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ABSTRACT 

 

In this paper, we present an efficient and accurate method for calculating the 

Black-Scholes differential equations and solve the Black-Scholes equations using 

Jacoby and Airfoil orthogonal bases, with the collocation method. The Black-

Scholes equation is a partial differential equation, which describes the price of 

choice in terms of time and the collocation method is a method of deter-mining 

coefficients. Then we show the computational results and examine the 

performance of the method for the two options, the price of basic assets and its 

issues. These results show that the Jacoby method is more efficient in solving the 

Black Scholes equation, and the method error is less and the convergence rate is 

higher. In this paper, by applying numerical methods to the desired equation, 

nonlinear devices can be solved by nonlinear solution methods, such as Newton's 

iterative method. The existence, uniqueness of the solution, and convergence of 

the methods are examined, and we will show in an example that by repeating then  
|𝑢𝑛+1−𝑢𝑛|

|𝑢𝑛|
< ε can be reached and this indicates the accuracy of the response to 

these methods. 

 

1 Introduction 
 

Black-Scholes equation is a mathematical model of a financial market comprising derivative investment 

instruments. From this model, the Black-Scholes formula can be obtained, which gives a theoretical 

estimate of the price of European style options. This formula created great prosperity in trading, and 

scientifically legitimized the activities of the Chicago franchise and other power markets around the 

world. The general pricing theory of bargaining offered by Fisher Black and Miron Schulz in 1973 [7], 

is a result of these two talented scholars from previous efforts because Kasow, Louis Bachelier, and... . 

After presenting the theory by Black and Schulz, the main focus of financial advisers was to extend the 

use of this theory in the field of financial science [10].  

In 1973, Chicago Transaction Disclosure at the Chicago Chamber of Commerce, USA, was formed in 

order to bargain. Then American, Persian and Philadelphia exchanges followed the Chicago Stock 

Exchange, which began trading in the stock exchanges in 1977. Until the early 1980s, options for 

dealing with four hundred shares (in the US market) and other financial instruments were traded. The 

main idea behind making this formula was to use in Financial math and work in bonds (cash) and stocks. 

By publishing a paper by Black and Scholes on the pricing of purchase and sale papers, a new revolution 

was taking place on such securities. Solving this equation, which is a kind of heat equation, is important. 



Optimization of the Black-Scholes Equation with the Numerical Method of Local Expansion to Minimize Risk Coverage

 
 

   
 

[820] 
 

Vol. 6, Issue 4, (2021) 

 

Advances in Mathematical Finance and Applications   

 

The Black-Scholes equation is a partial differential equation, which describes the price of choice in 

terms of time. The key insight behind this equation is that one can thoroughly control the risk of buying 

and selling a fully-fledged asset, and thus risking it. This, in turn, implies that there is only one correct 

price available for the Black Scholes formula. However, many of the hypotheses that are presented in 

this pricing model are not apparently real in practical settings.  

The assumptions that are considered in the Black-Scholes equation are: V, derivative price as a function 

of time and stock price, asset price S follows a Brownian geometric motion (GBM), a fixed drift 

parameter r, a constant instability rate σ, a lack of arbitrage opportunities (Lack of risk-free profits), a 

friction and competitive market, it should be noted that we prove the existence of a unique solution and 

convergence of methods for the above equation. One of the most famous models in the financial markets 

is Black-Scholes model. In the field of financial modeling, the Black-Scholes model plays an important 

role in determining the price of high-risk assets, and is the basis for many model pricing frameworks 

for options. The utility of this popular model has proven to be a theoretical basis in financial markets. 

However, it has been shown that this model is unable to predict the important characteristics observed 

in asset earnings and the implied fluctuations of the market. For this reason, many arguments have been 

made for the development of successor models and activities in this field. In the Black-Scholes model, 

the basic asset price is matched by the geometric Brownian motion process, in which the asset price 

fluctuations and movements are assumed to be constant, so for this reason it cannot predict or explain 

dynamic or random behavior in price changes. Anyone who follows the crisis will realize that the real 

economy of business and goods has been strengthened by the well-known financial instruments known 

as derivatives. In the Black-Scholes equation, the recommended price of other values can be directly 

measured: 

Time, price and asset, according to which the interest rate is secured without risk. 

The following assumptions are considered for extracting the Black-Scholes pricing formula: 

There is no trading expense or tax for traders, the interest rate without short-term risk is clear and 

constant over time, there is no limitation on lending and borrowing at unrestricted interest rates, there 

is always the possibility of selling a loan. In the course of time, transactions are always ongoing, the 

base asset price changes are continuous, and there is no price swing; the buy option only is available on 

maturity (Optional European Purchase). As most engineers and researchers know, there are many issues 

in nature that can ultimately be modeled in the form of differential equations, and since, generally, 

issues appear in a non-linear form and there is no exact answer to them, or whether those answers are 

hardly obtained, so we have to look for methods that can solve these models at least with an approximate 

solution. One of these issues is the Black-Scholes differential equation, due to its extensive use of 

finance and stock markets, it will be expanded with a number of different methods, which we will 

examine in this study. Most of the phenomena around us have a nonlinear model and formulate with 

nonlinear equations. With the advent of advanced computers, it is easy and easier to solve linear 

problems, but it's hard to discuss the exact solution of a non-linear problem.  

Although we currently have advanced computers, as well as software such as Maple, Mathematica, and 

similar, but in most cases it is difficult to obtain an analytical response to a nonlinear problem, so we 

need to look for ways to solve this models at least with an approximate solution. Repetitive methods 

and extension methods are methods that can be used to solve many functional equations. Integral-

differential equations, differential equations and partial differential equations are equations that are 

important in many sciences, such as physics, chemistry, mechanics, economics. Functional equations 

with variable time have many applications in chemical engineering, meteorology, civil engineering, 
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medical engineering, aerospace engineering, astronomy, marine science, automobile industry, 

shipbuilding and mechanical engineering, and its various trends. For example, the general pricing theory 

of bargaining offered by Fischer Black and Miron Scholes in 1973, is a result of these two talented 

scholars from previous efforts because Kasow, Louis Bachelier, and ... After presenting the theory by 

Black and Schulz, the main focus of financial advisers was to extend the use of this theory in the field 

of financial science. The Black-Scholes analysis results can be generalized to buy options and options 

for European sales on non-profit companies.  

One method, is the use of the Black-Scholes formula, that way the current value of the projected gain 

over the life of the bargain option is less than the stock price, and the volatility equivalent to the volatility 

of the stock price is the net present value of the gain. Fischer Black offers an approximate method of 

using American buy valuation on non-profit companies. Black's approximate suggest, Putting the price 

equals the highest price options for a European deal. The first option of a European transaction expires 

at the same time as the American Delegation, and the second immediately expires before the date of 

payment of the interest. In Section 2, we introduce the local methodology. In this section, the Jacobi 

Method and the Airfoil Method are described. Then, in Section 2-3, the equation is solved in a local 

method. In Section 3, we will investigate the singularity and examine it with a numerical example of 

the error in the table. In Figures, two methods of Jacobi and Airfoil are compared and finally the result 

is examined. 

 

2 Introducing the Collocation Method 
 

A collocation l method in mathematics is a method of displacement for numerical solutions of ordinary 

differential equations, partial differential equations and integral equations. The idea of this scheme is 

based on the selection of a limited range of candidate solutions (usually polynomials to a certain degree) 

and a number of points in the domain (collocation points) to solve the given equation in coordination 

points. In fact, the collocation method is a method of determining coefficients. With the aid of the 

different orthogonal polynomials, the different solving methods are proposed, in which the Jacobi and 

Airfoil polynomials are used as polynomials in this method. 

          

2.1 Jacobi Polynomial 

 

We define the Jacobi polynomial as follows: [2] 

 

𝑢𝑛(𝑥, 𝑡) = 𝑤(𝑥)𝑤(𝑡) ∑ 𝑎𝑖𝑝𝑖
𝛼,𝛽(𝑥)𝑝𝑖

𝛼,𝛽(𝑡),    𝛼, 𝛽 > −1𝑛
𝑖=0                                    

 𝑤(𝑥) =
(1 − 𝑥)𝛼

(1 + 𝑥)𝛽
,      𝑤(𝑡) =

(1 − 𝑡)𝛼

(1 + 𝑡)𝛽
  

 

(1) 

 𝑝𝑖
𝛼,𝛽(𝑥) =

(1−𝑥)−𝛼(1+𝑥)−𝛽

(−2)𝑖𝑖!
.

𝑑𝑖

𝑑𝑥𝑖 [(1 − 𝑥)𝑖+𝛼(1 + 𝑥)𝑖+𝛽]        

  (𝑝𝑖
𝛼,𝛽

)
′

(𝑥) =
1

2
(𝑖 + 𝛼 + 𝛽 + 1)𝑝𝑖−1

(𝛼+1,𝛽+1)
(𝑥).                    

 

(2) 

So in general, 

             

(𝑝𝑖
𝛼,𝛽

)
(𝑚)

(𝑥) =
1

𝑚!
(𝑖 + 𝛼 + 𝛽 + 𝑚)𝑝𝑖−𝑚

(𝛼+𝑚,𝛽+𝑚)
(𝑥), 𝑖 ≥ 𝑚. 
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             𝑝𝑖
𝛼,𝛽(𝑡) =

(1−𝑡)−𝛼(1+𝑡)−𝛽

(−2)𝑖𝑖!
.

𝑑𝑖

𝑑𝑡𝑖 [(1 − 𝑡)𝑖+𝛼(1 + 𝑡)𝑖+𝛽]  

(𝑝𝑖
𝛼,𝛽

)
(𝑚)

(𝑡) =
1

𝑚!
(𝑖 + 𝛼 + 𝛽 + 𝑚)𝑝𝑖−𝑚

(𝛼+𝑚,𝛽+𝑚)
(𝑡), 𝑖 ≥ 𝑚. 

   

 

(3) 

 

2.2 Airfoil Polynomial 

 

           𝑢𝑛(𝑥, 𝑡) = 𝑤(𝑥)𝑤(𝑡) ∑ 𝑎𝑖𝑓𝑖(𝑥)𝑓𝑖(𝑡),𝑛
𝑖=0  

𝑤(𝑥) = √
(1 + 𝑥)

(1 − 𝑥)
   ,      𝑤(𝑡) = √

(1 + 𝑡)

(1 − 𝑡)
  , 

𝑓𝑖(𝑥) =
cos [(𝑖 +

1
2

) 𝑎𝑟𝑐 cos 𝑥]

cos [
1
2 𝑎𝑟𝑐 cos 𝑥]

 , 

𝑓𝑖(𝑡) =
cos [(𝑖 +

1
2

) 𝑎𝑟𝑐 cos 𝑥]

cos [
1
2

𝑎𝑟𝑐 cos 𝑥]
 , 

𝑢𝑖(𝑥) =
sin [(𝑖 +

1
2

) 𝑎𝑟𝑐 sin 𝑥]

cos [
1
2 𝑎𝑟𝑐 sin 𝑥]

, 

𝑢𝑖(𝑡) =
sin [(𝑖 +

1
2

) 𝑎𝑟𝑐 sin 𝑡]

cos [
1
2 𝑎𝑟𝑐 sin 𝑡]

, 

 

 

 

 

 

 

 

(4) 

          

   (1 + x)fi
′(x) = (i +

1

2
) ui(x) −

1

2
fi(x),       

   (1 + 𝑡)fi
′(t) = (i +

1

2
) ui(t) −

1

2
fi(t) . 

 

(5) 

2.3 Introduction of the Black-Scholes Equation and Its Evolving with Jacobi Polynomial 

 

𝑉𝑡 = −
1

2
𝜎2𝑠2𝑉𝑠𝑠 − 𝑟𝑠𝑉𝑠 + 𝑟𝑉.     (6) 

where V is the price of the option as a function of stock price S and time t, r is the risk-free interest 

rate, and 𝝈 is the volatility of the stock. To solve the equation, we have 

𝑉(𝑠, 𝑡) = ∫ −
1

2
𝜎2𝑠2𝑉𝑠𝑠

𝑡

𝑎
𝑑𝑡 − ∫ 𝑟𝑠𝑉𝑠

𝑡

𝑎
𝑑𝑡 + ∫ 𝑟𝑉

𝑡

𝑎
𝑑𝑡.     (7) 

According to equation (1) and derivative of s: 

𝑉𝑠 = 𝑤(𝑡) [𝑤′(𝑠) ∑ 𝑎𝑖𝑝𝑖
𝛼,𝛽(𝑠)𝑝𝑖

𝛼,𝛽(𝑡)   + 𝑤(𝑠) ∑ 𝑎𝑖 (𝑝𝑖
𝛼,𝛽

(𝑠))
′

𝑝𝑖
𝛼,𝛽

(𝑡)𝑛
𝑖=0

𝑛
𝑖=0 ], (8)  
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𝑉𝑠𝑠 = 𝑤(𝑡) [𝑤"(𝑠) ∑ 𝑎𝑖𝑝𝑖
𝛼,𝛽(𝑠)𝑝𝑖

𝛼,𝛽(𝑡)   + 2𝑤′(𝑠) ∑ 𝑎𝑖 (𝑝𝑖
𝛼,𝛽(𝑠))

′

𝑝𝑖
𝛼,𝛽(𝑡)

𝑛

𝑖=0

𝑛

𝑖=0

+ 𝑤(𝑠) ∑ 𝑎𝑖 (𝑝𝑖
𝛼,𝛽(𝑠))

"

𝑝𝑖
𝛼,𝛽(𝑡)

𝑛

𝑖=0

], 

 

𝑉𝑠 = 𝑤(𝑡) [𝑤′(𝑠) ∑ 𝑎𝑖𝑝𝑖
𝛼,𝛽(𝑠)𝑝𝑖

𝛼,𝛽(𝑡)   + 𝑤(𝑠) ∑ 𝑎𝑖 (𝑝𝑖
𝛼,𝛽

(𝑠))
′

𝑝𝑖
𝛼,𝛽

(𝑡)𝑛
𝑖=0

𝑛
𝑖=0 ], 

𝑉𝑠𝑠 = 𝑤(𝑡) [𝑤"(𝑠) ∑ 𝑎𝑖𝑝𝑖
𝛼,𝛽(𝑠)𝑝𝑖

𝛼,𝛽(𝑡)   + 2𝑤′(𝑠) ∑ 𝑎𝑖 (𝑝𝑖
𝛼,𝛽(𝑠))

′

𝑝𝑖
𝛼,𝛽(𝑡)

𝑛

𝑖=0

𝑛

𝑖=0

+ 𝑤(𝑠) ∑ 𝑎𝑖 (𝑝𝑖
𝛼,𝛽(𝑠))

"

𝑝𝑖
𝛼,𝛽(𝑡)

𝑛

𝑖=0

], 

 

(9) 

So, by inserting in (7) we will have: 

𝑤(𝑠)𝑤(𝑡) ∑ 𝑎𝑖𝑝𝑖
𝛼,𝛽

(𝑠𝑗)𝑝𝑖
𝛼,𝛽

(𝑡𝑗)

𝑛

𝑖=0

= ∫ −
1

2
𝜎2𝑠2𝑤(𝑡) [𝑤"(𝑠) ∑ 𝑎𝑖𝑝𝑖

𝛼,𝛽
(𝑠𝑗)𝑝𝑖

𝛼,𝛽
(𝑡𝑗)  

𝑛

𝑖=0

𝑡

𝑎

+ 2𝑤′(𝑠) ∑ 𝑎𝑖 (𝑝𝑖
𝛼,𝛽

(𝑠𝑗))
′

𝑝𝑖
𝛼,𝛽

(𝑡𝑗)

𝑛

𝑖=0

+ 𝑤(𝑠) ∑ 𝑎𝑖 (𝑝𝑖
𝛼,𝛽

(𝑠𝑗))
"

𝑝𝑖
𝛼,𝛽

(𝑡𝑗)

𝑛

𝑖=0

] 𝑑𝑡

− ∫ 𝑟𝑠𝑤(𝑡) [𝑤′(𝑠) ∑ 𝑎𝑖𝑝𝑖
𝛼,𝛽

(𝑠𝑗)𝑝𝑖
𝛼,𝛽

(𝑡𝑗)  

𝑛

𝑖=0

𝑡

𝑎

+ 𝑤(𝑠) ∑ 𝑎𝑖 (𝑝𝑖
𝛼,𝛽

(𝑠𝑗))
′

𝑝𝑖
𝛼,𝛽

(𝑡𝑗)

𝑛

𝑖=0

] 𝑑𝑡

+ ∫ 𝑟
𝑡

𝑎

𝑤(𝑠)𝑤(𝑡) ∑ 𝑎𝑖𝑝𝑖
𝛼,𝛽

(𝑠𝑗)𝑝𝑖
𝛼,𝛽

(𝑡𝑗)

𝑛

𝑖=0

𝑑𝑡 

−
1

2
𝜎2𝑠2(𝑤"(𝑠) ∑ 𝑎𝑖𝑝𝑖

𝛼,𝛽
(𝑠𝑗)

𝑛

𝑖=0

+ 𝑤′(𝑠) ∑ 𝑎𝑖 (𝑝𝑖
𝛼,𝛽

(𝑠𝑗))
′

𝑛

𝑖=0

+ 𝑤(𝑠) ∑ 𝑎𝑖 (𝑝𝑖
𝛼,𝛽

(𝑠𝑗))
"

𝑛

𝑖=0

) 

× (∫ 𝑤(𝑡) ∑ 𝑝𝑖(𝑡𝑗)

𝑛

𝑖=0

𝑡

𝑎

𝑑𝑡) − 𝑟𝑠(𝑤′(𝑠) ∑ 𝑎𝑖𝑝𝑖
𝛼,𝛽

(𝑠𝑗)

𝑛

𝑖=0

+ 𝑤(𝑠) ∑ 𝑎𝑖 (𝑝𝑖
𝛼,𝛽

(𝑠𝑗))
′

𝑛

𝑖=0

) 

(10) 
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× (∫ 𝑤(𝑡) ∑ 𝑝𝑖(𝑡𝑗)

𝑛

𝑖=0

𝑡

𝑎

𝑑𝑡) − (𝑟

− 1)𝑤(𝑠) ∑ 𝑎𝑖𝑝𝑖
𝛼,𝛽

(𝑠𝑗) × (∫ 𝑤(𝑡) ∑ 𝑝𝑖(𝑡𝑗)

𝑛

𝑖=0

𝑡

𝑎

𝑑𝑡) = 0

𝑛

𝑖=0

 

 

Given the following assumptions, we arrive at a matrix: 

 

𝑤(𝑠) = 𝐸, 𝑤′(𝑠) = 𝐻, 𝑤"(𝑠) = 𝐺   
 

(11) 

Which are obtained from formula (1). 

∫ 𝑤(𝑡) ∑ 𝑝𝑖(𝑡𝑗)

𝑛

𝑖=0

𝑡

𝑎

𝑑𝑡 = 𝐷𝑖𝑗, 

∑ 𝑎𝑖𝑝𝑖
𝛼,𝛽

(𝑠𝑗)

𝑛

𝑖=0

= 𝑎𝑖𝐴𝑖𝑗 , 

∑ 𝑎𝑖 (𝑝𝑖
𝛼,𝛽

(𝑠𝑗))
′

𝑛

𝑖=0

= 𝑎𝑖𝐵𝑖𝑗 , 

∑ 𝑎𝑖 (𝑝𝑖
𝛼,𝛽

(𝑠𝑗))
"

𝑛

𝑖=0

= 𝑎𝑖𝐶𝑖𝑗 

(12) 

 

we have: 

−
1

2
𝜎2𝑠2(𝐺𝑎𝑖𝐴𝑖𝑗 + 𝐻𝑎𝑖𝐵𝑖𝑗 + 𝐸𝑎𝑖𝐶𝑖𝑗) × 𝐷𝑖𝑗 − 𝑟𝑠(𝐻𝑎𝑖𝐴𝑖𝑗 + 𝐸𝑎𝑖𝐵𝑖𝑗) × 𝐷𝑖𝑗  × 𝐷𝑖𝑗

− 𝑟𝑠(𝐻𝑎𝑖𝐴𝑖𝑗 + 𝐸𝑎𝑖𝐵𝑖𝑗) × 𝐷𝑖𝑗 − (𝑟 − 1)(𝐸𝑎𝑖𝐴𝑖𝑗 × 𝐷𝑖𝑗) = 0 

 

(13) 

With factoring and summarizing: 

   (−
1

2
𝜎2𝑠2𝐺 − 𝑟𝑠𝐻 + (𝑟 − 1)𝐸) 𝑎𝑖𝐴𝑖𝑗𝐷𝑖𝑗 + (−

1

2
𝜎2𝑠2𝐻 − 𝑟𝑠𝐸) 𝑎𝑖𝐵𝑖𝑗𝐷𝑖𝑗 

+ (−
1

2
𝜎2𝑠2𝐺) 𝑎𝑖𝐶𝑖𝑗𝐷𝑖𝑗 = 0, 

 

(14) 

So 

   𝑀𝑎𝑖𝐴𝑖𝑗𝐷𝑖𝑗 + 𝑁𝑎𝑖𝐵𝑖𝑗𝐷𝑖𝑗 + 𝐾𝑎𝑖𝐶𝑖𝑗𝐷𝑖𝑗 = 0. (15) 

where in 

𝑀 = −
1

2
𝜎2𝑠2𝐺 − 𝑟𝑠𝐻 + (𝑟 − 1)𝐸, 𝑁 = −

1

2
𝜎2𝑠2𝐻 − 𝑟𝑠𝐸, 𝛫 = −

1

2
𝜎2𝑠2𝐺.  (16) 
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𝑉(𝑠, 𝑡) = 𝑤(𝑠)𝑤(𝑡) ∑ 𝑎𝑖𝑓𝑖(𝑠)𝑓𝑖(𝑡),    

𝑛

𝑖=0

 (17) 

𝑤(𝑠)𝑤(𝑡) ∑ 𝑎𝑖𝑓𝑖(𝑠𝑗)𝑓𝑖(𝑡𝑗)

𝑛

𝑖=0

= ∫ −
1

2
𝜎2𝑠2𝑤(𝑡) [𝑤"(𝑠) ∑ 𝑎𝑖𝑓𝑖(𝑠𝑗)𝑓𝑖(𝑡𝑗)   

𝑛

𝑖=0

𝑡

𝑎

+ 2𝑤′(𝑠) ∑ 𝑎𝑖 (𝑓𝑖(𝑠𝑗))
′

𝑓𝑖(𝑡𝑗)

𝑛

𝑖=0

+ 𝑤(𝑠) ∑ 𝑎𝑖 (𝑓𝑖(𝑠𝑗))
"

𝑛

𝑖=0

𝑓𝑖(𝑡𝑗)] 𝑑𝑡

− ∫ 𝑟𝑠𝑤(𝑡) [𝑤′(𝑠) ∑ 𝑎𝑖𝑓𝑖(𝑠𝑗)𝑓𝑖(𝑡𝑗)   

𝑛

𝑖=0

𝑡

𝑎

+ 𝑤(𝑠) ∑ 𝑎𝑖 (𝑓𝑖(𝑠𝑗))
′

𝑓𝑖(𝑡𝑗)

𝑛

𝑖=0

] 𝑑𝑡

+ ∫ 𝑟
𝑡

𝑎

𝑤(𝑠)𝑤(𝑡) ∑ 𝑎𝑖𝑓𝑖(𝑠𝑗)𝑓𝑖(𝑡𝑗)

𝑛

𝑖=0

𝑑𝑡 

−
1

2
𝜎2𝑠2(𝑤"(𝑠) ∑ 𝑎𝑖𝑓𝑖(𝑠𝑗)

𝑛

𝑖=0

+ 𝑤′(𝑠) ∑ 𝑎𝑖 (𝑓𝑖(𝑠𝑗))
′

𝑛

𝑖=0

+ 𝑤(𝑠) ∑ 𝑎𝑖 (𝑓𝑖(𝑠𝑗))
"

𝑛

𝑖=0

) 

× (∫ 𝑤(𝑡) ∑ 𝑓𝑖(𝑡𝑗)

𝑛

𝑖=0

𝑡

𝑎

𝑑𝑡) − 𝑟𝑠(𝑤′(𝑠) ∑ 𝑎𝑖𝑓𝑖(𝑠𝑗)

𝑛

𝑖=0

+ 𝑤(𝑠) ∑ 𝑎𝑖 (𝑓𝑖(𝑠𝑗))
′

𝑛

𝑖=0

) 

× (∫ 𝑤(𝑡) ∑ 𝑓𝑖(𝑡𝑗)

𝑛

𝑖=0

𝑡

𝑎

𝑑𝑡) − (𝑟 − 1)𝑤(𝑠) ∑ 𝑎𝑖𝑓𝑖(𝑠𝑗) × (∫ 𝑤(𝑡) ∑ 𝑓𝑖(𝑡𝑗)

𝑛

𝑖=0

𝑡

𝑎

𝑑𝑡) = 0

𝑛

𝑖=0

 

(18) 

  

Given the following assumptions, we have a matrix: 

 

𝑤(𝑠) = 𝐸,                𝑤′(𝑠) = 𝐻,               𝑤"(𝑠) = 𝐺   (19) 

 

Which are obtained from formula (1). 

 

∫ 𝑤(𝑡) ∑ 𝑓𝑖(𝑡𝑗)

𝑛

𝑖=0

𝑡

𝑎

𝑑𝑡 = 𝐷𝑖𝑗, 

∑ 𝑎𝑖𝑓𝑖(𝑠𝑗)

𝑛

𝑖=0

= 𝑎𝑖𝐴𝑖𝑗 , 

∑ 𝑎𝑖 (𝑓𝑖(𝑠𝑗))
′

𝑛

𝑖=0

= 𝑎𝑖𝐵𝑖𝑗 , 

∑ 𝑎𝑖 (𝑓𝑖(𝑠𝑗))
"

𝑛

𝑖=0

= 𝑎𝑖𝐶𝑖𝑗 . 

(20) 

we have: 
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−
1

2
𝜎2𝑠2(𝐺𝑎𝑖𝐴𝑖𝑗 + 𝐻𝑎𝑖𝐵𝑖𝑗 + 𝐸𝑎𝑖𝐶𝑖𝑗) × 𝐷𝑖𝑗 − 𝑟𝑠(𝐻𝑎𝑖𝐴𝑖𝑗 + 𝐸𝑎𝑖𝐵𝑖𝑗) × 𝐷𝑖𝑗 

−(𝑟 − 1)(𝐸𝑎𝑖𝐴𝑖𝑗 × 𝐷𝑖𝑗) = 0. 

(21) 

 

With factoring and summarizing: 

(−
1

2
𝜎2𝑠2𝐺 − 𝑟𝑠𝐻 + (𝑟 − 1)𝐸) 𝑎𝑖𝐴𝑖𝑗𝐷𝑖𝑗 + (−

1

2
𝜎2𝑠2𝐻 − 𝑟𝑠𝐸) 𝑎𝑖𝐵𝑖𝑗𝐷𝑖𝑗  

+ (−
1

2
𝜎2𝑠2𝐺) 𝑎𝑖𝐶𝑖𝑗𝐷𝑖𝑗 = 0, 

 

(22) 

 

So 

 

𝑀𝑎𝑖𝐴𝑖𝑗𝐷𝑖𝑗 + 𝑁𝑎𝑖𝐵𝑖𝑗𝐷𝑖𝑗 + 𝐾𝑎𝑖𝐶𝑖𝑗𝐷𝑖𝑗 = 0. (23) 

 

where in 

 

𝑀 = −
1

2
𝜎2𝑠2𝐺 − 𝑟𝑠𝐻 + (𝑟 − 1)𝐸, 𝑁 = −

1

2
𝜎2𝑠2𝐻 − 𝑟𝑠𝐸,        𝛫 = −

1

2
𝜎2𝑠2𝐺.   

 

(24) 

 

 

3 Uniqueness of Solution 

The problem is unique when 0 < α1 < 1 and the value of α1 = λMLT. Suppose 𝑓(𝑦(𝑡)) = [𝑦(𝑡)]𝑝, 

0 ≤ t ≤ 𝑇, ∀𝑥 ∈ 𝐽 = [0, 𝑇] and 𝑦(𝑡) a nonlinear function that satisfy in the Lipschitz condition and 

have: 

|
𝑘(𝑥, 𝑡)

(𝑥 − 𝑡)𝛽
| ≤ 𝑀, 

|𝑓(𝑦) − 𝑓(𝑧)| ≤ 𝐿|𝑦 − 𝑧| 

 

(25) 

 

Proof: We assume that the problem is not unique solution and y, y* be the solution of the problem, 

then: 

|𝑦 − 𝑦∗| = |𝐼𝛼𝑔(𝑥)

+ 𝜆𝐼𝛼 ∫ 𝑘(𝑥, 𝑡)
1

(𝑥 − 𝑡)𝛽
𝑓(𝑦)𝑑𝑡 −  𝐼𝛼𝑔(𝑥)

𝑥

𝑎

+ 𝜆𝐼𝛼 ∫ 𝑘(𝑥, 𝑡)
1

(𝑥 − 𝑡)𝛽
𝑓(𝑦∗)𝑑𝑡 

𝑥

𝑎

 | 

≤ |𝜆| |𝐼𝛼 ∫
𝑘(𝑥, 𝑡)

(𝑥 − 𝑡)𝛽
 (𝑓(𝑦) − 𝑓(𝑦∗))𝑑𝑡

𝑥

𝑎

| 

                 ≤ |𝜆|𝑀𝐿|𝑦 − 𝑦∗|𝑇  ≤ 𝜆𝑀𝐿𝑇|𝑦 − 𝑦∗| = 𝛼1|𝑦 − 𝑦∗|. 
 

(26) 

 

So (1 − 𝛼)|𝑦 − 𝑦∗| = 0 and consequently 𝑦 = 𝑦∗. 

 

 

4 Numerical Examples 

Example 1: 
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𝑢𝑡(𝑥, 𝑡) + 𝑥2𝑢𝑥𝑥(𝑥, 𝑡) + 0.5𝑥𝑢𝑥(𝑥, 𝑡) − 𝑢(𝑥, 𝑡) = 0. (27) 

 

With initial condition: 

 𝑢(𝑥, 0) = 𝑥2  ,    𝜀 = 10−4. 

𝛼 = 0.5 , 𝛽 = 0.2. 

𝛼1 = 0.78206. 
 

Table 1: Approximate Solution for Exam1 

(𝑥, 𝑡) Error Approximate Solution 

 Jacobi error           n=8 Airfoil error             n=9 Jacobi Airfoil 

(0.1,0.13) 0.000816514 0.000788329 0.1249657 0.1180117 

(0.2,0.18) 0.000823319 0.000777431 0.2312379 0.2166221 

(0.3,0.27) 0.000824924 0.000762147 0.3256407 0.3068415 

(0.4,0.32) 0.000836708 0.000743761 0.4272314 0.4123908 

(0.5,0.38) 0.000845247 0.000734473 0.5358607 0.5141528 

(0.7,0.43) 0.000851352 0.000729884 0.6479815 0.6227609 

 

The accuracy of the solution and the stopping condition 
|𝑢𝑛+1(𝑥,𝑡)−𝑢𝑛(𝑥,𝑡)|

|𝑢𝑛(𝑥,𝑡)|
< 𝜀. 

 

Example 2: 

   𝑢𝑡(𝑥, 𝑡) + 0.08(2 + 𝑠𝑖𝑛𝑥)2 + 𝑥2𝑢𝑥𝑥(𝑥, 𝑡) + 0.06𝑥𝑢𝑥(𝑥, 𝑡) − 0.06𝑢(𝑥, 𝑡) = 0. 

 

(28) 

 

 With boundary condition: 

𝑢(0, 𝑡) = 0, 

 𝑢(𝑥, 𝑇) = max((𝑥 − 25)−0.06 𝑒, 0), 

,    𝜀 = 10−5. 

 

Table 2: Approximate Solution for Exam2 

(𝑥, 𝑡) Error Approximate Solution 

 Jacobi error           n=8 Airfoil error             n=9 Jacobi Airfoil 

(0.1,0.12) 0.00004271 0.00003987 0.1455417 0.1217315 

(0.2,0.22) 0.00004625 0.00004117 0.2526704 0.2439417 

(0.3,0.32) 0.00005116 0.00004822 0.3435129 0.3276638 

(0.4,0.38) 0.00005479 0.00005128 0.4581609 0.4352127 

(0.5,0.42) 0.00006013 0.00005516 0.5637428 0.5481379 

(0.6,0.47) 0.00006339 0.00006146 0.6726085 0.6553478 

(0.7,0.52) 0.00006625 0.00006144 0.7523482 0.7643251 

 

𝛼 = 0.6 , 𝛽 = 0.4. 

𝛼1 = 0.56702. 

 

The accuracy of the solution and the stopping condition 
|𝑢𝑛+1(𝑥,𝑡)−𝑢𝑛(𝑥,𝑡)|

|𝑢𝑛(𝑥,𝑡)|
< 𝜀. 
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Fig 1: Jacobi polynomial 

 
Fig 2: Airfoil Polynomial 

 

 

5 Conclusion 
 

In this paper, we implement the collocation methods with Jacobi and Airfoil bases on the Black-Scholes 

nonlinear differential equation and obtained the approximate solution. So far, Not much work has been 

done on this category of equations, which is one of the most used and complex differential equations in 

financial mathematics. In this article, we examined the collocation extension method. One can also use 

the collocation method with other bases in future work on integral-differential equations as follows. 
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