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Abstract

Suppose K is a nonempty closed convex subset of a complete CAT (0) space
X with the nearest point projection P from X onto K. Let T : K → X be a
nonself mapping, satisfying condition (C) with F (T ) := {x ∈ K : Tx = x} 6= ∅.
Suppose {xn} is generated iteratively by x1 ∈ K, xn+1 = P ((1 − αn)xn ⊕
αnTP [(1− βn)xn ⊕ βnTxn]),n ≥ 1, where {αn} and {βn} are real sequences in
[ε, 1 − ε] for some ε ∈ (0, 1). Then {xn} is ∆−convergence to some point x∗ in
F (T ). This work extends a result of Laowang and Panyanak [5] to the case of
generalized nonexpansive nonself mappings.
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1 Introduction

In 2010 Laowang and Panyanak [5] studied the iterative scheme define as follows:
Let K is a nonempty closed convex subset of a complete CAT (0) space X with the
nearest point projection P from X onto K and T : K → X be a nonexpansive nonself
mapping with nonempty fixed point set,and if {xn} is generated iteratively by

x1 ∈ K, xn+1 = P ((1− αn)xn ⊕ αnTP [(1− βn)xn ⊕ βnTxn]), (1.1)
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where {αn} and {βn} are real sequences in [ε, 1− ε] for some ε ∈ (0, 1). Then {xn} is
∆−convergence to a fixed point of T . In this paper we extend the result of Laowang
and Panyanak to the case of generalized nonexpansive nonself mappings.

Let K be a nonempty subset of a CAT (0) space X and let T : K → X be a
mapping. A point x ∈ K is called a fixed point of T if x = Tx. We shall denote
by F (T ) the set of fixed points of T . T is called nonexpansive if for each x, y ∈ K,
d(Tx, Ty) ≤ d(x, y).

In 2008, suzuki [6] introduced condition (C): T is said to satisfy condition (C) if
1
2d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ d(x, y) for all x, y ∈ K.

Proposition 1.1. [7, Proposition 1.1] Every nonexpansive mapping satisfies condi-
tion (C), but the inverse is not true.

Let (X, d) be a metric space. A geodesic path joining x ∈ X to y ∈ X (or, more
briefly, a geodesic from x to y) is a map c from a closed interval [0, l] ⊂ R to X such
that c(0) = x, c(l) = y and d(c(t), c(t′)) = |t− t′| for all t, t′ ∈ [0, l]. In particular, c is
an isometry and d(x, y) = l. The image α of c is called a geodesic ( or metric) segment
joining x and y. When it is unique, this geodesic is denoted by [x, y]. The space (X, d)
is said to be a geodesic space if every two points of X are joined by a geodesic, and
X is said to be uniquely geodesic if there is exactly one geodesic joining x to y, for
each x, y ∈ X. A subset Y ⊂ X is said to be convex if Y includes every geodesic
segment joining any two of its points. A geodesic triangle ∆(x1, x2, x3) in a geodesic
metric space (X, d) consists of three points in X (the vertices of ∆) and a geodesic
segment between each pair of vertices (the edges of ∆). A comparison triangle for
geodesic triangle ∆(x1, x2, x3) in (X, d) is a triangle ∆̄(x1, x2, x3) := ∆(x̄1, x̄2, x̄3)
in the Euclidean plane E2 such that dE2(x̄i, x̄j) = d(xi, xj) for i, j ∈ {1, 2, 3}. A
geodesic metric space is said to be a CAT (0) space (see [1]), if all geodesic triangles
of appropriate size satisfy the following comparison axiom. Let ∆ be a geodesic
triangle in X and let ∆̄ be a comparison triangle for ∆. Then ∆ is said to satisfy the
CAT (0) inequality if for all x, y ∈ ∆ and all comparison points x̄, ȳ ∈ ∆̄,

d(x, y) ≤ dE2(x̄, ȳ). (1.2)

If x, y1, y2 are points in a CAT (0) space and if y0 is the midpoint of the segment
[y1, y2], then the CAT (0) inequality implies

d(x, y0)2 ≤ 1

2
d(x, y1)2+

1

2
d(x, y2)2−1

4
d(y1, y2)2 (CN)

In fact [1, page 163], a geodesic space is a CAT (0) space if and only if it satisfies
the (CN) inequality.

Proposition 1.2. [6, Proposition 2.2] Let K be a bounded closed convex subset of a
complete CAT (0) space X and T : K → X satisfies condition (C). then

d(x, Ty) ≤ 3d(Tx, x) + d(x, y)

holds, for all x, y ∈ K.
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Lemma 1.3. Let (X, d) be a CAT (0) space.

1. [1, Proposition 2.4] Let K be a convex subset of X which is complete in the
induced metric. Then for every x ∈ X, there exists a unique point P (x) ∈ K
such that d(x, P (x)) = inf{d(x, y) : y ∈ K}. Moreover, the map x → P (x) is a
nonexpansive retract from X onto K.

2. [3, Lemma 2.1(iv)] For x, y ∈ X and t ∈ [0, 1], there exists a unique point
z ∈ [x, y] such that

d(x, z) = td(x, y), d(y, z) = (1− t)d(x, y)

one uses the notation (1− t)x⊕ ty for the unique point z.

3. [3, Lemma 2.4] For x, y, z ∈ X and t ∈ [0, 1], one has

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

4. [3, Lemma 2.5] For x, y, z ∈ X and t ∈ [0, 1], one has

d((1− t)x⊕ ty, z)2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2.

Let {xn} be a bounded sequence in a CAT (0) space X. For x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius

r({xn}) = inf{r(x, {xn}) : x ∈ X},

and the asymptotic center A({xn}) of {xn} is the set

A({xn}) = {x ∈ X : r(x, {xn}) = r({xn})}.

It is known [2, Proposition 7] that in a CAT (0) space, A({xn}) consists of exactly
one point.

Definition 1.4. [4, Definition 3.1] A sequence {xn} in a CAT (0) space X is said
to ∆−convergence to x ∈ X if x is the unique asymptotic center of {un} for every
subsequence {un} of {xn}. In this case one writes ∆ − limn xn = x and call x the
∆− lim of {xn}.

Lemma 1.5. Let (X, d) be a CAT (0) space.

1. [4, p. 3690] Every bounded sequence in X has a ∆−convergent subsequence.

2. [8, Proposition 2.1] If K is a closed convex subset of X and if {xn} is a bounded
sequence in K, then the asymptotic center of {xn} is in K.

3. [3, Lemma 2.8] If {xn} is a bounded sequence in X with A({xn}) = {x} and
{un} is a subsequence of {xn} with A({un}) = {u} and the sequence {d(xn, u)}
converges, then x = u.
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2 Main results

The following lemma was proved by Dhompongsa and Panyanak in the case of non-
expansive mappings(see [3, Lemma 2.10]).

Lemma 2.1. Let K be a nonempty closed convex subset of a complete CAT (0) space
X, and let T : K → X be a nonself mapping, satisfying condition (C). Suppose
{xn} is a bounded below sequence in K such that limn d(xn, Txn) = 0 and {d(xn, v)}
converges for all v ∈ F (T ), then ωw(xn) ⊂ F (T ). Here ωw(xn) :=

⋃
A({un}) where

the union is taken over all subsequences {un} of {xn}. Moreover, ωw(xn) consists of
exactly one point.

Proof. Let u ∈ ωw(xn), then there exists a subsequence {un} of {xn} such that
A({un}) = {u}. By part (1) and (2) Lemma 1.5, there exists a subsequence {vn} of
{un} such that ∆− limnvn = v ∈ K. We show v ∈ F (T ). In order to prove this, by
the condition (C),

d(xn, T v) ≤ 3d(Txn, xn) + d(xn, v).

Therefore

lim supn d(xn, T v) ≤ lim supn(3d(Txn, xn) + d(xn, v))
= lim supn d(xn, v).

The uniqueness of asymptotic center, imply v ∈ K and T (v) = v. By part (3) Lemma
1.5, u = v. Therefore ωw(xn) ⊂ F (T ). Let {un} be a subsequence of {xn} with
A({un}) = {u} and A({xn}) = {x}. Since u ∈ ωw(xn) ⊂ F (T ), {d(xn, v)} converges.
By part (3) Lemma 1.5, x = u. This shows that ωw(xn) consists of exactly one
point.

Theorem 2.2. Let K be a nonempty closed convex subset of a complete CAT (0)
space X, and T : K → X be a nonself mapping, satisfying condition (C) with x∗ ∈
F (T ) = {x ∈ K : Tx = x}. Let {αn} and {βn} be sequences in [ε, 1 − ε] for some
ε ∈ (0, 1). Starting from arbitrary x1 ∈ K, define the sequence {xn} by xn+1 =
P ((1− αn)xn ⊕ αnTP [(1− βn)xn ⊕ βnTxn]),n ≥ 1. then limn→∞ d(xn, x

∗) exists.

Proof. By part (1) of Lemma 1.3, the nearest point projection P from X onto K is
nonexpansive. Then

d(xn+1, x
∗) = d(P ((1− αn)xn ⊕ αnTP [(1− βn)xn ⊕ βnTxn]), Px∗)
≤ d((1− αn)xn ⊕ αnTP [(1− βn)xn ⊕ βnTxn], x∗)
≤ (1− αn)d(xn, x

∗) + αnd(TP [(1− βn)xn ⊕ βnTxn], Tx∗)
= (1− αn)d(xn, x

∗) + αnd(TP [(1− βn)xn ⊕ βnTxn], x∗)
≤ (1− αn)d(xn, x

∗) + αn(3d(Tx∗, x∗) + d(P [(1− βn)xn ⊕ βnTxn], x∗))
≤ (1− αn)d(xn, x

∗) + αn[(1− βn)d(xn, x
∗) + βnd(Txn, Tx

∗)]
≤ (1− αn)d(xn, x

∗) + αn[(1− βn)d(xn, x
∗) + βnd(xn, x

∗)]
= d(xn, x

∗).
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Consequently we have for all n ∈ N ,

d(xn, x
∗) ≤ d(x1, x

∗).

This implies that {d(xn, x
∗)}∞n=1 is bounded and decreasing. Hence limn→∞ d(xn, x

∗)
exists.

Theorem 2.3. Let K be a nonempty closed convex subset of a complete CAT (0) space
X, and T : K → X be a nonself mapping, satisfying condition (C) with F (T ) 6= ∅. Let
{αn} and {βn} be sequences in [ε, 1 − ε] for some ε ∈ (0, 1). Starting from arbitrary
x1 ∈ K, define the sequence {xn} by xn+1 = P ((1 − αn)xn ⊕ αnTP [(1 − βn)xn ⊕
βnTxn]),n ≥ 1. then limn→∞ d(xn, Txn) = 0.

Proof. Let x∗ ∈ F (T ). Then by Theorem 2.2, limn→∞ d(xn, x
∗) exists. Let

lim
n→∞

d(xn, x
?) = r.

If r = 0 then by the condition (C), we have

d(xn, Txn) ≤ d(x∗, xn) + d(x∗, Txn)

≤ d(x∗, xn) + 3d(x∗, Tx∗) + d(x∗, xn)

Therefore limn→∞ d(xn, Txn) = 0.
If r > 0, we let yn = P [(1−βn)xn⊕βnTxn]. By part (4) of Lemma 1.3 and condition
(C), we have

d(yn, x
∗)2 = d(P [(1− βn)xn ⊕ βnTxn], Px∗)2

≤ d((1− βn)xn ⊕ βnTxn], x∗)2

≤ (1− βn)d(xn, x
∗)2 + βnd(Txn, x

∗)2 − βn(1− βn)d(xn, Txn)2

≤ (1− βn)d(xn, x
∗)2 + βnd(Txn, x

∗)2

= (1− βn)d(xn, x
∗)2 + βnd(Txn, Tx

∗)2

≤ (1− βn)d(xn, x
∗)2 + βn(3d(Tx∗, x∗) + d(xn, x

∗))2

= d(xn, x
∗)2

Therefore
d(yn, x

∗) ≤ d((1− βn)xn ⊕ βnTxn], x∗) ≤ d(xn, x
∗) (2.1)

By part (4) of Lemma 1.3, we have

d(xn+1, x
∗)2 = d(P [(1− αn)xn ⊕ αnTyn], Px∗)2

≤ d((1− αn)xn ⊕ αnTyn, x
∗)2

≤ (1− αn)d(xn, x
∗)2 + αnd(Tyn, x

∗)2 − αn(1− αn)d(xn, T yn)2

≤ (1− αn)d(xn, x
∗)2 + αn(3d(Tx∗, x∗) + d(yn, x

∗))2

−αn(1− αn)d(xn, Tyn)2

= (1− αn)d(xn, x
∗)2 + αnd(yn, x

∗)2 − αn(1− αn)d(xn, Tyn)2

≤ (1− αn)d(xn, x
∗)2 + αnd(xn, x

∗)2 − αn(1− αn)d(xn, T yn)2

= d(xn, x
∗)2 − αn(1− αn)d(xn, Tyn)2.
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Therefore

d(xn+1, x
∗)2 ≤ d(xn, x

∗)2 −W (αn)d(xn, T yn)2,

where W (α) = α(1− α). Since α ∈ [ε, 1− ε], W (αn) ≥ ε2. Therefore

ε2
∞∑

n=1

d(xn, Tyn)2 ≤ d(x1, x
∗)2 <∞.

This implies limn→∞ d(xn, T yn) = 0. By the condition (C), we have

d(xn, x
∗) ≤ d(xn, T yn) + d(Tyn, x

∗)
≤ d(xn, T yn) + 3d(Tx∗, x∗) + d(yn, x

∗)
= d(xn, T yn) + d(yn, x

∗).

Hence

r ≤ lim inf
n→∞

d(yn, x
∗).

On the other hand, from (2.1), we have

lim sup
n→∞

d(yn, x
∗) ≤ r.

This implies limn→∞ d(yn, x
∗) = r. Thus from (2.1) we have

lim
n→∞

d((1− βn)xn ⊕ βnTxn], x∗) = r.

Since T satisfies in condition (C) we have

d(Txn, x
∗) ≤ 3d(Tx∗, x∗) + d(xn, x

∗)
= d(xn, x

∗)

Thus

lim sup
n→∞

d(Txn, x
∗) ≤ r.

Now, by [5, Lemma 2.9], limn→∞ d(xn, Txn) = 0.

Theorem 2.4. Let K be a nonempty closed convex subset of a complete CAT (0) space
X, and T : K → X be a nonself mapping, satisfying condition (C) with F (T ) 6= ∅. Let
{αn} and {βn} be sequences in [ε, 1 − ε] for some ε ∈ (0, 1). Starting from arbitrary
x1 ∈ K, define the sequence {xn} by xn+1 = P ((1 − αn)xn ⊕ αnTP [(1 − βn)xn ⊕
βnTxn]),n ≥ 1. then {xn} ∆− converges to some point x∗ in F (T ).

Proof. By Theorem 2.3, limn→∞ d(xn, Txn) = 0. It follows from the proof of the
Theorem 2.2 that {d(xn, v)} is bounded and decreasing for each v ∈ F (T ), and so it
is convergent. By Lemma 2.1, ωw(xn) consists exactly one point and is a fixed point
of T . Consequently the sequence {xn} ∆− converges to some point x∗ in F (T ).
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