
 

 
Corresponding author Tel.: +989188875373 

E-mail address: n-parandin@yahoo.com 

 

  
© 2022. All rights reserved.    

  Hosting by IA University of Arak Press                 

 

Adv. Math. Fin. App., 2022, 7(3), P. 527-533 

 Advances in Mathematical Finance & Applications 
www.amfa.iau-arak.ac.ir 

Print ISSN: 2538-5569 

Online ISSN: 2645-4610 

Doi:10.22034/AMFA.2021.1891263.1363 

 
Research Paper 
 

A Kurganov-Tadmor Numerical Method for Option Pricing 

under the Constant Elasticity of Variance Model 

 
Sakineh Ghiasia, Nouredin Parandinb, * 

aDepartment of Mathematics, Payame Noor University, (PNU), P.O.BPX,1935-3697 Tehran, Iran.  
bDepartment of Mathematics, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran, 

 

 

ARTICLE INFO 

Article history:  

Received 2020-01-20 

Accepted 2021-04-25 

 

Keywords: 

Kurganov-Tadmor method 

Option price 

Constant elasticity of variance  

 

 
ABSTRACT 

The primary goal of option pricing theory is to calculate the probability that an 

option will be exercised at expiration and assign a dollar value to it. Options 

pricing theory also derives various risk factors or sensitivities based on those 

inputs, since market conditions are constantly changing, these factors provide 

traders with a means of determining how sensitive a specific trade is to price 

fluctuations, volatility fluctuations, and the passage of time. In this study, we 

derive a new exact solution for pricing European options using Kurganov-Tadmor 

when the underlying process follows the constant elasticity of variance model. 

This method was successfully applied to nonlinear convection-diffusion 

equations by Kurganov and Tadmor. Also, we provide computational results 

showing the performance of the method for European option pricing problems. 

The results showed that the proposed method is convenient to calculate the option 

price for 𝐾 = 3, 𝛽 =
−3

4
, 𝑎𝑛𝑑 𝑁 = 200. 

 

 

1 Introduction 
     The problem of option pricing plays a very important role both in modern financial theory and in 

practice. In the year 1973, the Black-Scholes model theory was published and has gradually become 

the most widely used mathematical model for option pricing problems [2]. Forecasting prices and 

pricing on goods and services had been an important issue and much research has been done in this area 

[8-13]. Moreover, the capacity to price risks and devise ideal venture methodologies within the sight of 

an unsure "arbitrary" market is the foundation of the current money hypothesis. The authors [10] 

initially thought about the easiest such issue of an alleged "European call option " at first explained by 

Black and Scholes utilizing Ito stochastic math for a market model by a Log-Brownian stochastic cycle. 

A basic and incredible formalism was introduced which permitted them to sum up the investigation to 

an enormous class of stochastic cycles, for example, ARCH, jump, or Lévy measures. They additionally 

address the instance of related Gaussian cycles, which is demonstrated to be a decent portrayal of three 

distinctive market indices (MATIF, CAC40, FTSE100). Their fundamental outcome is the presentation 

of the idea of an optimal system in the feeling of (functional) minimization of the risk regarding the 

https://portal.issn.org/resource/ISSN/2538-5569
https://portal.issn.org/resource/ISSN/2645-4610
https://www.investopedia.com/terms/e/exercise.asp
https://www.investopedia.com/terms/v/volatility.asp
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portfolio. If the risk might be made to evaporate for specific constant uncorrelated quasi-Gaussian ' 

stochastic cycles (counting Black and Scholes model), this is not true anymore for more general 

stochastic cycles. The estimation of the leftover risk is acquired and proposes the idea of risk amended 

option costs.  Within the sight of exceptionally huge deviations, for example, in Lévy measures, new 

rules for balanced fixing of the options costs are examined. The researchers likewise applied their 

technique to different kinds of options, 'Asian', 'American', and discussed new possibilities (’double-

decker’ ...).   But, we know the constant volatility assumption does not seem right in real cases [3, 17]. 

One of the most popular stochastic volatility models, which is widely used in practice, is the constant 

elasticity of variance (CEV) model. It was first proposed in [7, 5] as an alternative to the Black-Scholes 

model of underlying asset price movements.   

Many types of research have been done in this area such as [14]. The paper Concentrated on the constant 

elasticity of variance (CEV) model for examining the optimal investment technique before and after 

retirement in a characterized commitment annuity plan where advantages are paid under the type of 

annuities; annuities should be ensured during a specific fixed timeframe. Utilizing Legendre transform, 

double hypothesis, and variable change strategy, we infer the unequivocal answers for the power and 

exponential utility functions in two unique periods (before and after retirement). Every arrangement 

contains an altered factor that mirrors an investor’s decision to fence the unpredictability risk. To 

research the impact of the adjusted factor on the optimal methodology, we break down the property of 

the altered factor. The outcomes show that the dynamic conduct of the altered factor for the power 

utility fundamentally relies upon the time and the investor’s risk aversion coefficient, though it just 

relies upon the time in the outstanding case [5]. It is notable that the old-style Black–Scholes model 

with steady instability doesn't completely mirror the stochastic idea of financial markets. Thus, there is 

a requirement for more sensible models that better reflect random market developments like the 

European option price. In this paper, we investigate a Kurganov-Tadmor (KT) numerical method for 

valuing European options on assets evolving under the CEV process. This scheme, recently introduced 

in [16]. An outline of this paper is as follows. In section 2 present a Kurganov-Tadmor method for the 

options pricing followed by a detailed description of the formula for the value of a European put option 

through the CEV model. Section 4 applies the method to value the CEV options. 

 

2 Structures 
2.1 constant elasticity of variance (CEV) 
    We model a European put option in a regime-switching economy where the drift rate and volatility 

are subject to random shifts between two states. The asset-price dynamics in a regime-switching 

economy have been described previously in [4-23]. However, for completeness, we start this section by 

briefly describing the constant elasticity of variance (CEV) model as well. The CEV model describes 

the following relationship between the volatility and price, 

     

𝑑𝑆𝑡 = (𝑟 − 𝑑)𝑆𝑡𝑑𝑡 + 𝜎𝑆𝑡
𝛽+1

𝑑𝑊𝑡                     (1) 

 

Where r is the risk-free interest rate, 𝑑 is the dividend yield, 𝜎 is a volatility parameter and 𝑊𝑡 is the 

Wiener process. The parameter 𝛽 is known as the elasticity of the local volatility function. If 𝛽 >

0 (𝛽 < 0) volatility and price are inversely (positively) related. Since the financial market often 

exhibits volatility skews of negative slope, the situation 𝛽 > 0  is rarely considered in research. When 

𝛽 = 0 prices are lognormally distributed and the variance of returns is constant, as is assumed in the 
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Black-Scholes model. In the case 𝛽 = −
1

2
 we get the Cox-Ingersoll-Ross (CIR) model [18]. Under the 

CEV model (1) a European put with strike K has price V(S, t) which is the solution of the initial-

boundary value problem                              

𝜕𝑉

𝜕𝜏
=

1

2
𝜎2𝑆2𝛽+2

𝜕2𝑉

𝜕𝑆2
+ (𝑟 − 𝑑)𝑆

𝜕𝑉

𝜕𝑆
− 𝑟𝑉, 𝑆 ≥ 0,   0 ≤ 𝑡 ≤ 𝑇,    

(2) 

 

 

With initial condition V(S, t) =  max(K − S, 0)and boundary conditions given by V(0, t)  =  K 𝑒−𝑟𝑡 and 

V(S, t) → 0 𝑎𝑠 𝑆 → ∞.  

    Analytical solution of European options under the CEV model (1) derived in [9-19].  Numerically 

solution of European option pricing under CEV (2) studied in the many piece of literature option. For 

instance, Wong and Zhao [22] proposed a Crank-Nicolson method for pricing European and American 

options under the CEV model. Thakoor et al [20] presented a fourth-order numerical method for the 

CEV European option pricing problem. Zhang et al [24] investigated a multi quadric quasi-

interpolations method for pricing European and American options on assets evolving by the CEV 

process. In order to achieve the option pricing, in this range, including that with The Kurganov-Tadmor 

method, we have proposed this scheme, which allows combining properties of CEV and Kurganov-

Tadmor algorithms. Therefore, we decided to pay attention to Kurganov-Tadmor’s scheme which on 

one hand is already explicitly implemented in option pricing and has been repeatedly tested, and on the 

other hand, it is simple enough to be used as part of the scheme.  

 

2.2 The Kurganov-Tadmor method for option pricing under the CEV model 

    Kuganov and Tadmor [21] introduced a high -resolution method for solution of nonlinear 

convection-diffusion equations 

𝜕

𝜕𝑡
 𝑢(𝑡, 𝑥) +

𝜕

𝜕𝑥
 𝑓(𝑢(𝑡, 𝑥)) =

𝜕

𝜕𝑥
𝑄(𝑢(𝑡, 𝑥), 𝑢𝑥(𝑡, 𝑥)). (3) 

    Now, the Black-Scholes equation (2) is discretized according to the Kurganov-Tadmor method. We 

want to transform the Black-Scholes PDE to the general form 

𝜕

𝜕𝑡
 𝑢(𝑡, 𝑥) +

𝜕

𝜕𝑥
 ℱ(𝑢) =

𝜕

𝜕𝑥
𝒬(𝑢, 𝑢𝑥) + 𝑆(𝑡, 𝑥, 𝑢), (4) 

    Where 𝒮is the source term and  

ℱ(𝑠, 𝑣) = (2(𝛽 + 1)𝛽𝜎2𝑠𝑣 − 𝑟)𝑠𝑣, (5) 

𝒬(𝑠, 𝑣) = ((𝛽 + 1)𝜎2𝑠2𝛽𝑣 − 𝑟) 𝑠, (6) 

𝑆(𝑣) = ((2𝛽 + 1)(𝛽 + 1)𝜎2 − 2𝑟)𝑣. (7) 

For uniform spatial grid points {𝑠𝑖}𝑖=0
𝑁 for 𝑁 ∈ ℕ width ∆𝑠 and mid-cells [𝑠

𝑖−
1

2

 , 𝑠
𝑖+

1

2

  ] where 

𝑠
𝑖±

1

2

=  𝑠𝑖 ±
∆𝑠

2
  the semi-discrete method for the Black-Scholes equation (2) takes the form  

𝑑𝑉𝑖

𝑑𝑡
= − 

1

∆𝑠
( 𝐻

𝑖+
1

2

(𝑡) − 𝐻
𝑖−

1

2

(𝑡)) +   
1

∆𝑠
( 𝑃

𝑖+
1

2

(𝑡) − 𝑃
𝑖−

1

2

(𝑡)) + 𝑆(𝑣), (8) 

With 
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𝐻
𝑖+

1

2

(𝑡) =  
1

2
( ℱ (𝑠

𝑖+
1

2

, 𝑉
𝑖+

1

2

+ ) , ℱ (𝑠
𝑖+

1

2

, 𝑉
𝑖+

1

2

− ) ) +  
𝑎

𝑖+
1
2

(𝑡)

2
 (𝑉

𝑖+
1

2

+ − 𝑉
𝑖+

1

2

− ), (9) 

𝐻
𝑖−

1

2

(𝑡) =  
1

2
( ℱ (𝑠

𝑖−
1

2

, 𝑉
𝑖−

1

2

+ ) , ℱ (𝑠
𝑖−

1

2

, 𝑉
𝑖−

1

2

− ) ) +  
𝑎

𝑖+
1
2

(𝑡)

2
 (𝑉

𝑖−
1

2

+ − 𝑉
𝑖−

1

2

− ), (10) 

Where 𝑎
𝑖+

1

2

(𝑡) =  |ℱ (𝑠
𝑖+

1

2

)| and  

𝑉
𝑖+

1

2

+ (𝑡) = 𝑉𝑖+1(𝑡) −
1

2
Δ𝑠 (𝑉𝑠)𝑖+1(𝑡), (11) 

𝑉
𝑖+

1

2

− (𝑡) = 𝑉𝑖(𝑡) +
1

2
Δ𝑠 (𝑉𝑠)𝑖(𝑡), 

(12) 

𝑉
𝑖−

1

2

+ (𝑡) = 𝑉𝑖(𝑡) −
1

2
Δ𝑠 (𝑉𝑠)𝑖(𝑡), (13) 

𝑉
𝑖−

1

2

− (𝑡) = 𝑉𝑖−1(𝑡) +
1

2
Δ𝑠 (𝑉𝑠)𝑖−1(𝑡). 

(14) 

 

    The derivative (𝑉𝑠)𝑖(𝑡) is approximated with a min mod limiter such that the semi-discrete 

method fulfills the Total variation diminishing condition [21]. The generalized min mod limiter 

is defined as 

(𝑉𝑠)𝑖(𝑡) =  min mod (𝜃
𝑉𝑖(𝑡) − 𝑉𝑖−1(𝑡)

∆𝑠
,
𝑉𝑖+1(𝑡) − 𝑉𝑖−1(𝑡)

2∆𝑠
, 𝜃

𝑉𝑖+1(𝑡) − 𝑉𝑖(𝑡)

∆𝑠
  )                (15) 

Where 0 ≤ 𝜃 ≤ 1 and the min mod function is defined as 

 

min mod (𝑥1, 𝑥2, … )                = {
𝑚𝑖𝑛𝑖(𝑥𝑖),    𝑖𝑓 𝑥𝑖 > 0, ∀𝑖,

𝑚𝑎𝑥𝑖(𝑥𝑖), 𝑖𝑓 𝑥𝑖 < 0, ∀𝑖
0,                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

(16) 

    Also, 𝑃 denotes an approximation of 𝒬and obtained using basic forward and backward 

differencing, 

𝑃
𝑖+

1

2

(𝑡) = 𝒬 (
𝑉𝑖+1−𝑉𝑖−1

2∆𝑠
), (17) 

    Where the second-order approximation for the derivative is used. At the boundaries, we used the 

following second-order formulae to approximate the derivatives of 𝒬 

𝜕

𝜕𝑠
 𝑣(𝑡, 𝑠𝑚𝑖𝑛) =

−3𝑉0(𝑡)+4𝑉1(𝑡)−𝑉2(𝑡)

2∆𝑠
+ 𝓞(∆𝑠2), (18) 

𝜕

𝜕𝑠
 𝑣(𝑡, 𝑠𝑚𝑎𝑥) =

𝑉𝑁−1(𝑡)−4𝑉𝑁(𝑡)+3𝑉𝑁+1(𝑡)

2∆𝑠
+ 𝓞(∆𝑠2), (19) 

    Where 𝑉0(𝑡) represents the approximation 𝑎𝑡 𝑠𝑚𝑖𝑛  𝑎𝑛𝑑 𝑉𝑁+1(𝑡)    𝑎𝑡 𝑠𝑚𝑎𝑥.  
 
 
3 Conclusions 
 
3.1 Results and Discussion 
    In all our examples, we price a European put option with a current stock price of s ϵ[0, 10], a maturity 

of T = 0.5 year, an interest rate of r = 0.05, d = 0 dividend yield, and at-the-money volatility of σ =
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25%. For numerical simulation, we use the min mod limiter (15) with θ = 1.5. Table 1 shows numerical 

results for the different values of 𝛽 and 𝑁 = 200. Computed errors (the difference between exact and 

computed prices) are shown for Kurganov-Tadmor method. 
 

Table 1: Evaluation of European puts option for the CEV process with 𝛽 =
−1

4
, 𝛽 =  

−1

2
 𝑎𝑛𝑑 𝛽 =  

−3

4
 

𝑎𝑡 𝑠𝜖[0,10] 
Evaluation of European puts option for the CEV process 

N K 
𝛽 =  

−1

4
 𝛽 =  

−1

2
 𝛽 =  

−3

4
 

200 3 0.0688 0.0029 0.0189 

200 5 0.0224 0.0606 0.0705 

200 10 0.1572 0.0154 01163 

 

Fig. 1 shows that the proposed method is convenient to calculate the option price for 𝐾 = 3, 𝛽 =
−3

4
, 𝑎𝑛𝑑 𝑁 = 200. In Figure 2 the solution of the 3D problem is plotted by = 3, 𝛽 =  

−3

4
 𝑎𝑛𝑑 𝑁 = 200 

. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Comparison between the exact solution and the numerical solution of a European call with 

the KT method 

 

 

 

 

 

 

 

 

 

Fig. 2: Solution surface for European call option. 

 

    In this paper we decided to pay attention to Kurganov-Tadmor’s scheme which on one hand is already 

explicitly implemented in option pricing and has been repeatedly tested, and on the other hand it is 
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simple enough to be used as part of the scheme.  Another important feature of this scheme is 

independence of approximating expressions. Thus, there is no need to use solution expansion on 

characteristics for calculation of option price for 𝐾 = 3, 𝛽 
−3

4
, 𝑎𝑛𝑑 𝑁 = 200. In this study, a new exact 

closed-form solution for European options using Kurganov-Tadmor’s scheme and CEV method is 

derived. The newly-obtained formula involves only the calculation of a single integral with a real 

integrand and can thus be very easily calculated, if numerical values are needed. Such a result is 

achieved through the analytic inversion of the Fourier transform. In this work, we showed the pricing 

of the European option when the underlying stock follows the constant elasticity of variance (CEV) 

process. For this aim, applying Its Lemma we obtain the PDE governing the CEV option value (2).  For 

the valuation of the European option, we have proposed Kurganov-Tadmor numerical method. In table 

1 and Figs.1, 2 to illustrate significant price changes with concerning parameters of option prices. 

 
3.2 Suggestions for future work 
    An interesting extension of this paper would be to consider the case where the risk-free interest rate 

is state dependent. Extending the model such that r1≠r2 would yield similar partial differential 

equations (PDEs) under the restrictive assumption that the extra source of risk can be diversified 

(see [23] or [21]). However, if this assumption were not to be made, the pricing problem would lead to 

a non-trivial extension of the current model, which may further complicate the solution procedure. We 

are currently exploring this case. 
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