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ABSTRACT 
 

As we are looking for knowledge of stock future returns in portfolio optimization, 

we are practically faced with two principal concepts: Uncertainty and Information 

about variables. This paper attempts to introduce a pragmatic bi-objective invest-

ment model based on uncertainty, instead of probability space and information 

theory, instead of variance and other moments as a risk measure for portfolio op-

timization. Not only is uncertainty space expected to be more in line with invest-

ment theory, but also, applying and learning this approach seems more straight-

forward and practical for novice investors. The proposed model simultaneously 

maximizes the uncertain mean of stock returns and minimizes uncertain entropy 

as a measure of portfolio risk. The uncertain zigzag distribution has been used for 

variables to avoid the complexity of fitting distributions for data. This uncertain 

mean-entropy portfolio optimization (UMEPO) has been solved by three meta-

heuristic methods of multi-objective optimization: NSGA-II, MOPSO, and 

MOICA. Finally, it was observed that the optimal portfolio obtained from the 

proposed model has a higher return and a lower entropy as a risk measure com-

pared to the same model in the probability space. 
 

 

1 Introduction 
All investors are interested in knowing how to manage their portfolios to maximize profits while main-

taining the value of their assets and reducing risk. The reviewed and presented models are generally in 

the space of probability and require access and analysis of historical data. However, access and accuracy 

of the information, the validity of models based on historical data for predicting future stock behaviour, 

the complexity of calculations, and the hardship of extracting correct data distribution are among the 

problems of the proposed models that make these researches difficult for use public investors.  

The value of any asset is a function of its "expected return" and "risk", therefore the models that re-

searchers used for estimate, are a function of these two elements. The first person to take this issue 

seriously was Markowitz [40] . His modern theory deals with two concepts of "expected return" and 
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"risk" and used them to select the optimal portfolio. In the practical application of this theory, investors 

encountered problems and conducted research to address each of these problems. 

The following are some of the problems that make Markowitz's model difficult to use: 

(1) In this model, it is assumed that stock returns have a normal distribution, but it is usually observed 

that this assumption does not apply and in this case, using variance as a risk measure does not have the 

necessary performance; 

(2) The complexity of calculating variance as a risk measure when the number of stocks is many;  

(3) In many cases, we are dealing with stocks that are offered for the first time and we have no historical 

data about it, access to historical data is difficult or the data provided is not correct. The high sensitivity 

of the model result in the accuracy of the input data can lead to deviation in the results; 

(4) It isn't easy to get the distribution of stocks and even if we estimate the distribution of data, there is 

a possibility that it does not correspond to the actual distribution of data. 

The need to use a solution that can solve all or most of the problems at the same time seems necessary. 

Using the entropy instead of variance as a measure of risk, was founded as an appropriate solution for 

the existing problems. Firstly, McGill in [41] proposed it, and then it was developed by other research-

ers. Recently, in [43] introduced a multi-objective model that minimized "Shannon Entropy" and used 

the experimental probability generating function called return-entropy portfolio optimization (REPO) 

then showed that using entropy as a risk criterion could solve the existing problems in the Markowitz 

model. 

In the model presented in this research, the following achievements and innovations are considered 

goals: 

 

 Using entropy instead of variance as a measure of risk, 

 Minimizing risk when maximizing the assets return at the same time, as one of the main goals 

of the equation and not a constraint of the equation, 

 Solving the problem in the uncertain environment instead of the probability environment be-

cause it is closer to the performance of the stock market, 

 Considering asset return as an uncertain variable and not a random variable due to its greater 

correspondence with the behavior of this variable, 

 The use of the uncertain zigzag distribution, because it is not only more consistent with the real 

behavior of asset returns, but its use is applicable to all investors who do not have specialized 

knowledge of mathematics and statistics and especially to novice investors, 

 Solving this model as a multi-objective equation instead of simplifying and turning it into a 

single-objective equation, 

 Solving the multi-objective equation through 3 meta-heuristic methods that have a high ability 

to solve complex multi-objective equations and optimal efficiency then comparison the results 

of its. 

 

2 Practical Problems with Prior Research 

This probability generating function, which is presented in [43] to find the probability of a portfolio 

with a continuous distribution, divides the data range into several intervals by inferring from the exper-

imental probability distribution and calculates the frequency of data that is placed in each of these in-

tervals. In other words, this method converts continuous data distribution into discrete distribution and 

uses the entropy discrete distribution formula, which itself can be one of the disadvantages of using this 
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method.  

Although the expected value-entropy optimization model, removes the problems in the Markowitz 

model, solving this model in the probability space, especially with empirical probability generating 

functions, can have the following problems: 

(1) The portfolio distribution of n assets is not necessarily equal to the sum of the distribution of each 

of them, and therefore we are faced with the difficulties of finding a portfolio distribution when there 

are many assets, especially when they are not independent and identically distributed. In some cases, it 

is even impossible to achieve portfolio distribution;  

(2) Data segmentation is difficult, especially in cases where the amount of data is abundant. For exam-

ple, if we have 10 stocks and we have collected their historical data for the last three years, it is difficult 

and longsome to divide this data for each stock; 

(3) The quality of the data distribution depends on the correct data segmentation. Therefore, finding the 

appropriate number of intervals and the proper limits of each interval is very important and difficult 

too. Also, the interval selection determines the severity of the entropy bias. 

(4) It is possible that even after finding the appropriate number of intervals, the frequency of data placed 

in each partition is the same or does not differ significantly. Therefore, in this case, the estimated density 

function has not the required quality and cannot well determine the data distribution;  

(5) As mentioned above, if the obtained probability distributions of the data for different stocks be the 

same, the entropy of each of them will be the same and the possibility of using entropy as a risk measure 

will be taken away from us. Because entropy only works with probabilities and does not use the values 

of variables;  

(6) The entropy of the sum of several variables is not equal to the sum of their entropy, and due to the 

complexity of calculating the entropy with the joint distribution of assets, the distribution of the sum of 

assets has been suggested in [43]. 

Hence finding a solution that can solve all or most of the problems that occurred when using entropy as 

a risk measure, at the same time, seems necessary.  

On the other hand, in portfolio optimization models, we seek to estimate the future behaviour of stocks 

to select the best portfolio based on it. Therefore, in most cases, we do not know the distribution of 

stock returns, even in cases where based on historical data we are finding the data distribution. We are 

not sure if the stocks will follow this distribution in the future or not. Especially in volatile stocks and 

markets such as crypto currencies and due to the numerous shocks to the economy such as the corona 

epidemic.  

In this case, the use of probability space no longer has the required efficiency and the uncertainty space 

can be the way forward. Therefore, a precise prediction of the probability of occurrences of each return 

does not work for us, nor can it be completely valid.  

We do not need to know the exact point-to-point distribution of stocks to predict future stock behaviour. 

It is enough to know the range of fluctuation for each stock. For example, knowing how much the 

minimum possible return, the maximum return, or 50% of the future return is less or more than a certain 

value, can be enough to make a decision. 

In order to deal with an indeterminate quantity (such as stock price), Uncertainty theory proposed a 

distribution function that determines the degree to which the quantity falls into the left side of the current 

point x. when we think it is entirely impossible that the stock returns fall into the left side of the current 

point, the distribution function takes a value of 0, when we are 20% sure that the stock returns fall into 

the right side and 80% sure that the stock returns fall into the left side, the distribution function takes a 

value of 0.8.  
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Our knowledge of cumulative distribution can be a good and sufficient guide for stock selection, and 

on the other hand, it is easy to understand for any ordinary person who does not know academic 

knowledge about technical stock analysis. Thus we don't need to know statistics. Therefore, in the space 

of uncertainty, using the concept of degree of belief, uncertainty distribution, and uncertain entropy, the 

problems that existed in the space of probability are removed. We no longer need to obtain the proba-

bility distribution of the data and access the historical data and analyze them, segmentation of the data. 

Also, if the probability density function of the data is the same, the uncertain entropy will not be the 

same, and the entropy of the sum of the two variables in the uncertainty space is equal to the sum of 

their entropy. 

This article focuses on the topic of "Risk Assessment" and uses the concepts of the "Uncertainty The-

ory" and "Information Theory" to reduce the problems that exist in the practical application of "Marko-

witz Theory". The combination and application of "Uncertainty Theory" and "Information Theory" and 

the proximity of their concepts to the fact of investment, can have practical and effective dimensions in 

improving the process of analysis and optimal portfolio management. 

Therefore, the need to conduct research and provide a model that does not have the stated deficiencies 

seems to be necessary for the following reasons: 

 Fixing the stated problems in the Markowitz model, 

 Fixing the problems stated in the use of entropy as a measure of risk in previous models, 

 The hardness of access to historical data and their analysis, 

 Incompatibility of the behaviour of variables in the stock market with the space of probability 

and its coordination with the space of uncertainty, 

 Problems of considering asset returns as random variables when in fact they are uncertain var-

iables, 

 Mathematical and statistical complexities in finding the appropriate distribution of variables 

and the uncertainty of the distribution fitted to the data, 

 Non-practically and inapplicability of the previous models for the community of real investors 

especially for new investors due to their complexities, 

 The low accuracy of the single-objective model in solving the stock portfolio optimization 

model. 

Further reviews on the use of entropy and uncertainty space for portfolio selection in prior relevant 

research are discussed in Section 3. Section 4 presented the concept of uncertainty theory, uncertainty 

distribution, uncertain expected value, and uncertain entropy. Section 5 introduces the bi-objective op-

timization model that in it use entropy as a risk measure and expected value as a return measure and 

then details the featured method of this paper: uncertain mean-entropy portfolio optimization 

(UMEPO). A numerical example using UMEPO is demonstrated in Section 6 and finally, in Section 7 

conclusions are discussed. 

 

3 Literature 

Various authors worked on the Modern Portfolio Theory that was introduced by Markowitz in [40]. The 

following is a brief overview of previous studies in this domain. 

Researchers have proposed various solutions to the problems of the mean-variance model, the most 

well-known of which is the Black-Litterman model. ( See [6], [7]). In these efforts, the theory of post-

modern portfolio (PMPT) was formed that uses more statistical concepts such as higher moments, skew-

ness, and kurtosis, in the literature. (See [49]).  
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The Information Theory ( See [52], [53]) was first proposed by Shannon, an American mathematician 

working in the field of electronic engineering. The first application of entropy as the main feature of 

information theory instead of variance goes back to the study of McGill (See [41]) and Garner (See 

[13]). Its expansion into the literature on stock optimization was articulated by Philippatus (See [47]), 

then research on this subject was promoted. Rompolis in [50] reviewed the actual future risk density of 

stocks and other assets based on the maximum entropy rule. Lassance and Vrins in [25] showed that 

Rényi Entropy is a powerful alternative to the risk measure and can pave new paths in portfolio selection 

theory using higher moments. In [8]developed the Risk Parity model, a novel risk diversification ap-

proach to portfolio selection. 

 In [43], Mercurio et al. by introducing the return-entropy portfolio optimization (REPO) method, using 

the mean-entropy function instead of the mean-variance function in the Markowitz optimization model 

(MVPO) and shows that in most cases it is better than the mean-variance model. In [3] Babaei et al. 

provided the application of stable distributions in the space of random variables for multi-objective 

portfolio optimization. 

There is a lot of research on portfolio optimization in fuzzy, randomness and fuzziness, and stochastic-

fuzzy methodology for considering the fact that the financial market is an uncertain space (See [26],[60], 

[12], [48], [5], [18], [20], [16],[30], [54]). But, an actual situation, there are many cases where for de-

scribing uncertainty neither randomness nor fuzziness cannot be responsive. 

In 2007 "Uncertainty Theory" was founded by Liu in [32] that it rationally deals with personal belief 

degrees and was subsequently studied by him (See [34], [35]) and many researchers in finance and 

economics (See [15], [57], [58]).  

Yan in [56], considered stock returns as uncertain variables in his mean-variance portfolio selection 

models. A portfolio selection problem under Liu's uncertainty theory framework; was first addressed 

by Huang in [22]. Subsequently, a mean-risk model for uncertain portfolio selection was introduced by 

Huang (See [19]). In [28] and [37], the value-at-risk criterion is applied in the uncertain portfolio. In 

[38] and [59], background risks are considered in addition to the risk measure, in the portfolio model 

A new framework of the mean-entropy-skewness portfolio selection problem has been introduced by 

Bhattacharyya et al. in [4] that has used the transaction cost under constraints on the maximum and 

minimum allowable capital invested in stocks, short and long-term returns, the number of assets in the 

portfolio, and dividends. Mehralizade et al. in [42] investigated portfolio selection in the uncertainty 

environment based on the risk curve. Sajedi et al. in [51] analyzed the impact of Order ʋ Entropy and 

Cross Entropy in the portfolio optimization model. Ning et al. in [45] have considered a mean-variance 

portfolio selection problem with triangular entropy as a constraint under uncertainty theory. Abtahi et 

al. in [2] used asymmetric entropy while introducing the Skew-Normal Uncertainty Distribution in the 

Portfolio optimization model. 

 Huang and Di in [23] developed an uncertain portfolio selection problem by considering the return and 

risk associated with background assets. Kar et al. in [24] proposed a mean-variance-cross entropy un-

certain portfolio selection problem. Gao et al. in [14] presented the application of the partial similarity 

measure of uncertain random variables in the portfolio optimization model. 

 Majumder et al. in [39] have presented a bi-objective mean-entropy portfolio selection problem under 

uncertainty space that used triangular entropy as a risk measure. Elliptic entropy, Partial Exponential 

Entropy, and Tsallis Entropy have been used in [9], [36], and [55] respectively instead of Shannon 

entropy. In [29] introduced an uncertain portfolio selection problem, the value–variance–entropy model 

where optimistic value, variance and entropy are used for measuring investment return, risk, and diver-
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sification, respectively. Li and Zhang in [27] presented the mean-variance-entropy model for an uncer-

tain portfolio optimization problem have presented by taking into account four criteria viz., risk, return, 

liquidity, and diversification degree of a portfolio. 

For further review, a table of comparison of some previous research with our presented model is given.

Article 1, (See [59]),it examines the effect of background and risk history on stock portfolio optimiza-

tion. It solves the presented model in two cases, considering the background and without considering 

the risk background. For a numerical example, he considers two symmetric normal distributions and 

asymmetric zigzag distribution and solves his equation in the form of linear programming using a sim-

ple method and shows in two cases that considering the risk background is effective in choosing the 

optimal portfolio. 

In Article 2, (See [24]),like the Markowitz model, variance is used as a measure of risk, the disad-

vantages of which are explained in the text of the article, while in our article, the existing problems are 

solved by using entropy as a measure of risk. In Article 2, the criterion of "mutual entropy" is used to 

examine the convergence between assets. It also uses uncertain multi-objective programming to solve 

its multi-objective equation. 

Article 3, (See [27]),investigates the effect of liquidity and the diversity and multiplicity of stocks in 

obtaining the optimal portfolio. It uses the entropy weight of each stock for the diversity of stocks in 

the portfolio and the turnover rate for liquidity. It considers the normal uncertain distribution for stock 

returns and the experimental uncertain distribution as the turnover rate distribution. Finally, it shows 

that the two conditions of liquidity and diversification affect the selection of the optimal portfolio. 

In article 4, (See [28]),like the Markowitz model, the variance is used as a measure of risk. In his equa-

tion, the entropy of stock weights used as a diversification index and used the value at risk (VaR) meas-

ure. Also, this article has considered a situation where we have a combination of random and uncertain 

variables. 

Article 5, (See [55]),introduces and defines Tsallis entropy in uncertainty space and puts this entropy 

as a condition of his single objective optimization model. In other words, instead of using Shannon 

entropy (logarithmic), it uses Tsallis entropy as the constraint of its model. It is necessary to explain 

that in this article, asset returns are considered as an uncertain set and not an uncertain variable, and in 

its numerical example, it uses the "uncertain triangular set" for the set of asset returns. 

Article 6 is done in the space of random variables and not in the environment of uncertainty (See [3]). 

It has used stable distributions as the margin of portfolio returns and different specifications and cali-

brations of parametric copula functions to investigate the dependence structure between assets. In the 

presented model, the main goal is to minimize the risk criterion, which uses the value at risk (VaR) 

measure and uses the maximization of the expected value of return on assets as a condition of the equa-

tion. The focus of this article is on presenting two multi-objective models based on the MOPSOs algo-

rithm to solve the portfolio optimization model and the superiority of these presented models over the 

NSGAII and SPEA2 algorithms. 

Therefore, our article, due to the combination of " Uncertainty Theory" and "Information Theory", uses 

entropy as a measure of risk and as the main goal of the equation, solving the equation in the space of 

uncertainty, which in addition to the simplicity of its application for all investors,  It has more similar 

to the real behavior of the portfolio and also, the solution of the model presented as a multi-objective 

equation using three methods of the best available methods in solving multi-objective equations is su-

perior to the mentioned articles. 
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4 Uncertain Theory  
In [32], Liu introduced the uncertainty theory. Let that the triplet (Γ, ℒ, ℳ) is uncertainty space, that in 

this space, Γ be a nonempty set, ℒ be an σ-algebra over Γ and ℳ be an uncertain measure. ℳ will be 

assigned each event Λ in ℒ to the belief degree (not frequency) of an uncertain event that may happen. 

Liu, in [32], satisfies the following four axioms In order to define ℳ {•}. 

Axiom 1. (Normality) ℳ {Γ} = 1 for the universal set Γ. 

Axiom 2. (Self -Duality) For any event Λ, ℳ {Λ} + ℳ {Λc} = 1. 

Axiom 3. (Subadditivity) for every countable sequence of Λ1, Λ2, …, we have 

 

ℳ {⋃ 𝛬𝑖
∞
𝑖=1 } ≤ ∑ ℳ{𝛬𝑖}

∞
𝑖=1 . (1) 

 

Axiom 4. (Product Axiom) Let (Γk , ℒk , ℳk) be uncertainty spaces for k =1, 2, … The product uncertain 
measure ℳ is an uncertain measure satisfying 

ℳ {∏𝛬𝑘

∞

𝑘=1

} ≤⋀ℳ𝑘{𝛬𝑘}

∞

𝑘=1

, (2)  

Where 𝛬𝑘 are arbitrarily chosen events fromℒ𝑘 for k = 1, 2, …, respectively. 

4.1 Uncertainty Distribution 

Definition 1(See[32]): The uncertainty distribution Φ of an uncertain variable ξ is defined by 

for any real number x. 

Theorem 1(Peng-Iwamura Theorem (See[46]): A function Φ(x): ℛ→ (0, 1) is an uncertainty distribu-
tion if and only if it is a monotone increasing function except Φ(x) ≡0 and Φ(x) ≡1. 

Definition 2 (See[33]): An uncertain variable ξ is called empirical if it has an empirical uncertainty 
distribution 

where 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 and 0 ≤ 𝛼1 < 𝛼2 < ⋯ < 𝛼𝑛 ≤ 1. 

Definition 3 (See[33]): An uncertain variable ξ is called zigzag if it has a zigzag uncertainty distribution 

  

denoted by Ƶ(a; b; c) where a, b, c are real numbers with a < b < c.(Fig.1) 
Should be noted that “zigzag uncertainty distribution “is a special case of empirical uncertainty distri-

bution.where 𝑥1 = 𝑎, 𝑥2 = 𝑏, 𝑥3 = 𝑐, 𝑛 = 3, 𝛼1 = 0, 𝛼2 =
1

2
, 𝛼3 = 1 

Theorem 2 (See[34] ): Let ξ1, ξ2, · · ·, ξn be independent uncertain variables with regular uncertainty 
distributions Φ1, Φ2, …, Φn, respectively. If the function f (x1, x2, · · · ,xn) is strictly increasing with 

Φ(𝑥) = ℳ{𝜉 ≤ 𝑥},  (3)   

𝛷(𝑥) =

{
 

 
0,                       𝑖𝑓 𝑥 ≤ 𝑥1

𝛼𝑖 +
(𝛼𝑖+1 − 𝛼𝑖)(𝑥 − 𝑥𝑖)

𝑥𝑖+1 − 𝑥𝑖
,           𝑖𝑓 𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1 ,1 ≤ 𝑖 ≤ 𝑛

1,                         𝑖𝑓 𝑥 ≥ 𝑥𝑛

 (4)  

Φ(𝑥) =

{
 
 

 
 

0,                       𝑖𝑓 𝑥 ≤ 𝑎
𝑥−𝑎

2(𝑏−𝑎)
,              𝑖𝑓 𝑎 ≤ 𝑥 ≤ 𝑏 

𝑥+𝑐−2𝑏

2(𝑐−𝑏)
,            𝑖𝑓 𝑏 ≤ 𝑥 ≤ 𝑐 

1,                         𝑖𝑓 𝑥 ≥ 𝑐

, (5)  
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respect to x1, x2, · · · , xm and strictly decreasing with respect to xm+1, xm+2, · · · , xn then ξ = f (ξ1, ξ2, · · 
· , ξn) is an uncertain variable with inverse uncertainty distribution 

ψ−1 (α) = 𝑓(Φ1
−1(α), … ,Φm

−1(α),Φm+1
−1 (1 − α),… ,Φn

−1(1 − α)). (6)  

 

 

 

 

 

Fig. 1: Zigzag Uncertainty Distribution 

Theorem 3 (See [33]): Assume that ξ1 and ξ2 are independent zigzag uncertain variables Ƶ (a1, b1, c1) 
and Ƶ (a2; b2; c2), respectively. Then the sum Ƶ1+ Ƶ2 is also a zigzag uncertain variable Ƶ (a1 + a2, b1 + 
b2, c1 + c2), i.e., 

Ƶ (a1, b1, c1) + Ƶ (a2; b2; c2)= Ƶ (a1 + a2, b1 + b2, c1 + c2), (7)  

the multiplication of a zigzag uncertain variable Ƶ (a, b, c) and a scalar number k > 0 is also a zigzag 
uncertain variable Ƶ (ka, kb, kc), i.e., 

k . Ƶ (a, b, c)  =  Ƶ (ka, kb, kc). (8)  

4.2 Uncertain Expected Value 

Theorem 4 (See [32]): Let ξ be an uncertain variable with uncertainty distribution Φ then 

Ε[ξ] = ∫ (1 − 𝛷(𝑥))𝑑𝑥
+∞

0
− ∫ 𝛷(𝑥)𝑑𝑥

0

−∞
. (9)  

Theorem 5 (See[34]): Let ξ and η be independent uncertain variables with finite expected values. Then 
for any real numbers a and b, we have 

Ε[aξ + bη] = 𝑎Ε[ξ] + 𝑏Ε[η]. (10)  

4.3 Uncertain Entropy 

Definition 4 (See[31] ): Suppose that ξ is an uncertain variable with uncertainty distribution Φ. Then 
its entropy is defined by 
 

Η[ξ] = ∫ 𝑆(𝛷(𝑥))𝑑𝑥,
+∞

−∞

  (11)  

where S(t) = −tln t − (1 − t) ln(1 − t). 

Theorem 6 (See[10]):  Let ξ and η be independent uncertain variables. Then for any real numbers an 
and b, we have 

5 Bi-Objective Optimization Model 
Suppose that, there are n possible assets to select in a portfolio. Define variable ri , i=1,2,..,n as return 

of asset i. Obviously, we do not know the amount of assets return, and as explained, ri is an uncertain 

variable that has an uncertain distribution Φi. Therefore R= (r1, r2, …, rn ) is a vector of return of assets 

that can select in a portfolio with an uncertain distribution Φp =( Φ1, Φ2,…, Φn ). 

H[aξ + bη] = |𝑎|H[ξ] + |𝑏|H[η]. (12)  
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Let W= (w1, w2, …, wn) a vector of the weight of assets. These weights can determine which possible 

assets include in the final portfolio and what is the portion of each of them and wi ≥ 0, 𝑖 =

1,2,… , 𝑛, ∑ 𝑤𝑖
𝑛
𝑖=1 = 1.  

Return of portfolio = 𝑅𝑝  = W𝑅
𝑡 = ∑ 𝑤𝑖 . 𝑟𝑖

𝑛
𝑖=1 . (13)  

Now we proposed a bi-objective model for optimizing the portfolio. Our aim is that our selected port-

folio has a maximum return and also has a minimum risk. Thus we use the expected value and the 

entropy respectively as a measure of return and risk of a portfolio. 

{
  
 

  
 

𝑀𝑖𝑛 𝐻(𝑅𝑃)

𝑀𝑎𝑥 𝐸(𝑅𝑃)
𝑠. 𝑡

  ∑𝑤𝑖

𝑛

𝑖=1

= 1

𝑤𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛

  (14) 

if let 𝑅𝑝 = ∑ 𝑤𝑖 . 𝑟𝑖
𝑛
𝑖=1  as shown in equation (13) and applying it in des equations (10) and (12), since 

our coefficients w𝑖 ≥ 0, i = 1,2,… , n, we have 

𝐻(𝑅𝑃) =∑𝑤𝑖  𝐻(𝑟𝑖)

𝑛

𝑖=1

, 

𝐸(𝑅𝑃) =∑𝑤𝑖  𝐸(𝑟𝑖)

𝑛

𝑖=1

. 

(15) 

 

 

(16) 

and also by applying equation (11) in equation (15), our bi-objective model (Equation (14)) can be 

shown as 

{
 
 
 
 
 

 
 
 
 
 
𝑀𝑖𝑛 𝐻(𝑅𝑃) =∑𝑤𝑖  𝐻(𝑟𝑖)

𝑛

𝑖=1

=∑𝑤𝑖 ∫ 𝑆( 𝛷𝑖  )𝑑𝑟

+∞

−∞

𝑛

𝑖=1

𝑀𝑎𝑥 𝐸(𝑅𝑃) =∑𝑤𝑖  𝐸(𝑟𝑖)

𝑛

𝑖=1

𝑠. 𝑡

  ∑𝑤𝑖

𝑛

𝑖=1

= 1

𝑤𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛

 (17) 

as the same way, if we use definition 4 in 𝐻(𝑟𝑖) and Theorem 4 in 𝐸(𝑅𝑃), our bi-objective model 

(Equation (14)) can be rewritten as follows: 

{
 
 
 
 
 

 
 
 
 
 
𝑀𝑖𝑛    𝐻(𝑅𝑃) =∑𝑤𝑖 ∫ −𝛷𝑖 ln(𝛷𝑖) − (1 − 𝛷𝑖) ln(1 − 𝛷𝑖) 𝑑𝑟

+∞

−∞

𝑛

𝑖=1

𝑀𝑎𝑥    𝐸(𝑅𝑃) = ∑𝑤𝑖 ∫ (1 − 𝛷𝑖(𝑟))𝑑𝑟
+∞

0

−∫ 𝛷𝑖(𝑟)𝑑𝑟
0

−∞

𝑛

𝑖=1

𝑠. 𝑡

  ∑𝑤𝑖

𝑛

𝑖=1

= 1

𝑤𝑖 ≥ 0, 𝑖 = 1,2, … , 𝑛

 (18) 

finally, by replacing distributions of each assets as 𝛷𝑖, we can solve this bi-objective model, simply. 
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6 A Bi-Objective Optimization Model Example 
6.1 Numerical Example in Uncertainty Space 

In this section, we try our proposed portfolio selection model, presented in Equation (14), with a nu-

merical example. As we explained before, in uncertain theory we don't need historical data and its 

analysis and just enough to use the belief of experts and determine our distribution of data.  

In uncertainty space, we use the belief degree evaluated by experts to determine the distribution of data. 

For this purpose, we selected the securities of 5 companies and demand the experts explain their beliefs 

about distributions of these 5 selected stocks after March 2021.  

Many distributions are defined in the uncertainty space, and each of them has its own characteristics. 

The simplest distribution that can be applied to stock data is the empirical uncertainty distribution. Due 

to the proximity of this distribution to the probability generating function presented in Mercurio's re-

search (See [43]), this distribution has been used. On the other hand, because we are interested to avoid 

the complexities of probability distribution and easy access to the distribution of data for all people, 

especially novice investors, the proposed distribution function is an "Uncertain Zigzag Distribution" 

function. The "Zigzag Uncertainty Distribution" is a special case of the empirical uncertainty distribu-

tion. To find this distribution function, it is sufficient to express the minimum and maximum returns 

that we believe a stock can take. Then we determine the measure that experts believe 50% of the stock 

returns will be above this amount. People may not know how data is distributed, but it is possible for 

each person to specify these three numbers (belief degree). 

The distribution of the stocks based on the opinions of experts is given in Table 1. In other words, when 

we let GOOG ~Ƶ (-0.056, 0.003, 0.087), it means that according to experts' belief, it is completely 

impossible that the quantity of GOOG returns be less than -0.056, they are 50% sure that the quantity 

of GOOG returns be less than 0.003 and 50% sure that the quantity of GOOG returns to be greater than 

it, then it is completely impossible that the quantity of GOOG returns to be greater than 0.087. 
 

Table 1: Type Size for Papers 

Securities name Uncertain return rate ξi 

GOOG Ƶ (−0.056,0.003, 0.087) 

NFLX Ƶ (−0.086,0.001, 0.169) 

VIAC Ƶ (−0.273,0.009, 0.149) 

CALX Ƶ (−0.117,0.002, 0.286) 

TSLA Ƶ (−0.211,0.005, 0.196) 

Scanning of the distribution function of stock shows that Google and Netflix have a larger minimum 

value than the others. On the other hand, Caltex and Tesla have a larger maximum value. The graph of 

the distribution function of these stocks is shown below (Figure 2). The performance of the stocks 

seems close and makes the decision, difficult. Which of these stocks can make a portfolio with the 

highest returns and the lowest risk? This is the question that our model wants to address. 

Table 2: The Five Randomly Selected Securities and Their Uncertain Expected Value and Uncertain Entropy. 

Securities name Uncertain Expected value Uncertain Entropy 

GOOG 0.0093 0.072 

NFLX 0.0211 0.127 

VIAC -0.0268 0.211 

CALX 0.0435 0.202 

TSLA -0.0008 0.203 

When the conditions and constraints of the real world are considered, the optimal problem of creating 
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a portfolio is not easily solved through mathematical methods. For this reason, the use of innovative 

methods has been one of the most important topics discussed in recent times. The researches indicate 

that these three strong meta-heuristic methods, Non-Dominated Sorting Genetic Algorithm-II (NSGA-

II) (See [11] ), Multi-Objective Particle Swarm Optimization (MOPSO) (See [44]) and Multi-Objective 

Imperialist Competitive Algorithm (MOICA) (See [1]) show significantly higher efficiency than other 

methods. All of these methods are reliable and popular for model optimization and they use the iteration 

strategy of the solution to obtain the optimal solution. NSGA-II is one of the multi-objective genetic 

algorithms that is well known for fast sorting and elitism. This technique can simultaneously optimize 

each objective without being dominated by any other solution. When faced with complex optimization 

problems, a multi-objective particle swarm (MOPSO) helps us access premature convergence. Cause 

of the popularity of this method is its simplicity, low computation cost, and high efficiency in complex. 

MOICA is well-known for its great performance in computational time and for maintaining a diverse 

population of solutions. The proposed model in Equations (14) is implemented with these three meth-

ods. The following results are programmed in Matlab R2015b.The results are given in Table 3. 

Table 3: Results of solving uncertain mean-entropy portfolio optimization, the optimal weight of stocks, uncer-

tain expected value, and uncertain entropy by three meta-heuristic methods. 

Method Optimal weight of stocks Optimal Uncertain Expected value Optimal Uncertain Entropy 

MOICA (0.36 , 0.25 , 0.10, 0.079 , 0.20) 0.00918 0.137 

MOPSO (0.39, 0.34, 0 , 0.073, 0.198) 0.0137 0.126 

NSGA-II (1, 0 , 0, 0 ,0) 0.0093 0.072 

Examination of the weights obtained from each method shows that the lowest entropy levels belong to 

the NSGA-II, MOPSO, and MOICA respectively. However, the NSGA-II method puts only one stock 

in its portfolio, which according to the opinions of experts in this field, selecting only one stock in the 

portfolio increase concentration risk, and the diversity of the portfolio has always been desirable for 

investors. Also, the highest expected value of portfolio returns belongs to the MOPSO method, NSGA-

II, and MOICA, respectively. As mentioned, portfolio diversity is one of the criteria for evaluating the 

quality of a portfolio. Of course, this does not necessarily mean that all stocks should be included in 

the portfolio, but the goal is to have a reasonable diversity that makes it easier to achieve our goals. 

From this point of view, the MOICA method, MOPSO, and NSGA-II have the highest number of 

shares, respectively. Regardless of the mathematical methods and models that are offered academically 

for stock portfolio optimization, choosing of stock portfolio primarily depends on the level of investor 

risk appetite. On the other hand, it is the amount of investment risk appetite that determines which of 

the following methods and combinations of stocks can be the choice of each person. As you know the 

fact of investment is associated with risk. Risk is an integral part of investment and cannot be avoided 

and only, can be managed. It is clear that the relationship between return and risk, two concepts con-

sidered by investors, is direct and as the rate of return increases, the amount of risk also increases. So 

you cannot achieve a high return until you accept the high risk. But the fundamental question is how 

much risk can be accepted to achieve the return? Some prioritize choosing the highest return portfolio, 

some the lowest risk portfolio, others a diverse portfolio of all available stocks, and some combinations 

of these. Therefore, the choice between these three proposed portfolios in Table 3, can be different 

according to the risk appetite of individuals. But it seems that the portfolio presented by the NSGA-II, 

despite having the lowest entropy, is not suitable due to having a single stock. Between the two others 

presented portfolios, because the MOPSO has less entropy and a higher expected value than the 

MOICA, it seems that it can be a more suitable portfolio. In fact, since portfolio diversity should be 

commensurate with lower risk and higher returns, and the MOPSO has only one stock less than the 
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MOICA, the results of the MOPSO method can be offered as the proposed model. As mentioned earlier, 

this selection may not be the same for all people with different risk appetites. The available options 

provided by the MOPSO model are shown in Figure 2. Each person can choose a combination of 

weights based on their risk appetite from the numbers shown in Figure 3. 

  

a b 

c d 

e 

Fig. 2: Zigzag Uncertainty Distribution of (a) GOOG (b) NLFX (c) VIAC (d) CALX (e) TSLA base on belief 

degree of experts.is a figure. 
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Fig. 3: Solutions of the Uncertain Mean-Entropy Portfolio Optimization For The Mopso Method 

6.2 Numerical Example in Probability Space 

Now, to examine the efficiency of the uncertainty space compared to the probability space and also to 

show the performance of the space of uncertainty, we will solve the proposed model in the probability 

space once again. For this purpose, instead of considering stock return as an uncertain variable and 

obtaining the uncertain distribution function and their uncertain expected value and uncertain entropy, 

we gathered daily stock price information for one year from March 30, 2020, to March 29, 2021, for 

our 5 selected securities. Then, to solve the problem in the probability space, we need to know the 

probability distribution of the portfolio return to calculate the entropy. For this purpose, we use the 

empirical probability generating function provided by Mercurio et al. (See [43]). Then run the three 

multi-objective optimization methods, NSGA-II, MOPSO, and MOICA on it. The results of this study 

are given in Table 4. 

Table 4: Results of Solving Return-Entropy Portfolio Optimization, The Optimal Weight of Stocks, Expected 

Value, and Entropy by Three Meta-Heuristic Methods. 

Method Optimal weight of stocks Optimal Expected value Optimal Entropy 

MOICA (0.34, 0.021, 0.029, 0.20 , 0.40) 0.0059 1.6094 

MOPSO (0.048, 0, 0.32 , 0.38, 0.24) 0.0068 1.6094 

NSGA-II (0.22, 0.082 , 0.12, 0.28 , 0.29) 0.0059 1.6094 

It is necessary to explain that due to the dependence of the empirical distribution on the segmentation 

of the data, we divided the range of data into 5 parts in all stocks, and because there is the same fre-

quency in these 5 intervals, the entropy of these stocks is equal to each other. As mentioned before, this 

is one of the problems in the probability space. 

As can be seen, the optimal portfolio presented in each of these 3 methods in probability space has a 

lower return and higher entropy compared to the same method in the uncertainty space. In other words, 

it can be concluded that the assumption of the uncertain distribution of stock returns instead of obtaining 

an experimental data distribution improves model performance. Therefore, it can be deduced that as 

the uncertainty theory has been said, when the estimated probability distribution was not close enough 

to the cumulative frequency, the use of uncertainty space performs better. 

7 Conclusions 
In this article, we present a model for portfolio optimization in uncertainty space. The goals of this bi-
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objective model are to maximize the uncertain expected value of return and minimize uncertain entropy 

as the measure of return and risk, respectively. Since in many cases there is no access to historical data, 

hardness to obtain an accurate distribution of stock returns, fitted distribution cannot well describe data, 

the future behavior of stocks is uncertain and not determined by prior behavior, complexity of calcula-

tion joint distribution and entropy of portfolio with many stocks, we proposed one model base on Un-

certainty Theory that solve these problems. 

Five securities are supposed for the proposed portfolio selection model. Returns of these securities are 

considered as uncertain variables with Zigzag Uncertainty Distribution. The proposed bi-objective 

equation is solved by three strong multi-objective meta-heuristic techniques: NSGA-II, MOPSO, and 

MOICA. The numerical example illustrated that a portfolio constructed based on the MOPSO method 

has lower entropy and higher returns. This model is also solved in the probability space, which is ob-

served that solving the proposed model in the uncertainty space has less entropy and higher returns than 

the model solved in the probability space.  

Consequently, the results of this research show that solving the stock portfolio optimization model in 

the uncertainty environment and considering the stock return as an uncertain variable is more consistent 

with its actual behavior than solving this model in the probability space and considering the asset return 

as a random variable. Also, replacing the entropy of asset return as a risk measure solves many problems 

in the models that use others risk measures such as variance. On the other hand, maximizing the return 

of the portfolio and minimizing the entropy of the portfolio at the same time and solving the model as 

a multi-objective model helps us in achieving the optimal portfolio. The results of the numerical exam-

ple showed that among the 3 meta-heuristic methods presented, the MOPSO method provides a diverse 

portfolio with higher efficiency and less risk than other methods. 

The uncertain mean-entropy portfolio optimization model (UMEPO) can be improved with constraints 

that depend on the risk appetite of investors. Constraints such as the minimum acceptable risk, the 

minimum expected return, etc. This model can also be used in a situation where there are random var-

iables and uncertain variable at the same time. 
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