

Theory of Approximation and Applications

Vol. 9, No. 2, (2013), 101-114

Convergence Theorems for α -Nonexpansive Mappings in CAT(0) Spaces

Savita Rathee ** and Ritika *

Department of Mathematics, M.D. University, Rohtak (Haryana), India

Received 10 March 2012; accepted 1 October 2013

Abstract

In this paper we derive convergence theorems for an α -nonexpansive mapping of a nonempty closed and convex subset of a complete CAT(0) space for SPiterative process and Thianwan's iterative process.

Key words: CAT(0) spaces, α -Nonexpansive mapping, Δ -convergence, SP-iteration, Thianwan's iteration. 2010 AMS Mathematics Subject Classification : 47H10, 47H09, 54E40.

1 Introduction

The purpose of this paper is to study fixed point theorems for α -nonexpansive mappings in CAT(0) spaces. A metric space X is a CAT(0)

^{*} Corresponding author's E-mail: math.riti@gmail.com (Ritika)

^{**}E-mail: dr.savitarathee@gmail.com (Savita Rathee)

space (see Bridson and Haefliger [2]) if it is geodesically connected and if every geodesic triangle in X is at least as 'thin' as its comparison triangle in the Euclidean plane. Our approach is to prove Δ -convergence theorems for SP-iteration and Thianwan's iterations for α -nonexpansive mappings in CAT(0) spaces.

Here are the details. Let X be a CAT(0) space and let C be a nonempty subset of X and $T: C \to X$ be a mapping. Denote F(T) by the set of fixed points of T, i.e., $F(T) = \{x \in C : Tx = x\}.$

Definition 1.1 T is said to be nonexpansive if $d(Tx, Ty) \leq d(x, y)$ for all $x, y \in C$ and that T is quasi-nonexpansive if $F(T) \neq \phi$ and $d(Tx, y) \leq d(x, y)$ for all $x \in C$ and $y \in F(T)$.

In 2011, Aoyama and Kohsaka [1] defined α -non-expansive mappings in Banach spaces. We introduce the notion of this mapping in CAT(0)spaces.

Definition 1.2 A mapping $T: C \to X$ is said to be an α -non-expansive for some real number $\alpha < 1$ if $d(Tx, Ty)^2 \leq \alpha d(Tx, y)^2 + \alpha d(Ty, x)^2 + (1 - 2\alpha)d(x, y)^2$ for all $x, y \in C$.

Clearly, 0-non-expansive maps are exactly non-expansive maps.

Definition 1.3 ([6]) Let $\{x_n\}$ be a bounded sequence in a CAT(0) space X. For $x \in X$, we set $r(x, \{x_n\}) = \lim_{n \to \infty} \sup d(x, x_n)$. The asymptotic $r(\{x_n\})$ of $\{x_n\}$ is given by $r(\{x_n\}) = \inf\{r(x, \{x_n\}) : x \in X\}$ and the asymptotic center $A(\{x_n\})$ of $\{x_n\}$ is the set $A(\{x_n\}) = \{x \in X : r(x, \{x_n\}) = r(\{x_n\})\}$.

Remark 1.4 $A(\{x_n\})$ consists of exactly one point in CAT(0) spaces (see, e.g., [5, Proposition 7].

Definition 1.5 ([6]) A sequence $\{x_n\}$ in a CAT(0) space X is said to Δ -converge to $x \in X$ if x is the unique asymptotic center of $\{u_n\}$ for every subsequence $\{u_n\}$ of $\{x_n\}$. In this case we write Δ -lim $x_n = x$ and call x the Δ -limit of $\{x_n\}$.

Let (X, d) be a metric space. A geodesic path joining $x \in X$ to $y \in X$ (or, more briefly, a geodesic from x to y) is a map c from a closed interval $[0, l] \subset R$ to X such that c(0) = x, c(l) = y and d(c(t), c(t')) = |t - t'|for all $t, t' \in [0, l]$. In particular, c is an isometry and d(x, y) = l. The image α of c is called a geodesic (or metric) segment joining x and y. When it is unique this geodesic segment is denoted by [x, y]. The space (X, d) is said to be a geodesic space if every two points of X are joined by a geodesic and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each $x, y \in X$. A subset $Y \subseteq X$ is said to be convex if Y includes every geodesic segment joining any two of its points. A geodesic triangle $\Delta(x_1, x_2, x_2)$ in a geodesic metric space (X, d) consists of three points x_1, x_2, x_3 in X (the vertices of Δ) and a geodesic segment between each pair of vertices (the edges of Δ). A comparison triangle for the geodesic triangle $\Delta(x_1, x_2, x_3)$ in (X, d) is a triangle $\overline{\Delta}(x_1, x_2, x_3) = \Delta(\overline{x}_1, \overline{x}_2, \overline{x}_3)$ in the Euclidean plane \mathbb{E}^2 such that $d_{\mathbb{E}^2}(\bar{x}_i, \bar{x}_j) = (x_i, x_j)$ for $i, j \in \{1, 2, 3\}$. A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the following comparison axiom:

Let Δ be a geodesic triangle in X and let $\overline{\Delta}$ be a comparison triangle for Δ . Then Δ is said to satisfy the CAT(0) inequality if for all $x, y \in \Delta$ and all comparison points $\overline{x}, \overline{y} \in \overline{\Delta}, d(x, y) \leq d_{\mathbb{E}^2}(\overline{x}, \overline{y})$.

If x, y_1, y_2 are points in a CAT(0) space and if y_0 is the midpoint of the segment $[y_1, y_2]$, then the CAT(0) inequality implies

$$d(x, y_0)^2 \le \frac{1}{2}d(x, y_1)^2 + \frac{1}{2}d(x, y_2)^2 - \frac{1}{4}d(y_1, y_2)^2$$
 (CN)

This is the (CN) inequality of Bruhat and Tits [3]. In fact, a geodesic space is a CAT(0) space if and only if it satisfy (CN) inequality.

Now we collect some results which are used in our main results:

Lemma 1.6 ([6]) Let (X, d) be a CAT(0) space. Then for $x, y \in X$ and for each $t \in [0, 1]$, there exists a unique point $z \in [x, y]$ such that

$$d(x, z) = td(x, y)$$
 and $d(y, z) = (1 - t)d(x, y).$ (1.1)

Lemma 1.7 ([6]) Let X be a CAT(0) space. Then

$$d((1-t)x \oplus ty, z) \le (1-t)d(x, z) + td(y, z)$$
(1.2)

for all $x, y, z \in X$ and $t \in [0, 1]$.

Lemma 1.8 ([6]) Let (X, d) be a CAT(0) space. Then

$$d((1-t)x \oplus ty, z)^2 \le (1-t)d(x, z)^2 + td(y, z)^2 - t(1-t)d(x, y)^2 \quad (1.3)$$

for all $t \in [0, 1]$ and $x, y, z \in X$.

Lemma 1.9 ([7]) Every bounded sequence in a complete CAT(0) space always has a Δ -convergent subsequence.

Lemma 1.10 ([4]) If C is a closed convex subset of a complete CAT(0) space and if $\{x_n\}$ is a bounded sequence in C then the asymptotic center of $\{x_n\}$ is in C.

In 2009, Thianwan [12] introduced an iteration named by his name, i.e., Thianwan's iteration which is defined by $x_1 \in C$ and

$$x_{n+1} = \alpha_n T y_n + (1 - \alpha_n) y_n,$$

$$y_n = \beta_n T x_n + (1 - \beta_n) x_n, \quad \text{for all } n \ge 1,$$
(1.4)

where $\{\alpha_n\}$ and $\{\beta\}$ are sequences in [0, 1].

In 2011, Phuengrattana and Suantai [10] defined the SP-iteration as follows:

$$x_{n+1} = \alpha_n T y_n + (1 - \alpha_n) y_n,$$

$$y_n = \beta_n T z_n + (1 - \beta_n) z_n,$$

$$z_n = \gamma_n T x_n + (1 - \gamma_n) x_n,$$

(1.5)

for all $n \geq 1$, where $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$ are sequences of positive numbers in [0, 1]. They showed that the Mann, Ishikawa and SP-iterations are equivalent and the SP-iteration converges better than the others for the class of continuous and non-decreasing functions. Clearly Thianwan's iteration and Mann iterations are special cases of the SP-iteration.

Example 1.11 Here we provide an example which proves that the SPiteration converges much faster than the other iterations, for the increasing function $f(x) = 2x^3 - 7x^2 + 8x - 2$, the Ishikawa iteration converges in 22nd iterations while the SP-iteration converges in 2nd iteration with $x_0 = 0.8$.

Recall that SP-iteration and Thianwan's iteration in CAT(0) spaces are described as follows:

For any initial point x_1 in C, we define the iterates $\{x_n\}$ by

$$\begin{cases} x_{n+1} = \alpha_n T y_n \oplus (1 - \alpha_n) y_n \\ y_n = \beta_n T x_n \oplus (1 - \beta_n) x_n \end{cases}$$

where $\{\alpha_n\}$, $\{\beta_n\}$ are sequences of positive numbers in [0, 1]. This iteration is Thianwan's new two step iteration. And if the iterates $\{x_n\}$ is defined as

$$\begin{aligned} x_{n+1} &= \alpha_n T y_n \oplus (1 - \alpha_n) y_n, \\ y_n &= \beta_n T z_n \oplus (1 - \beta_n) z_n, \\ z_n &= \gamma_n T x_n \oplus (1 - \gamma_n) x_n, \end{aligned}$$

for all $n \ge 1$, where $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$ are sequences of positive numbers in [0, 1]. Then it is known as SP-iteration.

Remark 1.12 If $\gamma_n = 0$ then (1.5) reduces to the iterative process (1.4).

2 Main Results

Now we are all set to prove our main results. We start with proving key lemmas for later use.

Lemma 2.1 ([9]) Let C be a nonempty subset of a CAT(0) space X. Let $T : C \to X$ be an α -nonexpansive mapping for some real number $\alpha < 1$ such that $F(T) \neq \phi$. Then T is quasi-nonexpansive.

Proof. Let $x \in C$ and $z \in F(T)$. Then we have

$$d(Tx, z)^{2} = d(Tx, Tz)^{2}$$

$$\leq \alpha d(Tx, z)^{2} + \alpha d(x, Tz)^{2} + (1 - 2\alpha)d(x, z)^{2}$$

$$= \alpha d(Tx, z)^{2} + \alpha d(x, z)^{2} + (1 - 2\alpha)d(x, z)^{2}$$

$$= \alpha d(Tx, z)^{2} + (1 - \alpha)d(x, z)^{2}.$$

Therefore, $d(Tx, z) \leq d(x, z)$. This inequality ensures the closedness of F(T).

Lemma 2.2 ([9]) Let C be a nonempty closed and convex subset of a CAT(0) space X. Let $T : C \to X$ be an α -nonexpansive mapping for some $\alpha < 1$. Then the following conditions hold:

(i) If $0 \le \alpha < 1$, then

$$d(x, Ty)^{2} \leq \frac{1+\alpha}{1-\alpha} d(x, Tx)^{2} + \frac{2}{1-\alpha} \{\alpha d(x, y) + d(Tx, Ty)\} d(x, Tx) + d(x, y)^{2},$$

for all $x, y \in C$. (ii) If $\alpha < 0$, then

$$d(x,Ty)^{2} \leq d(x,Tx)^{2} + \frac{2}{1-\alpha} \{(-\alpha)d(Tx,y) + d(Tx,Ty)\}d(x,Tx) + d(x,y)^{2},$$

for all $x, y \in C$.

Proof. (i) Observe

$$\begin{aligned} d(x,Ty)^2 &\leq [d(x,Tx) + d(Tx,Ty)]^2 \\ &= d(x,Tx)^2 + d(Tx,Ty)^2 + 2d(x,Tx)d(Tx,Ty) \\ &\leq d(x,Tx)^2 + \alpha d(Tx,y)^2 + \alpha d(x,Ty)^2 + (1-2\alpha)d(x,y)^2 \\ &+ 2d(x,Tx)d(Tx,Ty) \\ &\leq d(x,Tx)^2 + \alpha [d(Tx,x) + d(x,y)]^2 + \alpha d(x,Ty)^2 \\ &+ (1-2\alpha)d(x,y)^2 + 2d(x,Tx)d(Tx,Ty) \end{aligned}$$

$$\leq d(x, Tx)^{2} + \alpha d(Tx, x)^{2} + \alpha d(x, y)^{2} + 2\alpha d(Tx, x)d(x, y)$$

+ $\alpha d(x, Ty)^{2} + (1 - 2\alpha)d(x, y)^{2} + 2d(x, Tx)d(Tx, Ty)$
= $(1 + \alpha)d(x, Tx)^{2} + 2\alpha d(Tx, x)d(x, y) + \alpha d(x, Ty)^{2}$
+ $(1 - \alpha)d(x, y)^{2} + 2d(x, Tx)d(Tx, Ty)$

This implies that

$$d(x, Ty)^{2} \leq \frac{1+\alpha}{1-\alpha} d(x, Tx)^{2} + \frac{2}{1-\alpha} \{\alpha d(x, y) + d(Tx, Ty)\} d(x, Tx) + d(x, y)^{2}$$

(ii) Observe

$$\begin{split} d(x,Ty)^2 &\leq [d(x,Tx) + d(Tx,Ty)]^2 \\ &= d(x,Tx)^2 + d(Tx,Ty)^2 + 2d(x,Tx)d(Tx,Ty) \\ &\leq d(x,Tx)^2 + \alpha d(Tx,y)^2 \\ &+ \alpha d(x,Ty)^2 + (1-2\alpha)d(x,y)^2 \\ &+ 2d(x,Tx)d(Tx,Ty) \\ &= d(x,Tx)^2 + \alpha d(Tx,y)^2 + \alpha d(x,Ty)^2 \\ &+ (1-\alpha)d(x,y)^2 \\ &- \alpha d(x,y)^2 + 2d(x,Tx)d(Tx,Ty) \\ &\leq d(x,Tx)^2 + \alpha d(Tx,y)^2 + \alpha d(x,Ty)^2 \\ &+ (1-\alpha)d(x,y)^2 \\ &- \alpha [d(x,Tx)^2 + d(Tx,y)^2 + 2d(x,Tx)d(Tx,y)] \\ &+ 2d(x,Tx)d(Tx,Ty) \\ &= (1-\alpha)d(x,Tx)^2 + \alpha d(x,Ty)^2 \\ &+ (1-\alpha)d(x,y)^2 - 2\alpha d(x,Tx)d(Tx,y) \\ &+ 2d(x,Tx)d(Tx,Ty) \\ &= (1-\alpha)d(x,Tx)^2 + \alpha d(x,Ty)^2 \\ &+ (1-\alpha)d(x,y)^2 \\ &+ 2[(-\alpha)d(Tx,y) + d(Tx,Ty)]d(x,Tx) \end{split}$$

This implies that

$$d(x, Ty)^{2} \leq d(x, Tx)^{2} + \frac{2}{1 - \alpha} [(-\alpha)d(Tx, y) + d(Tx, Ty)]d(x, Tx) + d(x, y)^{2}.$$

Lemma 2.3 Let C be a nonempty closed and convex subset of a complete CAT(0) space X and $T : C \to C$ be an α -nonexpansive mapping for

some $\alpha < 1$. If $\{x_n\}$ is a sequence in C such that $d(Tx_n, x_n) \to 0$ and $\Delta -\lim_{n \to \infty} x_n = z$ for some z in X then $z \in C$ and Tz = z.

Proof. It follows from Lemma 1.10 that $z \in C$. Let $0 \leq \alpha < 1$. By Lemma 2.2(i), we deduce that

$$d(x_n, Tz)^2 \le \frac{1+\alpha}{1-\alpha} d(x_n, Tx_n)^2 + \frac{2}{1-\alpha} \{\alpha d(x_n, z) + d(Tx_n, Tz)\} d(x_n, Tx_n) + d(x_n, z)^2$$

for all *n* in *N*. Thus we have $\lim_{n\to\infty} \sup d(x_n, Tz) \leq \lim_{n\to\infty} \sup d(x_n, z)$. Let $\alpha < 0$. Then by Lemma 2.2(ii), we have

$$d(x_n, Tz)^2 \leq d(x_n, Tx_n)^2 + \frac{2}{1-\alpha} \{(-\alpha)d(Tx_n, z) + d(Tx_n, Tz)\}d(x_n, Tx_n) + d(x_n, z)^2$$

for all n in N. This implies again that

$$\lim_{n \to \infty} \sup d(x_n, Tz) \le \lim_{n \to \infty} \sup d(x_n, z).$$

By the uniqueness of asymptotic centers, Tz = z.

Lemma 2.4 Let C be a nonempty closed and convex subset of a CAT(0)space X and $T: C \to C$ be an α -nonexpansive mapping for some $\alpha < 1$. Let a sequence $\{x_n\}$ with x_1 in C be defined by (1.5) such that $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ are arbitrary sequences of positive numbers in [0, 1]. Let $p \in F(T)$. Then the following assertions hold:

(i)
$$\max\{d(x_{n+1}, p), d(y_n, p)\} \le d(x_n, p)$$
 for $n = 1, 2, ...$
(ii) $\lim_{n \to \infty} d(x_n, p)$ exists.
(iii) $\lim_{n \to \infty} d(x_n, F(T))$ exists.

Proof. Consider

$$d(y_n, p) = d(\beta_n T z_n \oplus (1 - \beta_n) z_n, p)$$

$$\leq \beta_n d(T z_n, p) + (1 - \beta_n) d(z_n, p)$$

$$\leq \beta_n d(z_n, p) + (1 - \beta_n) d(z_n, p)$$

$$= d(z_n, p)$$

$$= d(\gamma_n T x_n \oplus (1 - \gamma_n) x_n, p)$$

$$\leq \gamma_n d(T x_n, p) + (1 - \gamma_n) d(x_n, p)$$

$$\leq \gamma_n d(x_n, p) + (1 - \gamma_n) d(x_n, p)$$

$$= d(x_n, p).$$

Consequently,

$$d(x_{n+1}, p) = d(\alpha_n T y_n \oplus (1 - \alpha_n) y_n, p)$$

$$\leq \alpha_n d(T y_n, p) + (1 - \alpha_n) d(y_n, p)$$

$$\leq \alpha_n d(y_n, p) + (1 - \alpha_n) d(y_n, p)$$

$$= d(y_n, p)$$

$$\leq d(x_n, p).$$

This implies that $\{d(x_n, p)\}$ is a bounded and non-increasing sequence. Thus $\lim_{n \to \infty} d(x_n, p)$ exists. In the same manner, we see that $\{d(x_n, F(T))\}$ is also a bounded non-increasing real sequence and thus converges.

Lemma 2.5 Let C be a nonempty closed and convex subset of a CAT(0)space X and $T: C \to C$ be an α -nonexpansive mapping for some $\alpha < 1$. Let a sequence $\{x_n\}$ with x_1 in C be defined by (1.5) such that $\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}$ are arbitrary sequences of positive numbers in [0, 1]. Let $p \in F(T)$. Then $\lim_{n \to \infty} d(Tx_n, x_n) = 0$.

Proof. From the above Lemma 2.4(iii), $\lim_{n \to \infty} d(x_n, F(T))$ exists. Let $p \in F(T)$ and

$$\lim_{n \to \infty} d(x_n, p) = c.$$
(2.1)

Now we prove that $\lim_{n\to\infty} d(y_n, p) = c$.

Since $d(x_{n+1}, p) \leq d(y_n, p)$. This implies

$$\lim_{n \to \infty} d(x_{n+1}, p) \le \lim_{n \to \infty} d(y_n, p) \quad \text{or} \quad c \le \lim_{n \to \infty} d(y_n, p).$$
(2.2)

But $d(y_n, p) \leq d(x_n, p)$. This implies

$$\lim_{n \to \infty} \sup d(y_n, p) \le c.$$
(2.3)

From (2.2) and (2.3), we get

$$\lim_{n \to \infty} d(y_n, p) = c.$$
(2.4)

Similarly we can get

$$\lim_{n \to \infty} d(z_n, p) = c.$$
(2.5)

Now

$$d(z_n, p)^2 = d(\gamma_n T x_n \oplus (1 - \gamma_n) x_n, p)^2$$

$$\leq \gamma_n d(T x_n, p)^2 + (1 - \gamma_n) d(x_n, p)^2 - \gamma_n (1 - \gamma_n) d(T x_n, x_n)^2$$

$$\leq d(x_n, p)^2 - \gamma_n (1 - \gamma_n) d(T x_n, x_n)^2.$$

Thus

$$\gamma_n (1 - \gamma_n) d(Tx_n, x_n)^2 \le d(x_n, p)^2 - d(z_n, p)^2,$$

so that

$$d(Tx_n, x_n)^2 \le \frac{1}{\gamma_n(1 - \gamma_n)} [d(x_n, p)^2 - d(z_n, p)^2].$$

By (2.1) and (2.5), $\limsup d(Tx_n, x_n) \leq 0$ and hence $\lim_{n \to \infty} d(Tx_n, x_n) = 0$.

Theorem 2.6 Let C be a nonempty closed convex subset of a complete CAT(0) space X and $T: C \to C$ be an α -nonexpansive mapping with

 $F(T) \neq \phi$. Let $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ be sequences in [0, 1]. From arbitrary $x_1 \in C$, define the sequence $\{x_n\}$ by the recursion (1.5). Then $\{x_n\}$ Δ -converges to a fixed point of T.

Proof. It follows from Lemma 2.5 that $\lim_{n\to\infty} d(Tx_n, x_n) = 0$. We now let $\omega_w(x_n) = \bigcup A(\{u_n\})$ where the union is taken over all subsequences $\{u_n\}$ of $\{x_n\}$. We claim that $\omega_w(x_n) \subseteq F(T)$. Let $u \in \omega_w(x_n)$, then there exists a subsequence $\{u_n\}$ of $\{x_n\}$ such that $A(\{u_n\}) = \{u\}$. By Lemmas 1.9, 1.10, there exists a subsequence $\{v_n\}$ of $\{u_n\}$ such that $\Delta-\lim_n v_n = v \in C$. Since $\lim_n d(v_n, Tv_n) = 0$, then $v \in F(T)$ by Lemma 2.3. We claim that u = v. Suppose not, by the uniqueness of asymptotic centers,

$$\lim_{n} \sup d(v_{n}, v) < \lim_{n} \sup d(v_{n}, u)$$

$$\leq \lim_{n} \sup d(u_{n}, u)$$

$$= \lim_{n} \sup d(u_{n}, v)$$

$$= \lim_{n} \sup d(x_{n}, v)$$

$$= \lim_{n} \sup d(v_{n}, v),$$

which is a contradiction and hence $u = v \in F(T)$. To show that $\{x_n\}$ Δ -converges to a fixed point of T, it suffices to show that $\omega_w(x_n)$ consists of exactly one point. Let $\{u_n\}$ be a subsequence of $\{x_n\}$. By Lemmas 1.9, 1.10, there exists a subsequence $\{v_n\}$ of $\{u_n\}$ such that Δ -lim $v_n = v \in C$. Let $A(\{u_n\}\}) = \{u\}$ and $A(\{x_n\}) = \{x\}$. We have seen that u = v and $v \in F(T)$. We can complete the proof by showing that x = v. If not, since $\{d(x_n, v)\}$ is convergent, then by the uniqueness of asymptotic centers,

$$\limsup_{n} \sup d(v_{n}, v) < \limsup_{n} \sup d(v_{n}, v)$$

$$\leq \limsup_{n} \sup d(x_{n}, x)$$

$$< \limsup_{n} u(x_{n}, v)$$

$$\leq \limsup_{n} u(v_{n}, x)$$

which is a contradiction and hence the conclusion follows.

Remark 2.7 As we know that Thianwan's iteration is the special case for SP-iteration for $\gamma_n = 0$. So, the above Δ -convergence result is also hold for Thianwan's iterative process.

Acknowledgement

The authors would like to thank the referees for helpful suggestions and comments.

References

- K. Aoyama and F. Kohsaka, Fixed point theorem for α-nonexpansive mappings in Banach spaces, Nonlinear Analysis 74 (2011), 4387-4391.
- [2] M. Bridson and A. Haefliger, *Metric Spaces of Non-Positive Curvature*, Springer-Verlag, Berlin, Heidelberg, (1999).
- [3] F. Bruhat and J. Tits, Groupes reductifs sur un corps local. I. Donnees radicielles values, *Inst. Hautes Etudes Sci. Publ. Math.* **41** (1972), 5–251.
- [4] S. Dhompongsa, W.A. Kirk and B. Panyanak, Non-expansive set-valued mappings in metric and Banach spaces, *Journal of Nonlinear and Convex Analysis* 8 (2007), 35–45.
- [5] S. Dhompongsa, W.A. Kirk and B. Sims, Fixed points of uniformly lipschitzian mappings, *Nonlinear Analysis: TMA* **65** (2006), 762–772.
- [6] S. Dhompongsa and B. Panyanak, On Δ-convergence theorems in CAT(0) spaces, Computer and Mathematics with Applications 56 (2008), 2572–2579.
- [7] W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Analysis: TMA 68 (2008), 3689–3696.
- [8] T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179–182.

- [9] E. Naraghirad, N.C. Wong and J.C. Yao, Approximating fixed points of α-nonexpansive mappings in uniformly convex Banach spaces and CAT(0) spaces, Fixed Point Theory and Applications (2013), 2013:57, doi:10.1186/1687-1812-2013-57.
- [10] W. Phuengrattana and S. Suantai, On the rate of convergence of Mann, Ishikawa, Noor and SP iterations for continuous functions on an arbitrary interval, *Journal of Computational and Applied Mathematics* 235 (2011), 3006–3014.
- [11] S. Shabani and S.J.H. Ghoncheh, Approximating fixed points of generalized nonexpansive nonself mappings in CAT(0) spaces, *Mathematics Scientific Journal* **7**(1) (2011), 89–95.
- [12] S. Thianwan, Common fixed points of new iterations for two asymptotically non-expansive non-self mappings in Banach spaces, *Journal of Computational and Applied Mathematics* (2009), 688–695.