) 

B05 0.7612 (15) 0.8413 (10) 0.7612 (13) 

B06 1 (1) 1 (1) 1 (1) 

B07 0.6444 (21) 0.6327 (22) 0.5725 (25) 

B08 0.8099 (13) 0.7685 (12) 0.6953 (15) 

B09 0.7055 (17) 0.7311 (17) 0.6615 (19) 

B10 1 (1) 1 (1) 1 (1) 

B11 0.8193 (12) 0.9055 (7) 0.8193 (10) 

B12 0.6689 (19) 0.7360 (15) 0.6659 (18) 

B13 1 (1) 1 (1) 1 (1) 

B14 0.9614(5) 0.9590 (3) 0.8676 (7) 

B15 0.9652(4) 1 (1) 0.9076 (5) 

B16 1 (1) 1 (1) 1 (1) 

B17 1 (1) 1 (1) 1 (1) 

B18 0.7668 (14) 0.6412 (20) 0.5801 (23)   

B19 0.6418 (22) 0.6993 (16) 0.6327 (20) 

B20 1 (1) 1 (1) 1 (1) 

B21 1 (1) 1 (1) 1 (1) 

B22 1 (1) 1 (1) 1 (1) 

B23 0.9919 (2) 0.8650 (9) 0.7826 (12) 

B24 0.6392 (23) 0.5747 (23) 0.5200 (26) 

B25 1 (1) 0.9330 (6) 0.8441 (9) 

B26 0.9706 (3) 0.9563 (4) 0.8652 (8) 

B27 1 (1) 1 (1) 0.9969 (2) 

B28 0.9322 (8)  0.9406 (5) 0.8510 (9) 

B29 1 (1) 1 (1) 1 (1) 

B30 1 (1) 1 (1) 1 (1) 

B31 0.9197 (9) 1 (1) 0.9171 (4) 

B32 0.8205 (11) 0.8758 (8) 0.7924 (11) 

B33 1 (1) 0.7622 (13) 0.6896 (16) 

B34 0.8569 (10) 0.8292 (11) 0.7502 (14) 

B35 0.9606 (6) 1 (1) 0.9521 (3) 

B36 0.9452 (7)   0.9593 (2)  0.8679 (6) 

B37 1 (1) 1 (1) 1 (1) 

B38 0.6496 (20) 0.6351 (21) 0.5746 (24) 

 

 
 

Fig. 5: Scatter Plots for Various Ranking Scores of Robust DEA and Robust DEA-R Models 
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Fig. 6: Columns Plots for Efficiency Scores of Robust DEA and Robust DEA-R Models 

 

Table 4: The Efficiency Scores of Models with The Set of Common Weight 

Bank 

Efficiency (CRS Technology) 

DEA-R 

Common weight (model (12)) 

DEA-R 

(model (1)) 

Robust DEA-R 

(model (2)): 𝚪 = 𝟏𝟏 

Robust- DEA-R 

Common weight (model (16)): 𝚪 = 𝟏𝟏 

B01 0.2844 (34) 1 (1) 1 (1) 0.2853 (34) 

B02 0.5742 (24) 0.5948 (23) 0.6892 (18) 0.5749 (24) 

B03 0.6429 (19) 0.6584 (18) 0.7507 (16) 0.6437 (19) 

B04 0.1602 (36) 0.5721 (25) 1 (1) 0.1595 (36) 

B05 0.6616 (17) 0.6887 (17) 0.7612 (15) 0.6613 (17) 

B06 0.9224 (5) 1 (1) 1 (1) 0.9096 (5) 

B07 0.4558 (28) 0.5324 (28) 0.6444 (21) 0.4544 (28) 

B08 0.6373 (20) 0.6416 (19) 0.8099 (13) 0.6365 (20) 

B09 0.6092 (22) 0.6232 (21) 0.7055 (17) 0.6085 (22) 

B10 0.8692 (6) 1 (1) 1 (1) 0.8726 (6) 

B11 0.7039 (15) 0.7413 (13) 0.8193 (12) 0.7055 (15) 

B12 0.4743 (27) 0.6025 (22) 0.6689 (19) 0.4757 (27) 

B13 1 (1) 1 (1) 1 (1) 1 (1) 

B14 0.7335 (11) 0.8382 (7) 0.9614(5) 0.7345 (11) 

B15 0.8389 (7) 0.8504 (6) 0.9652(4) 0.8367 (7) 

B16 0.9804 (3) 1 (1) 1 (1) 0.9645 (3) 

B17 0.9529 (4) 0.9834 (2) 1 (1) 0.9526 (4) 

B18 0.3769 (32) 0.5398 (27) 0.7668 (14) 0.3771 (32) 

B19 0.3502 (33) 0.5724 (24) 0.6418 (22) 0.3516 (33) 

B20 0.0525 (37) 1 (1) 1 (1) 0.0525 (37) 

B21 0.7336 (12) 0.9085 (4) 1 (1) 0.7353 (12) 

B22 0.9842 (2) 1 (1) 1 (1) 0.987 (2) 

B23 0.5415 (25) 0.7081 (15) 0.9919 (2) 0.5424 (25) 

B24 0.4006 (29) 0.4731 (29) 0.6392 (23) 0.4001 (29) 

B25 0.6313 (21) 0.7637 (12) 1 (1) 0.6268 (21) 

B26 0.7901 (9) 0.8131 (10) 0.9706 (3) 0.7884 (9) 

B27 0.7098 (14) 0.9184 (3) 1 (1) 0.7116 (14) 

B28 0.7948 (8) 0.8177(9) 0.9322 (8)  0.7948 (8) 

B29 1 (1) 1 (1) 1 (1) 1 (1) 

B30 0.66 (16) 1 (1) 1 (1) 0.6618 (16) 

B31 0.6508 (18) 0.8297 (8) 0.9197 (9) 0.6529 (18) 

B32 0.715 (13) 0.7304 (14) 0.8205 (11) 0.7122 (13) 

B33 0.2308 (35) 0.6239 (20) 1 (1) 0.23 (35) 

B34 0.5976 (23) 0.694 (16) 0.8569 (10) 0.5958 (23) 

B35 0.7818 (10) 0.8677 (5) 0.9606 (6) 0.783 (10) 

B36 0.3883 (31) 0.7853 (11) 0.9452 (7)   0.3893 (31) 

B37 0.4117 (30) 1 (1) 1 (1) 0.396 (30) 

B38 0.4939 (26) 0.5432 (26) 0.6496 (20) 0.4944 (26) 
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Now we will examine the results of the robust ratio analysis model based on the set of common 

weights, namely model (16). The results are in the last column of Table 4. 

As can be seen, a robust ratio analysis model based on the set of common weights, namely model 

(16), evaluates all banks by considering only input components in the form of uncertain numbers and 

output components in the form of certain numbers. The model identifies banks B13 and B29 as efficient 

and other banks as inefficient. The rank corresponding to each of the banks is given in parentheses next 

to their efficiency scores. The rank of efficient banks is considered as one. The ranking of other banks 

is based on their efficiency scores obtained from the model (16). Banks B22, B16, and B17 have the 

second, third, and fourth ranks in terms of rank, while the rank of these units is equal to one based on 

the robust DEA-R model (model 2). This result shows that by using model (16), which uses a set of 

common weights from all ratios of input components to output components, we can rank all commercial 

banks based on efficiency scores.  

The model (16) has a higher weight discriminating power than the robust DEA-R model (2), and all 

the banks under evaluation can be ranked. The robust ratio analysis model based on the set of common 

weights, namely model (16), evaluates all banks under the same conditions. A relation between the 

ranking scores of robust DEA-R (model 2) and robust ratio analysis models (model 16) for different 

banks proposed in Figure 7. There is a positive and non-linear relationship between the ranking scores. 

Figure 8 compares the efficiency scores of robust DEA-R and robust ratio analysis models. 

 

 
 

Fig.7: Scatter Plots for Various Ranking Scores of Robust Dea-R and Robust Ratio Analysis a Models 

 

 
Fig. 8: Columns Plots for Efficiency Scores of Robust DEA-R and Robust Ratio Analysis Models 
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6 Conclusions  

One of the techniques for evaluating the efficiency of a set of DMUs is DEA. In traditional DEA 

models, input and output data have absolute values. However, in many applications of the real world, 

such as evaluating the performance of banks and universities, we face many cases in which the ratio of 

input components to output components (and vice versa) of the DMUs is important for the DM. There-

fore, in recent years, efficiency evaluation models have been developed based on the ratio of input 

components to output components, which can be referred to as ratio analysis and DEA-R models. Also, 

in the real world, we may face many cases where the input and output data have uncertain values. One 

of the proposed approaches for dealing with uncertain data is robust optimization. In this paper, DEA-

R models presented to evaluate the efficiency of DMUs based on the ratio of input and output compo-

nents under conditions of uncertainty. We assumed that the input components have uncertain values 

and the output components have certain values. The robust optimization used based on the BS approach 

and obtained the RC problem corresponding to the robust DEA-R model as a linear programming 

model. In order to increase the discriminating power of the weights, we presented the ratio analysis 

model based on a set of common weights of all the ratios of input to output components and presented 

this model under uncertainty conditions. To solve this model, we used the method of Kao and Hung 

[37] to solve the presented common weight model. The robust optimization applied based on the BS 

approach and obtained the RC problem corresponding to the robust DEA-R model as a linear program-

ming model. According to the results obtained in the case study, it can be stated that the efficiency 

scores obtained from the robust DEA-R models are greater than or equal to the corresponding scores 

obtained from the robust DEA models, and this shows that the robust DEA-R models avoids the prob-

lem of underestimation of efficiency in contrast to the robust DEA models. Also, some DMUs are in-

troduced as inefficient in the evaluation with the robust DEA model due to the zeroing of the weight 

corresponding to the input or output components, but in the evaluation with the robust DEA-R model, 

these DMUs are introduced as efficient. These results show that robust DEA-R models avoid the prob-

lem of pseudo-inefficiency compared to robust DEA models. In this paper we have shown that different 

and correct rankings obtained for DMUs based on robust ratio analysis models with a set of common 

weights, because these models use all the ratios of input to output components, and this issue increases 

the power of distinguishing weights. As future work, robust DEA-R and robust ratio analysis models 

can be developed in conditions where all input and output data are uncertain. Also, the models presented 

in this paper can be developed for the two-stage network structure. As another work, the proposed 

model in this paper can be developed for non-radial models, such as the SBM model. 
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