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Abstract

The purpose of this letter is to revisit the nonlinear reaction-diffusion model
in porous catalysts when reaction term is fractional function of the concen-
tration distribution of the reactant. This model, which originates also in fluid
and solute transport in soft tissues and microvessels, has been recently given
analytical solution in terms of Taylors series for different family of reaction
terms. We apply the method so-called predictor homotopy analysis method
(PHAM) which has been recently proposed to predict multiplicity of solutions
of nonlinear BVPs. Consequently, it is indicated that the problem for some
values of the parameter admits multiple solutions. Also, error analysis of these
solutions are given graphically.
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1 Introduction

The governing boundary value problem of the generalized one dimen-
sional steady state reaction-diffusion model can be written in dimensional
variables as

DU′′−VU′− r(U) = 0, 0 ≤ x ≤ L, U′(0) = 0, U(L) = Us, (1.1)

where D is the diffusivity, V is the advective velocity and r(U) de-
notes reaction process [1]. Now, by introducing nondimensional quantities

U(x) = U(X)
Us

, x = X
L

and R(U) as nondimensional reaction term and then
substituting these nondimensional quantities into equation (1.1), we get

U ′′ − PU ′ −R(U) = 0, 0 ≤ x ≤ 1, U ′(0) = 0, U(1) = 1, (1.2)

where P = V L
D

is so-called Péclet number. Without advective transport,
we have P = 0 and in this case the model has been used to study porous
catalyst pellets as the model of diffusion and reaction [2,3]. Furthermore,
if we consider R(U) as fractional function or so-called Michaelis-Menten
reaction term then the model is converted to

U ′′(x)− αU(x)

β + U(x)
= 0, 0 ≤ x ≤ 1, (1.3)

with the boundary condition

U ′(0) = 0, U(1) = 1, (1.4)

where α, characteristic reaction rate, and β is half saturation concentra-
tion. The problem (1.2) without advective transport (P = 0) and with
reaction term R(U) = φ2Un (φ is Thiele modulus) has been studied by
Adomian decomposition method [4] and Homotopy analysis method [2,3].
Subsequently, S. Abbasbandy and E. Shivanian [5] have considered al-
most the same problem arising in heat transfer and have successfully
obtained the exact analytical solution in the implicit form and proved
the existence of dual solutions on some domain of x. The model (1.2) in-
volves advective and diffusive transport with the Michaelis-Menten reac-
tion model that is routinely used to represent biochemical processes [6–8].
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This model encodes a number of important engineering processes includ-
ing several applications in chemical engineering [9,10] and environmental
engineering [7,8]. The boundary value problem (1.3)-(1.4) contains non-
linear fractional term which makes it somewhat difficult to treat even by
numerical methods. A.J. Ellery and M.J. Simpson [1] presented Taylor
series solution for this model which truly is convergent on the condition
that the Michaelis-Menten reaction term has bounded derivatives as they
mentioned.
The aim of this paper is to go advance with this model by applying
predictor homotopy analysis method (PHAM) [3, 11, 12] which is more
general than HAM in some sense and can be applied to predict and cal-
culate multiple solutions of BVPs simultaneously. The homotopy anal-
ysis method [13, 14] has been successfully applied to several nonlinear
problems such as the viscous flows of non- Newtonian fluids [15–21],
the KdV-type equations [22], nano boundary layer flows [23], nonlinear
heat transfer [24], finance problems [25], Riemann problems related to
nonlinear shallow water equations [26], projectile motion [27], Glauert-
jet flow [28], nonlinear water waves [29], ground water flows [30], Burger-
sHuxley equation [31], time-dependent Emden Fowler type equations [32],
differential difference equation [33], Laplace equation with Dirichlet and
Neumann boundary conditions [34], thermalhydraulic networks [35] and
also readers are referred to see [36–47]. It is not unknown to anyone fa-
miliar with the analytical methods that HAM series is general Taylor
series [13, 48] which uses the convergence-controller parameter to make
convergence fast, so we use PHAM to get series solution more accurate
than usual Taylor series solution. We consider nonlinear fractional term
in equations (1.3)-(1.4) in some cases which have unbounded derivatives
then it is revealed by PHAM that the problem admits multiple (dual)
solutions in these cases, while the exact solution of this problem is un-
known.

2 Application of the PHAM to the model

The predictor homotopy analysis method (PHAM) has been fully dis-
cussed by S. Abbasbandy and E. Shivanain in [11]. Let us rewrite the
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Eqs. (1.3)-(1.4) as follows:

(β + U)
d2U

dx2
− αU = 0, 0 ≤ x ≤ 1, (2.1)

or equivalently

βU ′′ + UU ′′ − αU = 0, 0 ≤ x ≤ 1. (2.2)

The boundary conditions by prescribed parameter γ, as it is straightfor-
ward in PHAM, become

U(0) = γ, U ′(0) = 0, (2.3)

with the additional forcing condition

U(1) = 1 (2.4)

which plays essential role in determining multiplicity of solutions as it is
described in PHAM. Now, we apply predictor homotopy analysis method
on Eqs. (2.2)-(2.3) where prescribed parameter γ, which is played impor-
tant role to realize about multiplicity of solutions, will be obtained with
the help of rule of multiplicity of solutions.
It is straightforward to use the set of base functions

{xn, n = 0, 1, 2, ...} . (2.5)

Under the rule of solution expression and according to the initial condi-
tions (2.3), it is easy to choose

u0(x, γ) = γ + x2, (2.6)

as initial guess of solution u(x), H(x) = 1 as auxiliary function, and to
choose auxiliary linear operator

L [φ(x, γ; p)] =
∂2φ(x, γ; p)

∂x2
, (2.7)

with the property

L [c1 + c2x] = 0. (2.8)
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Therefore, after two subsequent integrations, the M -th order deformation
Equation of PHAM yields for M ≥ 1

um(x, γ) = χmum−1(x, γ)+~
∫ x

0

∫ η

0
Rm(~um−1, τ, γ)dτdη+c1+c2x, (2.9)

where from (2.2)

Rm(~um−1, τ, γ) = βu′′m−1(τ, γ) +
m−1∑
j=0

uj(τ, γ)u′′m−1−j(τ, γ)− αum−1(τ),

(2.10)
and integration constants c1 and c2 are obtained by the conditions

um(0, γ) = u′m(0, γ) = 0. (2.11)

In this way we obtain the functions um(x, γ) for m = 1, 2, 3, ... from
Eq. (2.9) successively. Finally, we can obtain M -th order approximate
solution

UM(x, γ, ~) =
M∑
m=0

um(x, γ), (2.12)

So, additional forcing condition (2.4), becomes

UM(1, γ, ~) ≈ 1. (2.13)

3 Multiple solutions of the model

A.J. Ellery and M.J. Simpson [1] showed that Taylor series solution of
the problem (1.3)-(1.4) is convergent when αu

β+u
has bounded derivatives

by applying the ratio test to this series. So, if we consider negative value
for β then it is possible the Taylor series solution be divergent. In this
section, not only we get convergent PHAM series solution but also we
discover that the existence of multiple solutions are possible. To be spe-
cific, assume the case consist of (α = 0.4 and β = −0.3,−0.25,−0.2) then
according to the equation (2.13) γ as a function of convergence-controller
parameter ~ has been plotted in the ~-range [0, 0.5] implicitly in Figure 1.
Two γ-plateaus can be identified in this Figure for each value of β, namely

163



γ = 0.3812 and γ = 0.64983 for β = −0.3, γ = 0.2848 and γ = 0.6986 for
β = −0.25 and, γ = 0.2069 and γ = 0.7298 for β = −0.2. Consequently,
we conclude that the PHAM furnishes dual solutions in each case. We
remark here that both the first branch and second branch of solutions
are calculated at the same time only by Eq. (2.12) with different γ and ~
which are specified from Figure 1. Furthermore, we emphasize that there
is no need to use more than one initial approximation guess, one auxiliary
linear operator, and one auxiliary function that is in a sharp contrast to
all approximation methods which are used to converge to one solution.

Fig. 1: Prescribed parameter γ via convergence-controller parameter ~ in according to (2.13) with
M = 30.

In the plot shown in Figure 2, correspond to γ = 0.3812 and γ =
0.64983 the approximate dual PHAM solutions U30(x, 0.3812, 0.25) and
U30(x, 0.64983, 0.25), correspond to γ = 0.2848 and γ = 0.6986 the ap-
proximate dual PHAM solutions U30(x, 0.2848, 0.2) and U30(x, 0.6986, 0.2)
and correspond to γ = 0.2069 and γ = 0.7298 the approximate dual
PHAM solutions U30(x, 0.2069, 0.2) and U30(x, 0.7298, 0.15) given by Eq.
(2.12) have been plotted. To show the accuracy of these dual approximate
solutions, we have shown the absolute residual error for these solution in
Figure 3 and 4 in two different views.
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Fig. 2: Dual approximate PHAM solutions with M = 30: Red color correspond to β = −0.3, green
color correspond to β = −0.25 and blue color correspond to β = −0.2.

Fig. 3: The absolute residual error with M = 30; Red color correspond to β = −0.3, green color
correspond to β = −0.25 and blue color correspond to β = −0.2.

Fig. 4: The absolute residual error with M = 30; Red color correspond to β = −0.3, green color
correspond to β = −0.25 and blue color correspond to β = −0.2.
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4 Conclusions

It is very important not to lose any solution of nonlinear differential
equations with boundary conditions in engineering and physical sciences.
In this regard, the present paper has revisited the nonlinear reaction
diffusion equation with fractional reaction term via predictor homotopy
analysis method (PHAM). It has been shown that not only we can get
convergent series solution but also we can predict existence of multiple
solutions.
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