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Abstract

In this paper, we prove the existence of the solution for boundary value prob-
lem(BVP) of fractional differential equations of order q ∈ (2, 3]. The Kras-
noselskii’s fixed point theorem is applied to establish the results. In addition,
we give an detailed example to demonstrate the main result.
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1 Introduction

Fractional differential equations are the generalization of ordinary differ-
ential equation to arbitrary non-integer order, and have received more
and more interest due to their wide applications in various sciences, such
as physics, chemistry, biophysics, capacitor theory, blood flow phenom-
ena, electrical circuits, control theory, etc, also recent investigations have
demonstrated that the dynamics of many systems are described more
accurately by using fractional differential equations. So fractional differ-
ential equations have attracted many authors.
In [1], Nickolai was concerned with the nonlinear differential equation of
fractional order

Dq
0+u(t) = f(t, u(t), u′(t)) a.e. t ∈ (0, 1),

where Dq
0+ is Riemann-Liouville(R-L) fractional order derivative, subject

to the boundary conditions u(0) = u(1) = 0. The author obtained the
existence of at least one solution by using the Leray-Schauder Continu-
ation Principle.
In [2], Zhang has given the existence of positive solution to the equation

cDqu(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) + u′(0) = u(1) + u′(1) = 0,

by the use of classical fixed point theorems, wherecDq denotes Caputo
fractional derivative with 1 < q ≤ 2. Very recently, Chen (see[3]) con-
sidered the existence of three positive solutions to three-point boundary
value problem of the following fractional differential equationDq

0+u(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, Dp
0+u(t) |t=1= αDp

0+u(t) |t=ξ,

where 1 < q ≤ 2, 0 < p < 1, 1 + p ≤ q, and Dq
0+ is the R-L fractional

order derivative. The multiplicity results of positive solutions to the equa-
tions are obtained by using the well-known Leggett-Williams fixed-point
theorem on a convex cone. The other excellent studies of fractional dif-
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ferential equations can be founded in [4–8].
Motivated by the paper mentioned above, we study the existence of pos-
itive solution to two-point BVP of nonlinear fractional equationDq

0+u(t) + λf(t, u(t)) = 0, 0 < t < 1,

u(0) = Dp
0+u(t) |t=0= Dp

0+u(t) |t=1= 0,
(1.1)

where q, p ∈ R, 2 < q ≤ 3, 1 < p ≤ 2, 1 + p ≤ q, Dq
0+ is the R-L

fractional order derivative, and f ∈ C([0, 1] × [0,∞), [0,∞)), λ > 0. By
using Krasnoselskii’s fixed point theorem, the positive solution to the
equations (1) is obtained.

2 Preliminaries

In this section, we present some definitions and preliminary results.

Definition 2.1 (see equation (2.1.1) in [4]) The R-L fractional integrals
Ip0+f of order p ∈ R (p > 0) is defined by

Ip0+f(x) :=
1

Γ(p)

∫ x

0

f(t)dt

(x− t)1−p , (x > 0).

Here Γ(p) is the Gamma function.

Definition 2.2 (see equation (2.1.5) in [4]) The R-L fractional deriva-
tive Dp

0+f of order p ∈ R (p > 0) is defined by

Dp
0+f(x) =(

d

dx
)nIn−p0+ f(x)

=
1

Γ(n− p)
(
d

dx
)n

∫ x

0

f(t)dt

(x− t)p−n+1
, (n = [p] + 1, x > 0),

where [p] means the integral part of p.
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Lemma 2.3 (see Lemma 2.4 and property 2.2 in [4]) If q1 > q2 > 0,
then, for f(x) ∈ Lp(0, 1), (1 ≤ p ≤ ∞), the relations

Dq2
0+I

q1
0+f(x) =Iq1−q20+ f(x),

Iq10+I
q2
0+f(x) = Iq1+q2

0+ f(x) and Dq1
0+I

q1
0+f(x) = f(x)

hold a.e. on [0,1].

Lemma 2.4 (see Lemma 2.5 in [4]) Let q > 0, n = [q] + 1, f(x) ∈
L1(0, 1), then the equality

Iq0+D
q
0+f(x) = f(x) +

n∑
i=1

Cit
q−n.

Lemma 2.5 Let y ∈ C[0, 1], 2 < q ≤ 3, 1 < p ≤ 2, 1 + p ≤ q, then the
problem

Dq
0+u(t) + y(t) = 0, 0 < t < 1, (2.1)

subject to the boundary conditions

u(0) = Dp
0+u(t) |t=0= Dp

0+u(t) |t=1= 0, (2.2)

has the unique solution u(t) =
∫ 1

0 G(t, s)ds, where

G(t, s) =
1

Γ(q)

 tq−1(1− s)q−p−1 − (t− s)q−1, 0 ≤ s ≤ t ≤ 1,

tq−1(1− s)q−p−1, 0 ≤ t ≤ s ≤ 1.

And that G(t, s) has the following properties
I) G(t, s) ∈ C([0, 1]×[0, 1]), and G(t, s) > 0 for t, s ∈ (0, 1), and max

0≤t≤1
G (t, s)

=G(s, s), s ∈ (0, 1).
II)There exists a positive function ϕ ∈ C((0, 1)× (τ,+∞)) such that

min
1
4
≤t≤ 3

4

G (t, s) = ϕ(s)G̃(s, s) ≥ inf
0<s<1

ϕ (s) max
0≤t≤1

G (t, s) = τG(s, s),

where

G̃(s, s) =
sq−p(1− s)q−p−1

Γ(q)
, s, τ ∈ (0, 1), τ = inf

0<s<1
ϕ (s) .
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Proof. Applying the operator Iq0+ to both sides of the equation (2), and
using Lemma 2, we have

u(t) = −Iq0+y(t) + C1t
q−1 + C2t

q−2 + C3t
q−3. (2.3)

In view of the boundary condition u(0) = 0, we find that C3 = 0, hence

u(t) = −Iq0+y(t) + C1t
q−1 + C2t

q−2,

then, noting the relationDq2
0+I

q1
0+f(x) = Iq1−q20+ f(x) in Lemma 1, we obtain

Dp
0+u(t) = −Iq−p0+ y(t) + C1

Γ(q)

Γ(q − p)
tq−p−1 + C2

Γ(q − 1)

Γ(q − p− 1)
tq−p−2,

in accordance with the equations (3) ,we can calculate out that

C1 =
1

Γ(q)

∫ 1

0
(1− s)q−p−1y(s)ds, C2 = 0.

Substituting the values of C1,C2 and C3 in (4), we have

u(t) =− 1

Γ(q)

∫ t

0
(t− s)q−1y(s)ds+

tq−1

Γ(q)

∫ 1

0
(1− s)q−p−1y(s)ds

=
1

Γ(q)
{
∫ t

0
[tq−1(1− s)q−p−1 − (t− s)q−1]y(s)ds

+
∫ 1

t
[tq−1(1− s)q−p−1]y(s)ds}

=
∫ 1

0
G(t, s)y(s)ds.

Next we prove the properties of G(t, s).
For a given s ∈ (0, 1), G(t, s) is decreasing with respect to t for s ≤ t
while increasing for t ≤ s. Thus, we have

max
0≤t≤1

G (t, s) = G(s, s) =
sq−1(1− s)q−p−1

Γ(q)
≤ sq−p(1− s)q−p−1

Γ(q)
= G̃(s, s),

for s ∈ (0, 1). Then we set

g1(t, s) =
tq−1(1− s)q−p−1 − (t− s)q−1

Γ(q)
, g2(t, s) =

tq−1(1− s)q−p−1

Γ(q)
,
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from the two equation above we have

min
1
4
≤t≤ 3

4

G (t, s) =
1

Γ(q)

 0.75q−1(1− s)q−p−1 − (0.75− s)q−1, 0 < s ≤ r,

0.25q−1(1− s)q−p−1, r ≤ s < 1,

where 1
4
< r < 3

4
is the unique solution of the equation

0.75q−1(1− s)q−p−1 − (0.75− s)q−1 = 0.25q−1(1− s)q−p−1.

Finally, we consider a function ϕ(s) defined by

ϕ(s) =

min
1
4
≤t≤ 3

4

G (t, s)

G̃(s, s)
=


0.75q−1(1−s)q−p−1−(0.75−s)q−1

sq−p(1−s)q−p−1 , 0 < s ≤ r,

0.25q−1

sq−p , r ≤ s < 1.

When q > p−1 we find from the continuity of ϕ(s) and lim
s→0+

ϕ (s) = +∞
that there exists r̃ small enough such that ϕ′(s) < 0 for s ∈ (0, r̃], hence,
we set

0 < τ = inf
0<s<1

ϕ (s) = min{ϕ(r̃),m,
1

4q−1
} < 1,

here, m = min
r̃≤s≤r

ϕ (s).

When q = p− 1, we have lim
s→0+

ϕ (s) = 4
3
(q − 1), then we set

0 < τ = inf
0<s<1

ϕ (s) = min{ inf
0<s≤r

ϕ (s) ,
4

3
(q − 1),

1

4q−1
} < 1.

Thus,

min
1
4
≤t≤ 3

4

G (t, s) ≥ ϕ(s)G̃(s, s) ≥ inf
0<s<1

ϕ (s) max
0≤t≤1

G (t, s) = τG(s, s).

This completes the proof. Therefore, the solution u ∈ C[0,1] of the problem
(1) can be written by

u(t) = λ
∫ 1

0
G(t, s)f(s, u(s))ds.

Lemma 2.6 (see[9]) Let E be a Banach space and P ⊂ E is a cone
in E. Assume that Ω1 and Ω2 are open subsets of E with 0 ∈ Ω1 and
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Ω1 ⊂ Ω2. Let A : P ∩ (Ω2\Ω1)→ P be a completely continuous operator.
In addition suppose either
(1) ‖Au‖ ≤ ‖u‖, ∀u ∈ P ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖, ∀u ∈ P ∩ ∂Ω2 or
(2) ‖Au‖ ≤ ‖u‖, ∀u ∈ P ∩ ∂Ω2 and ‖Au‖ ≥ ‖u‖, ∀u ∈ P ∩ ∂Ω1

holds. Then A has a fixed point in P ∩ (Ω2\Ω1).
Define P to be a cone in C[0,1](with norm ‖u‖ = max

0≤t≤1
|u (t) |) by

P = {u ∈ C[0,1] | u(t) ≥ 0, t ∈ [0, 1] and min
1
4
≤t≤ 3

4

u (t) ≥ τ‖u‖},

and the operator A : P → C[0,1] by

Au(t) = λ
∫ 1

0
G(t, s)f(s, u(s))ds. (2.4)

Lemma 2.7 If A is defined by (5), then A : P → P is completely con-
tinuous. Proof. First, assume that f ∈ C([0, 1] × [0,∞), [0,∞)), u ∈ P ,
and from Lemma 3, we have

min
1
4
≤t≤ 3

4

Au (t) = min
1
4
≤t≤ 3

4

λ
∫ 1

0
G(t, s)f(s, u(s))ds

≥ max
0≤t≤1

λ
∫ 1

0
inf

0<s<1
ϕ (s)G(t, s)f(s, u(s))ds

= τ max
0≤t≤1

λ
∫ 1

0
G(t, s)f(s, u(s))ds

= τ‖Au(t)‖,

thus A : P → P .
Second, ∀N > 0, Let Ω = {Ω ⊂ P : ‖u‖ ≤ N, u ∈ Ω}, M = max

(t,u)∈[0,1]×[0,N ]
f(t, u(t)),

and noting the property (II) of G(t, s), we can easily obtain A(Ω) is
bounded.
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Third, for each u ∈ Ω, let t1, t2 ∈ [0, 1] such that t1 < t2, then we have

|Au(t2)− Au(t1)| =λ|
∫ 1

0
G(t2, s)f(s, u(s))ds−

∫ 1

0
G(t1, s)f(s, u(s))ds|

=
λ

Γ(q)
|
∫ t1

0
{[tq−1

2 (1− s)q−p−1 − (t2 − s)q−1]

− [tq−1
1 (1− s)q−p−1 − (t1 − s)q−1]}f(s, u(s))ds

+
∫ t2

t1
{[tq−1

2 (1− s)q−p−1 − (t2 − s)q−1]

− tq−1
1 (1− s)q−p−1}f(s, u(s))ds

+
∫ 1

t2
[tq−1

2 (1− s)q−p−1 − tq−1
1 (1− s)q−p−1]f(s, u(s))ds|

<
λ

Γ(q)

∫ 1

0
(tq−1

2 − tq−1
1 )(1− s)q−p−1f(s, u(s))ds

<
λM

Γ(q)
(tq−1

2 − tq−1
1 )

∫ 1

0
(1− s)q−p−1ds

=
λM

Γ(q)(q − p)
(tq−1

2 − tq−1
1 )

=
λM(q − 1)

Γ(q)(q − p)
[t1 + θ(t2 − t1)]q−2(t2 − t1), (0 < θ < 1)

<
λM(q − 1)

Γ(q)(q − p)
2q−2(t2 − t1).

Thus, ∀ε > 0, ∃δ = ε Γ(q)(q−p)
2q−2λM(q−1)

, we have |Au(t2) − Au(t1)| < ε for

t2−t1 < δ. Therefore, A(Ω) is equivalent-continuous, so the Arzela-Ascoli
theorem implies that the operator A : P → P is completely continuous.
This completes the proof.

3 Main Results

In this section, we study the existence of the positive solution to BVP of
equations (1). Suppose

(H1) lim
u→0+

sup
0≤t≤1

f(t, u)

u
= 0, (H2) lim

u→+∞
inf

0≤t≤1

f(t, u)

u
= +∞,
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(H3) lim
u→0+

inf
0≤t≤1

f(t, u)

u
= +∞, (H4) lim

u→+∞
sup

0≤t≤1

f(t, u)

u
= 0.

Theorem 3.1 If (H1) and (H2) hold, then for all λ > 0, the equations
(1) have a positive solution.

Theorem 3.2 If (H3) and (H4) hold, then for all λ > 0, the equations
(1) have a positive solution.

The Proof of Theorem 1. From (H1), there exists L1 ∈ (0, 1) such that
f(t, u) ≤ η1u for (t, u) ∈ [0, 1]×(0, L1], where η1 > 0 satisfying λη1

∫ 1
0 G(s, s)ds ≤

1. Then let Ω1 = {u ∈ P : ‖u‖ < L1}, ∂Ω1 = {u ∈ P : ‖u‖ = L1}, for
u ∈ ∂Ω1, we have

Au(t) = λ
∫ 1

0
G(t, s)f(s, u(s))ds

≤ λ max
0≤t≤1

∫ 1

0
G(t, s)f(s, u(s))ds

≤ λη1

∫ 1

0
G(s, s)u(s)ds

≤ λη1

∫ 1

0
G(s, s)ds‖u‖ ≤ ‖u‖,

which implies that

‖Au‖ ≤ ‖u‖, for u ∈ ∂Ω1. (3.1)

On the other hand, from (H2), there exists L2 > L1 such that f(t, u) ≥
η2u for (t, u) ∈ [0, 1]×[L2,∞), where η2 > 0 satisfying λη2τ

2
∫ 3

4
1
4

G(s, s)ds ≥
1. Then let Ω2 = {u ∈ P : ‖u‖ < L2}, ∂Ω2 = {u ∈ P : ‖u‖ = L2}, for
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u ∈ ∂Ω2, we have

min
1
4
≤t≤ 3

4

Au (t) = min
1
4
≤t≤ 3

4

λ
∫ 1

0
G(t, s)f(s, u(s))ds

≥λτ
∫ 1

0
G(s, s)f(s, u(s))ds

≥λτη2

∫ 1

0
G(s, s)u(s)ds

≥λτη2

∫ 3
4

1
4

G(s, s)u(s)ds

≥λτ 2η2

∫ 3
4

1
4

G(s, s)ds‖u‖ ≥ ‖u‖,

which implies that

‖Au‖ ≥ ‖u‖, for u ∈ ∂Ω2. (3.2)

Then from (6), (7) and Lemma 4, the operator A has a fixed point in
P ∩ (Ω2\Ω1).
The Proof of Theorem 2. By the similar method of the proof of Theorem
1, we can easily obtain Ω3 = {u ∈ P : ‖u‖ < L3}, ∂Ω3 = {u ∈ P : ‖u‖ =
L3}, and Ω4 = {u ∈ P : ‖u‖ < L4}, ∂Ω4 = {u ∈ P : ‖u‖ = L4}, and
satisfying

‖Au‖ ≥ ‖u‖, for u ∈ ∂Ω3, (3.3)

and
‖Au‖ ≤ ‖u‖, for u ∈ ∂Ω4, (3.4)

respectively. Then from (8), (9) and Lemma 4, we obtain a fixed point
of operator A in P ∩ (Ω4\Ω3).

4 Example

We consider the following problemD
5
2
0+u(t) + (t+ 1)u2 = 0, 0 < t < 1,

u(0) = D
3
2
0+u(t) |t=0= D

3
2
0+u(t) |t=1= 0.

(4.1)
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Then f(t, u) = (t+1)u2, λ = 1, and lim
u→0+

sup
0≤t≤1

(t+ 1)u2

u
= 0, lim

u→+∞
inf

0≤t≤1

(t+ 1)u2

u
=

∞, so the condition (H1) and (H2) hold. On the other hand, substituting
the equations q = 5

2
and p = 3

2
in G(t, s) and ϕ(s), we have

G(t, s) =
1

Γ(5
2
)

 t
3
2 − (t− s) 3

2 , 0 ≤ s ≤ t ≤ 1,

t
3
2 , 0 ≤ t ≤ s ≤ 1,

and

ϕ(s) =


(0.75)

3
2−(0.75−s)

3
2

s
, 0 < s ≤ r,

(0.25)
3
2

s
, r ≤ s < 1,

where r is the unique solution of the equation

(0.75)
3
2 − (0.75− s)

3
2 = (0.25)

3
2 .

By calculating the minimum of ϕ(s), we obtain τ = 1
8
. Thus, we set L1 =

1
2
, η1 = 2 ≤ 1∫ 1

0
G(s,s)ds

= 5
2
Γ(5

2
), then f(t, u) = (t+ 1)u2 ≤ 2u2 ≤ η1u, for

(t, u) ∈ [0, 1]× [0, L1]. Therefore, we derive

Ω1 = {u ∈ P : ‖u‖ < 1

2
}. (4.2)

Next we set L2 =
5120Γ( 5

2
)

3
5
2−1

, η2 ≥ 1

τ2
∫ 0.75

0.25
G(s,s)ds

=
5120Γ( 5

2
)

3
5
2−1

, then f(t, u) =

(t+ 1)u2 ≥ u2 ≥ η2u, for (t, u) ∈ [0, 1]× [L2,+∞). Therefore, we derive

Ω2 = {u ∈ P : ‖u‖ <
5120Γ(5

2
)

3
5
2 − 1

}. (4.3)

According to (11) and (12), from Theorem 1, we obtain a positive solution

u of (10) such that 1
2
≤ ‖u‖ ≤ 5120Γ( 5

2
)

3
5
2−1

.
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