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Abstract

In this paper we derive convergence theorems for an α-nonexpansive mapping
of a nonempty closed and convex subset of a complete CAT (0) space for SP-
iterative process and Thianwan’s iterative process.
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1 Introduction

The purpose of this paper is to study fixed point theorems for α-non-
expansive mappings in CAT (0) spaces. A metric space X is a CAT (0)
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space (see Bridson and Haefliger [2]) if it is geodesically connected and if
every geodesic triangle in X is at least as ‘thin’ as its comparison triangle
in the Euclidean plane. Our approach is to prove ∆-convergence theorems
for SP-iteration and Thianwan’s iterations for α-nonexpansive mappings
in CAT (0) spaces.

Here are the details. Let X be a CAT (0) space and let C be a nonempty
subset of X and T : C → X be a mapping. Denote F (T ) by the set of
fixed points of T , i.e., F (T ) = {x ∈ C : Tx = x}.

Definition 1.1 T is said to be nonexpansive if d(Tx, Ty) ≤ d(x, y)
for all x, y ∈ C and that T is quasi-nonexpansive if F (T ) 6= φ and
d(Tx, y) ≤ d(x, y) for all x ∈ C and y ∈ F (T ).

In 2011, Aoyama and Kohsaka [1] defined α-non-expansive mappings
in Banach spaces. We introduce the notion of this mapping in CAT (0)
spaces.

Definition 1.2 A mapping T : C → X is said to be an α-non-expansive
for some real number α < 1 if d(Tx, Ty)2 ≤ αd(Tx, y)2 + αd(Ty, x)2 +
+(1− 2α)d(x, y)2 for all x, y ∈ C.

Clearly, 0-non-expansive maps are exactly non-expansive maps.

Definition 1.3 ([6]) Let {xn} be a bounded sequence in a CAT (0) space
X. For x ∈ X, we set r(x, {xn}) = lim

n→∞
sup d(x, xn). The asymptotic

r({xn}) of {xn} is given by r({xn}) = inf{r(x, {xn}) : x ∈ X} and
the asymptotic center A({xn}) of {xn} is the set A({xn}) = {x ∈ X :
r(x, {xn}) = r({xn})}.

Remark 1.4 A({xn}) consists of exactly one point in CAT (0) spaces
(see, e.g., [5, Proposition 7].

Definition 1.5 ([6]) A sequence {xn} in a CAT (0) space X is said to
∆-converge to x ∈ X if x is the unique asymptotic center of {un} for
every subsequence {un} of {xn}. In this case we write ∆-limxn = x and
call x the ∆-limit of {xn}.
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Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X
(or, more briefly, a geodesic from x to y) is a map c from a closed interval
[0, l] ⊂ R to X such that c(0) = x, c(l) = y and d(c(t), c(t′)) = |t − t′|
for all t, t′ ∈ [0, l]. In particular, c is an isometry and d(x, y) = l. The
image α of c is called a geodesic (or metric) segment joining x and y.
When it is unique this geodesic segment is denoted by [x, y]. The space
(X, d) is said to be a geodesic space if every two points of X are joined
by a geodesic and X is said to be uniquely geodesic if there is exactly
one geodesic joining x and y for each x, y ∈ X. A subset Y ⊆ X is said
to be convex if Y includes every geodesic segment joining any two of
its points. A geodesic triangle ∆(x1, x2, x2) in a geodesic metric space
(X, d) consists of three points x1, x2, x3 in X (the vertices of ∆) and
a geodesic segment between each pair of vertices (the edges of ∆). A
comparison triangle for the geodesic triangle ∆(x1, x2, x3) in (X, d) is a
triangle ∆̄(x1, x2, x3) = ∆(x̄1, x̄2, x̄3) in the Euclidean plane E2 such that
dE2(x̄i, x̄j) = (xi, xj) for i, j ∈ {1, 2, 3}. A geodesic space is said to be a
CAT (0) space if all geodesic triangles satisfy the following comparison
axiom:

Let ∆ be a geodesic triangle in X and let ∆̄ be a comparison triangle
for ∆. Then ∆ is said to satisfy the CAT (0) inequality if for all x, y ∈ ∆
and all comparison points x̄, ȳ ∈ ∆̄, d(x, y) ≤ dE2(x̄, ȳ).

If x, y1, y2 are points in a CAT (0) space and if y0 is the midpoint of the
segment [y1, y2], then the CAT (0) inequality implies

d(x, y0)
2 ≤ 1

2
d(x, y1)

2 +
1

2
d(x, y2)

2 − 1

4
d(y1, y2)

2 (CN)

This is the (CN) inequality of Bruhat and Tits [3]. In fact, a geodesic
space is a CAT (0) space if and only if it satisfy (CN) inequality.

Now we collect some results which are used in our main results:

Lemma 1.6 ([6]) Let (X, d) be a CAT (0) space. Then for x, y ∈ X and
for each t ∈ [0, 1], there exists a unique point z ∈ [x, y] such that

d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y). (1.1)
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Lemma 1.7 ([6]) Let X be a CAT (0) space. Then

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z) (1.2)

for all x, y, z ∈ X and t ∈ [0, 1].

Lemma 1.8 ([6]) Let (X, d) be a CAT (0) space. Then

d((1− t)x⊕ ty, z)2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2 (1.3)

for all t ∈ [0, 1] and x, y, z ∈ X.

Lemma 1.9 ([7]) Every bounded sequence in a complete CAT (0) space
always has a ∆-convergent subsequence.

Lemma 1.10 ([4]) If C is a closed convex subset of a complete CAT (0)
space and if {xn} is a bounded sequence in C then the asymptotic center
of {xn} is in C.

In 2009, Thianwan [12] introduced an iteration named by his name, i.e.,
Thianwan’s iteration which is defined by x1 ∈ C and

xn+1 = αnTyn + (1− αn)yn,

yn = βnTxn + (1− βn)xn, for all n ≥ 1,
(1.4)

where {αn} and {β} are sequences in [0, 1].

In 2011, Phuengrattana and Suantai [10] defined the SP-iteration as fol-
lows:

xn+1 = αnTyn + (1− αn)yn,

yn = βnTzn + (1− βn)zn,

zn = γnTxn + (1− γn)xn,

(1.5)

for all n ≥ 1, where {αn}, {βn}, {γn} are sequences of positive num-
bers in [0, 1]. They showed that the Mann, Ishikawa and SP-iterations
are equivalent and the SP-iteration converges better than the others for
the class of continuous and non-decreasing functions. Clearly Thianwan’s
iteration and Mann iterations are special cases of the SP-iteration.
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Example 1.11 Here we provide an example which proves that the SP-
iteration converges much faster than the other iterations, for the increas-
ing function f(x) = 2x3 − 7x2 + 8x− 2, the Ishikawa iteration converges
in 22nd iterations while the SP-iteration converges in 2nd iteration with
x0 = 0.8.

Recall that SP-iteration and Thianwan’s iteration in CAT (0) spaces are
described as follows:

For any initial point x1 in C, we define the iterates {xn} byxn+1 = αnTyn ⊕ (1− αn)yn

yn = βnTxn ⊕ (1− βn)xn

where {αn}, {βn} are sequences of positive numbers in [0, 1]. This iter-
ation is Thianwan’s new two step iteration. And if the iterates {xn} is
defined as 

xn+1 = αnTyn ⊕ (1− αn)yn,

yn = βnTzn ⊕ (1− βn)zn,

zn = γnTxn ⊕ (1− γn)xn,

for all n ≥ 1, where {αn}, {βn}, {γn} are sequences of positive numbers
in [0, 1]. Then it is known as SP-iteration.

Remark 1.12 If γn = 0 then (1.5) reduces to the iterative process (1.4).

2 Main Results

Now we are all set to prove our main results. We start with proving key
lemmas for later use.

Lemma 2.1 ([9]) Let C be a nonempty subset of a CAT (0) space X.
Let T : C → X be an α-nonexpansive mapping for some real number
α < 1 such that F (T ) 6= φ. Then T is quasi-nonexpansive.
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Proof. Let x ∈ C and z ∈ F (T ). Then we have

d(Tx, z)2 = d(Tx, Tz)2

≤ αd(Tx, z)2 + αd(x, Tz)2 + (1− 2α)d(x, z)2

= αd(Tx, z)2 + αd(x, z)2 + (1− 2α)d(x, z)2

= αd(Tx, z)2 + (1− α)d(x, z)2.

Therefore, d(Tx, z) ≤ d(x, z). This inequality ensures the closedness of
F (T ).

Lemma 2.2 ([9]) Let C be a nonempty closed and convex subset of a
CAT (0) space X. Let T : C → X be an α-nonexpansive mapping for
some α < 1. Then the following conditions hold:

(i) If 0 ≤ α < 1, then

d(x, Ty)2 ≤ 1 + α

1− α
d(x, Tx)2

+
2

1− α
{αd(x, y) + d(Tx, Ty)}d(x, Tx) + d(x, y)2,

for all x, y ∈ C.
(ii) If α < 0, then

d(x, Ty)2 ≤ d(x, Tx)2

+
2

1− α
{(−α)d(Tx, y) + d(Tx, Ty)}d(x, Tx) + d(x, y)2,

for all x, y ∈ C.
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Proof. (i) Observe

d(x, Ty)2 ≤ [d(x, Tx) + d(Tx, Ty)]2

= d(x, Tx)2 + d(Tx, Ty)2 + 2d(x, Tx)d(Tx, Ty)

≤ d(x, Tx)2 + αd(Tx, y)2 + αd(x, Ty)2 + (1− 2α)d(x, y)2

+ 2d(x, Tx)d(Tx, Ty)

≤ d(x, Tx)2 + α[d(Tx, x) + d(x, y)]2 + αd(x, Ty)2

+ (1− 2α)d(x, y)2 + 2d(x, Tx)d(Tx, Ty)

≤ d(x, Tx)2 + αd(Tx, x)2 + αd(x, y)2 + 2αd(Tx, x)d(x, y)

+ αd(x, Ty)2 + (1− 2α)d(x, y)2 + 2d(x, Tx)d(Tx, Ty)

= (1 + α)d(x, Tx)2 + 2αd(Tx, x)d(x, y) + αd(x, Ty)2

+ (1− α)d(x, y)2 + 2d(x, Tx)d(Tx, Ty)

This implies that

d(x, Ty)2 ≤ 1 + α

1− α
d(x, Tx)2

+
2

1− α
{αd(x, y) + d(Tx, Ty)}d(x, Tx)

+ d(x, y)2
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(ii) Observe

d(x, Ty)2 ≤ [d(x, Tx) + d(Tx, Ty)]2

= d(x, Tx)2 + d(Tx, Ty)2 + 2d(x, Tx)d(Tx, Ty)

≤ d(x, Tx)2 + αd(Tx, y)2

+ αd(x, Ty)2 + (1− 2α)d(x, y)2

+ 2d(x, Tx)d(Tx, Ty)

= d(x, Tx)2 + αd(Tx, y)2 + αd(x, Ty)2

+ (1− α)d(x, y)2

− αd(x, y)2 + 2d(x, Tx)d(Tx, Ty)

≤ d(x, Tx)2 + αd(Tx, y)2 + αd(x, Ty)2

+ (1− α)d(x, y)2

− α[d(x, Tx)2 + d(Tx, y)2 + 2d(x, Tx)d(Tx, y)]

+ 2d(x, Tx)d(Tx, Ty)

= (1− α)d(x, Tx)2 + αd(x, Ty)2

+ (1− α)d(x, y)2 − 2αd(x, Tx)d(Tx, y)

+ 2d(x, Tx)d(Tx, Ty)

= (1− α)d(x, Tx)2 + αd(x, Ty)2

+ (1− α)d(x, y)2

+ 2[(−α)d(Tx, y) + d(Tx, Ty)]d(x, Tx)

This implies that

d(x, Ty)2 ≤ d(x, Tx)2 +
2

1− α
[(−α)d(Tx, y)

+ d(Tx, Ty)]d(x, Tx) + d(x, y)2.

Lemma 2.3 Let C be a nonempty closed and convex subset of a complete
CAT (0) space X and T : C → C be an α-nonexpansive mapping for
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some α < 1. If {xn} is a sequence in C such that d(Txn, xn) → 0 and
∆- lim

n→∞
xn = z for some z in X then z ∈ C and Tz = z.

Proof. It follows from Lemma 1.10 that z ∈ C. Let 0 ≤ α < 1. By
Lemma 2.2(i), we deduce that

d(xn, T z)
2 ≤ 1 + α

1− α
d(xn, Txn)2

+
2

1− α
{αd(xn, z) + d(Txn, T z)}d(xn, Txn) + d(xn, z)

2

for all n in N . Thus we have lim
n→∞

sup d(xn, T z) ≤ lim
n→∞

sup d(xn, z). Let

α < 0. Then by Lemma 2.2(ii), we have

d(xn, T z)
2 ≤ d(xn, Txn)2

+
2

1− α
{(−α)d(Txn, z) + d(Txn, T z)}d(xn, Txn) + d(xn, z)

2

for all n in N . This implies again that

lim
n→∞

sup d(xn, T z) ≤ lim
n→∞

sup d(xn, z).

By the uniqueness of asymptotic centers, Tz = z.

Lemma 2.4 Let C be a nonempty closed and convex subset of a CAT (0)
space X and T : C → C be an α-nonexpansive mapping for some α < 1.
Let a sequence {xn} with x1 in C be defined by (1.5) such that {αn}, {βn},
{γn} are arbitrary sequences of positive numbers in [0, 1]. Let p ∈ F (T ).
Then the following assertions hold:

(i) max{d(xn+1, p), d(yn, p)} ≤ d(xn, p) for n = 1, 2, . . . .
(ii) lim

n→∞
d(xn, p) exists.

(iii) lim
n→∞

d(xn, F (T )) exists.

109



Proof. Consider

d(yn, p) = d(βnTzn ⊕ (1− βn)zn, p)

≤ βnd(Tzn, p) + (1− βn)d(zn, p)

≤ βnd(zn, p) + (1− βn)d(zn, p)

= d(zn, p)

= d(γnTxn ⊕ (1− γn)xn, p)

≤ γnd(Txn, p) + (1− γn)d(xn, p)

≤ γnd(xn, p) + (1− γn)d(xn, p)

= d(xn, p).

Consequently,

d(xn+1, p) = d(αnTyn ⊕ (1− αn)yn, p)

≤ αnd(Tyn, p) + (1− αn)d(yn, p)

≤ αnd(yn, p) + (1− αn)d(yn, p)

= d(yn, p)

≤ d(xn, p).

This implies that {d(xn, p)} is a bounded and non-increasing sequence.
Thus lim

n→∞
d(xn, p) exists. In the same manner, we see that {d(xn, F (T ))}

is also a bounded non-increasing real sequence and thus converges.

Lemma 2.5 Let C be a nonempty closed and convex subset of a CAT (0)
space X and T : C → C be an α-nonexpansive mapping for some α < 1.
Let a sequence {xn} with x1 in C be defined by (1.5) such that {αn}, {βn},
{γn} are arbitrary sequences of positive numbers in [0, 1]. Let p ∈ F (T ).
Then lim

n→∞
d(Txn, xn) = 0.
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Proof. From the above Lemma 2.4(iii), lim
n→∞

d(xn, F (T )) exists.

Let p ∈ F (T ) and

lim
n→∞

d(xn, p) = c . (2.1)

Now we prove that lim
n→∞

d(yn, p) = c.

Since d(xn+1, p) ≤ d(yn, p). This implies

lim
n→∞

d(xn+1, p) ≤ lim
n→∞

d(yn, p) or c ≤ lim
n→∞

d(yn, p). (2.2)

But d(yn, p) ≤ d(xn, p). This implies

lim
n→∞

sup d(yn, p) ≤ c. (2.3)

From (2.2) and (2.3), we get

lim
n→∞

d(yn, p) = c . (2.4)

Similarly we can get

lim
n→∞

d(zn, p) = c . (2.5)

Now

d(zn, p)
2 = d(γnTxn ⊕ (1− γn)xn, p)

2

≤ γnd(Txn, p)
2 + (1− γn)d(xn, p)

2 − γn(1− γn)d(Txn, xn)2

≤ d(xn, p)
2 − γn(1− γn)d(Txn, xn)2.

Thus
γn(1− γn)d(Txn, xn)2 ≤ d(xn, p)

2 − d(zn, p)
2,

so that

d(Txn, xn)2 ≤ 1

γn(1− γn)
[d(xn, p)

2 − d(zn, p)
2].

By (2.1) and (2.5), lim sup d(Txn, xn) ≤ 0 and hence lim
n→∞

d(Txn, xn) = 0.

Theorem 2.6 Let C be a nonempty closed convex subset of a complete
CAT (0) space X and T : C → C be an α-nonexpansive mapping with
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F (T ) 6= φ. Let {αn}, {βn} and {γn} be sequences in [0, 1]. From arbitrary
x1 ∈ C, define the sequence {xn} by the recursion (1.5). Then {xn} ∆-
converges to a fixed point of T .

Proof. It follows from Lemma 2.5 that lim
n→∞

d(Txn, xn) = 0. We now let

ωw(xn) = ∪A({un}) where the union is taken over all subsequences {un}
of {xn}. We claim that ωw(xn) ⊆ F (T ). Let u ∈ ωw(xn), then there exists
a subsequence {un} of {xn} such that A({un}) = {u}. By Lemmas 1.9,
1.10, there exists a subsequence {vn} of {un} such that ∆-lim

n
vn = v ∈ C.

Since lim
n
d(vn, T vn) = 0, then v ∈ F (T ) by Lemma 2.3. We claim that

u = v. Suppose not, by the uniqueness of asymptotic centers,

lim
n

sup d(vn, v) < lim
n

sup d(vn, u)

≤ lim
n

sup d(un, u)

= lim
n

sup d(un, v)

= lim
n

sup d(xn, v)

= lim
n

sup d(vn, v),

which is a contradiction and hence u = v ∈ F (T ). To show that {xn}
∆-converges to a fixed point of T , it suffices to show that ωw(xn) consists
of exactly one point. Let {un} be a subsequence of {xn}. By Lemmas 1.9,
1.10, there exists a subsequence {vn} of {un} such that ∆-lim

n
vn = v ∈ C.

Let A({un}}) = {u} and A({xn}) = {x}. We have seen that u = v and
v ∈ F (T ). We can complete the proof by showing that x = v. If not, since
{d(xn, v)} is convergent, then by the uniqueness of asymptotic centers,

lim
n

sup d(vn, v) < lim
n

sup d(vn, v)

≤ lim
n

sup d(xn, x)

< lim
n

sup d(xn, v)

≤ lim
n

sup d(vn, x)

which is a contradiction and hence the conclusion follows.
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Remark 2.7 As we know that Thianwan’s iteration is the special case
for SP-iteration for γn = 0. So, the above ∆-convergence result is also
hold for Thianwan’s iterative process.
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