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ABSTRACT

Fuzzy integral equations play a fundamental role in the many fields of engineering and ap-

plied mathematics. The paper presented, a new type of fuzzy Volterra integral equations of

the second kind with nonlinear fuzzy kernels. Numerical solutions of a new type of nonlinear

fuzzy Volterra integral equations with nonlinear fuzzy kernels through Variational Homotopy

perturbation (VHP) method based on the parametric form of a fuzzy number,is investigated.

To find the approximate solution and to get an approximation for fuzzy solution of the new

type of nonlinear fuzzy Volterra integral equations the VHPM is applied and it is shown that

VHPM is an effective and reliable approach to solve these equations. Finally, a few numer-

ical examples are given and results unfold that VHPM is very close to exact solutions. The

obtained approximate solutions are contrasted with the exact solution and absolute error be-

tween obtaining numerical results and an exact solution are found. One of the examples shows

a comparison between VHPM and HPM.

1 Introduction
Studying of fuzzy integral equations is important in great topics for many problems in applied mathematics, such
as physics, mechanics, geography, medical and fuzzy control. A large class of initial value and boundary differ-
ential equations can be converted to partial differential equations or Volterra integral equations. The numerical
methods are usually applied for solving nonlinear equations. Some of these numerical methods have high accura-
cies such as Adomian decomposition method, Variational iteration method and Homotopy perturbation method.
Homotopy perturbation method (HPM) is a technique that introduced and improved by He and used for nonlin-
ear problems [11]. This method has a very high convergency rate in most cases, few iterations lead to approximate
solutions with low errors [13–15]. Variational iteration method (VIM) is an analytical scheme to use it for nonlin-
ear problems and give approximate solutions closed to the exact solutions [12, 16]. The Adomian decomposition
method (ADM) was presented by Adomian that is a semi-analytical technique for solving nonlinear equations
by using of series [1, 2]. Variational Homotopy Perturbation method (VHPM) which proffered bases on HPM
and VIM by applying ADM in nonlinear terms [13, 14]. Some numerical methods used for solving fuzzy Volterra
integral equations of the second kind studied by many researchers will be expressed in following:

Jafarian and et. al in [19], solved fuzzy Volterra integral equations by the Taylor expansion method in system
terms. Variational iteration method and Homotopy perturbation method utilized to solve Volterra integral equa-
tions by Mirzaei, [25]. Nonlinear fuzzy Volterra integral equations of the second kind were solved with applying
Nystorm techniques by Salehi and Nejatian in [30]. Fuzzy Bernstein polynomials are used to solve fuzzy Volterra
integral equations of the second kind by Mosleh and Otadi in [23]. Fadravi et al. studied the solutions of fuzzy
Fredholm integral equations using neural networks, [18] and Bica and Popescu [5,6], applied successive
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approximationsmethod to find the solution of fuzzy Hammerstein-Volterra integral equation. Hassan studied
the numerical and analytical solution of fuzzy nonlinear integrals equations by the Homotopy analysis method,
[10]. Narayanamoorthy and Sathiyapriya applied theHomotopyPerturbationmethod to approximate the solution
of linear and nonlinear fuzzy Volterra integral equations of second kind, [26].

In all of the papers mentioned in above and in many others, the authors considered fuzzy integral equations
with one integral that is special manner of fuzzy integral equations that is presented in this article. This new
type of nonlinear fuzzy integral equations with nonlinear fuzzy kernels is appeared in transforming of differential
equations of n-th order with fuzzy initial values [29]. The paper is organized in below: In section 2, some basic
concepts reviewed briefly. In section 3, the new type of fuzzy integral equationwith nonlinear kernels is introduced
at the first time and the solution of it is found by used Variational Homotopy perturbation method. In 4, the
examples are presented to illustrate the method more and the results are presented in figures and tables. One of
the examples that is a special case of this new type of fuzzy integral equations is compared with HPM. Finally, in
section 5 a conclusion is drawn.

2 Basic concepts
The basic definitions of a fuzzy number are given in following:

Definition 2.1. [7] A fuzzy number is a fuzzy set like u : R→ [0, 1]which satisfies:

1. u is an upper semi-continuous function,

2. u(x) = 0 outside some interval [a,d],

3. There are two real numbers b, c such as a ≤ b ≤ c ≤ d and

3.a u(x) is a monotonic increasing function on [a, b],

3.b u(x) is a monotonic decreasing function on [c, d],

3.c u(x) = 1 for all x ∈ [b, c].

Theorem 2.1. [31] The metric space (PK(Rn), d) is separable and complete. Let I = [c, d] ⊂ R is a compact
interval and denote

En = {u : Rn → [0, 1] | u satisfies (i)− (iv) below}

where

(1) u is normal, i.e. there exists an x0 ∈ Rn such that u(x0) = 1,

(2) u is fuzzy convex

(3) u is upper semicontinuous,

(4) [u]0 = cl{x ∈ Rn|u(x) > 0} is compact.

For 0 < α ≤ 1 denote [u]α = {x ∈ Rn|u(x) ≥ α}, then from (1)-(4) it follows that the α-level set [u]α ∈ Pk(R
n) for

all 0 ≤ α ≤ 1.
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Definition 2.2. [32] If Ã = {(x, µÃ(x))|x ∈ X} is a fuzzy set on theX ∈ R, the α− cut of subsets of Ã is:

Ãα = {x ∈ X|µÃ(x) ≥ α}

that µÃ : X → [0, 1] is named membership functions of Ã. For α = 1, the 1-cut of Ã is named core of Ã.

Definition 2.3. [21] A mapping F : [a, b] → En is strongly measurable if for all α ∈ [0, 1] the set-valued
mapping Fα : I → PK(Rn) defined by

Fα(t) = [F (t)]α

is Lebesque measurable, when PK(Rn) is dedicated with the topology generated by the Hausdorff metric d.

Definition 2.4. [21] Let F : I → En. The integral of F over I, denoted by
∫
I F (t)dt, is defined level-wise by

the equation

(

∫
I
F (t)dt)α =

∫
I
Fα(t)dt = {f(t)dt | f : I → Rn is a measurable selection for Fα}

for all 0 < α ≤ 1. A strongly measurable and integrable bounded mapping F : I → En is integrable over I if∫
I F (t)dt ∈ En.

Theorem 2.2. [31] If f : [a, b] → En is integrable and c ∈ [a, b], λ ∈ R. Thus:
(i)

∫ t0+a
t0

F (t)dt =
∫ c
t0
F (t)dt+

∫ t0+a
c F (t)dt,

(ii)
∫
I(F (t) +G(t))dt =

∫
I F (t)dt+

∫
I G(t)dt,

(iii)
∫
I λF (t)dt = λ

∫
I F (t)dt,

(iv)D(F,G) is integrable,
(V)D(

∫
I F (t)dt,

∫
I G(t)dt) ≤

∫
I D(F,G)

3 A New Type Nonlinear Fuzzy Volterra Integral Equations and VHPM
Solution’s

In this section, a new type of fuzzy Volterra integral equation with nonlinear fuzzy kernels are introduced and
Variational Homotopy Perturbation Method is used to solve them. These nonlinear fuzzy integral equations can
be appeared in transforming N th-order fuzzy differential equations with fuzzy boundary values or fuzzy initial
values or fuzzy N th-order integro-differential equations with fuzzy nonlinear kernels and fuzzy boundary values
or fuzzy initial values.
A new type of nonlinear fuzzy Volterra integral equations with nonlinear fuzzy kernels is defined in following:

u(t) = f(t)+

∫ t

a0

g1(t, s, u(s))ds+

∫ t

a0

∫ t1

a1

g2(t, t1, s, u(s))dsdt1...+

∫ t

a0

...

∫ tn−1

an−1︸ ︷︷ ︸
n

gn(t, t1, ..., tn−1, s, u(s))dsdtn−1...dt2dt1

(3.1)
Where t, t1, ..., tn−1 ≥ 0 andu(t) is a function of t, f(t) is a set-valued function and g1(t, s, u(s)) and g2(t, t1, s, u(s)),...,
gn(t, t1, ..., tn−1, s, u(s)) are nonlinear fuzzy functions and all continuous and a0, ..., an−1 are positive real numbers.
Eq. (1) is named NC-NFVIE.
Now Variation Homotopy Perturbation method is considered for solving NC-NFVIE. For this, consider the fol-
lowing equation:

Lu+Nu = k(x) (3.2)
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where L and N are linear and nonlinear operators, respectively and k(x) is the inhomogeneous term. The Varia-
tional iteration method, for Eq. (2) is got in following equation:

ui+1(x) = ui(x) +

∫ x

0
λ{Lui(t) +Nûi(t)− k(t)}dt (3.3)

which λ is the general Lagrangian multiplier that is identified by variational iteration method optimally. ûi is
a restricted variation which means that δûi = 0. The successive approximations ui+1, i = 0, 1, 2, ..., of the so-
lution u(x) will be readily obtained upon using Lagrangian multiplier determined and any selective function u0.
Consequently, the solution is given by following term:

u(x) = limn−→∞ui(x)

The solution of Eq. (3) is considered as a fixed point of the following function under a suitable choice of first term
u0:

ui+1(x) = ui(x) +

∫ x

0
λ{Lui(t) +Nui(t)− k(t)}dx (3.4)

Now, the variational iteration method is considered for NC-NFVIE then from Eqs. (1) and (4) the following term
is got in below:

ũi+1(x) = ũi(x)+

∫ x

0
λ(t){ũi(t)− f(t)−

∫ t

a0

g1(t, s, ˜̂ui(s))ds− ...−
∫ t

a0

...

∫ tn−1

an−1︸ ︷︷ ︸
n

gn(t, t1, ..., tn−1, s, ˜̂ui(s))ds...dt1}dx
(3.5)

that δ(˜̂u) is a restricted variation.
Now the Homotpy perturbation method is applied for Eq. (3) as follows:

∞∑
n=0

P iui(x) = u0(x) + P

∫ x

0
λ(t)(L(

∞∑
n=0

P iui)dx) +N(

∞∑
n=0

P iui)dx)−
∫ x

0
λ(t)k(t)dx)

The Variational Homotopy perturbation Method for NC-NFVIE is in the following equation:

∞∑
n=0

P iui(x) = u0(x)+P

∫ x

0
λ(t)(

∞∑
n=0

P iui(x)−f(t)−
∫ t

a0

g1(t, s,

∞∑
i=0

P iui(x))ds−...−
∫ t

a0

...

∫ tn−1

an−1︸ ︷︷ ︸
n

gn(t, s,

∞∑
i=0

P iui(x))ds...dt1).

(3.6)
Indeed the variational homotopy perturbation method is formulated by variational iteration method and Homo-
topy perturbation method by Adomian’s polynomials. The parameter p ∈ (0, 1] is considered as an expanding
factor that is obtained as follows:

f =

∞∑
i=0

piui = u0 + pu1 + p2u2 + ... (3.7)

If p → 1, then Eq. (7) becomes the approximate solution of the form

u = limp→1f = u0 + u1 + u2 + ...
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A comparison of like powers of p gives solutions of various orders.

4 Examples
In this section three examples are presented and solved by the Variational Homotopy Perturbationmethod, tables
and figures are presented that approximation and exact solutions are compared with those.
Example (4.1) is solved by Homotopy perturbation method in [26]. This integral equation is a special case NC-
NFVIE.

Example 4.1. Consider the following fuzzy integral equation:

u(t) = [(2−r)2(
t6

2
+t5−t3+

11

32
t2)−11

32
t2+rt+r, r2(

t6

2
+t5−t3+

11

32
t2)+(2−r)(

−11

32
(2−r)(t)2+t+1)]+

∫ t

0
s2(1−2t)u2(s)ds

The optimal λ by solving is founded λ = −1. Now, by exerting the VHPM, it is possible to obtain an equation as
follows:
u0+ pu1+ p2u2+ ... = [(2− r)2( t

6

2 + t5− t3+ 11
32 t

2)− 11
32 t

2+ rt+ r, r2( t
6

2 + t5− t3+ 11
32 t

2)+ (2− r)(−11
32 (2− r)(t)2+

t+ 1)] +
∫ t
0 s

2(1− 2t)(u0 + pu1 + p2u2 + ...)2(s)ds

The exact solution is u(t) = [r(t + 1), (2 − r)(t + 1)]. Results for x = 0.01 and t = 0.5 by VHPM and HPM and
compare between and absolute errors for u(t) and u(t) are shown in Table (1) and figure (1).

Example 4.2. Consider the following fuzzy integral equation:

u(t) = [2rt− t6

5
(2r)2 − t6

24
(2r)3, (3− r)t− t6

5
(3− r)2 − t6

24
(3− r)3] +

∫ t

0
s2tu2(s)ds+

∫ t

0

∫ y

0
yu3(s)dsdy

The optimal λ by solving is founded λ = −1. Now, by exerting the VHPM, it is possible to get an equation as
follows:
u0+ pu1+ p2u2+ ... = [2rt− t6

5 (2r)
2− t6

24(2r)
3, (3− r)t− t6

5 (3− r)2− t6

24(3− r)3]− t6

24(2r)
3+ p(

∫ x
0

∫ t
0 s

2t(u0+ pu1+

p2u2 + ...)2(s)ds+
∫ x
0

∫ t
0

∫ y
0 y(u0 + pu1 + p2u2 + ...)3)dsdydx.

By comparing the terms with identical powers of p, we have the following results:
p0 : u0(t) = [2rt− t6

5 (2r)
2 − t6

24(2r)
3, (3− r)t− t6

5 (3− r)2 − t6

24(3− r)3]

p1 : u1(t) =
∫ x
0

∫ t
0 s

2t(u0)
2(s)dsdx+

∫ x
0

∫ t
0

∫ y
0 y(u0)

3(s)dsdydx

p2 : u2(t) =
∫ x
0

∫ t
0 s

2t(2u0u1)(s)dsdx+
∫ x
0

∫ t
0

∫ y
0 y(3u20u1)(s)dsdydx

p2 : u3(t) =
∫ x
0

∫ t
0 s

2t(2u0u2 + u21)(s)dsdx+
∫ x
0

∫ t
0

∫ y
0 y(3u0u2 + 3u0u

2
2)(s)dsdydx

...
that is solve for two u0(t):
u0(t) = 2rt− t6

5 (2r)
2 − t6

24(2r)
3 and u0(t) = (3− r)t− t6

5 (3− r)2 − t6

24(3− r)3

The exact solution is u(t) = [2rt, (3− r)t]. Results for x = 0.01 and t = 0.01 are shown in Table (2) and figure (2).
Also in table (3) and figure (3), results for x = 0.01 and t = 0.001 are shown and absolute errors are presented
in tables (2) and (3) for u(t) and u(t)

Example 4.3. Consider the following fuzzy third order integral equation:

u(t) = [(1+3r)t2− t12

40
(1+3r)3− t9

40
(1+3r)2− t18

1155
(1+3r)2, (6−2r)t2− t12

40
(6−2r)3− t9

40
(6−2r)2− t18

1155
(6−2r)2]
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r u(V HPM) u(Exact) |Error(u(V HPM))|u(HPM) |Error(u(HPM))| uV HPM uExact |Error(u(V HPM))|u(HPM) |Error(u(HPM))|
0 2.57E-11 0 2.57E(-11) 0 0 2.999999997 3 3E(-9) 2.98221 0.01779
0.1 0.150000050.15 5E(-8) 0.148744 0.001256 2.849999996 2.85 4E(-9) 2.83473 0.01527
0.2 0.3000000150.3 1.5E(-8) 0.297259 0.002741 2.699999995 2.7 5E(-9) 2.68701 0.01299
0.3 0.450000020.45 2E(-8) 0.445361 0.004639 2.549999994 2.55 6E(-9) 2.53908 0.01092
0.4 0.6000000250.6 2.5E(-8) 0.599574 0.000426 2.399999993 2.4 7E(-9) 2.39095 0.00905
0.5 0.7500000350.75 3.5E(-8) 0.749317 0.000683 2.499999992 2.25 8E(-9) 2.24261 0.00739
0.6 0.9000000450.9 4.5E(-8) 0.899174 0.000826 2.099999991 2.1 9E(-9) 2.09409 0.00591
0.7 1.050000051.05 5E(-8) 1.049622 0.000378 1.949999999 1.95 1E(-9) 1.94538 0.00462
0.8 1.20000055 1.2 5.5E(-8) 1.199686 0.000314 1.799999998 1.8 2E(-9) 1.79650 0.00350
0.9 1.3500006 1.35 6E(-8) 1.349564 0.000436 1.649999997 1.65 3E(-9) 1.64746 0.00254
1 1.50000065 1.5 6.5E(-8) 1.499300 0.000700 1.499999996 1.5 4E(-9) 1.49827 0.00173

Table 1:Numerical results for x = 0.01 and t = 0.5 and compare with HPM in Example (4.1)

r uV HPM uExact |Error(u(V HPM))|uV HPM uExact |Error(u(V HPM))|
0 0 0 0 0.030000000000.030 0
0.1 0.00200000000.002 0 0.029000000000.029 0
0.2 0.00400000000.004 0 0.028000000000.028 0
0.3 0.00600000000.006 0 0.027000000000.027 0
0.4 0.00800000000.008 0 0.026000000000.026 0
0.5 0.01000000000.010 0 0.025000000000.025 0
0.6 0.01200000000.012 0 0.024000000000.024 0
0.7 0.01400000000.014 0 0.023000000000.023 0
0.8 0.01600000000.016 0 0.022000000000.022 0
0.9 0.01800000000.018 0 0.02100000000 0.021 0
1 0.02000000000.020 0 0.020000000000.02 0

Table 2: Numerical results for x = 0.01 and t = 0.01 in Example (4.2)

+

∫ t

0
s3t2u3(s)ds+

∫ t

0

∫ y

0
ty2u2(s)dsdy +

∫ t

0

∫ y

0

∫ z

0
s2t3z3y3u2(s)dsdzdy

Now, by exerting the VHPM, it is then possible to obtain an equation as follows:
u0 + pu1 + p2u2 + ... = [(1 + 3r)t2 − t12

40 (1 + 3r)3 − t9

40(1 + 3r)2 − t18

1155(1 + 3r)2, (6− 2r)t2 − t12

40 (6− 2r)3 − t9

40(6−
2r)2 − t18

1155(6 − 2r)2] + p
∫ x
0 (+

∫ t
0 s

3t2(u0 + pu1 + p2u2 + ...)3(s)ds +
∫ t
0

∫ y
0 ty2(u0 + pu1 + p2u2 + ...)2(s)dsdydx +∫ t

0

∫ y
0

∫ z
0 s2t3z3y3(u0 + pu1 + p2u2 + ...)2(s)dsdzdy)

By comparing the terms with identical powers of p, we have the results for x = 0.01 and t = 0.01 are shown in
Table (4) and figure (4). In table (5) and figure (5)results for x = 0.05 and t = 0.001 are presented. The absolute
errors are presented in tables (4) and (5). The exact solution is u(t) = [(1 + 3r)t2, (6− 2r)t2].
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r uV HPM uExact |Error(u(V HPM))|uV HPM uExact |Error(u(V HPM))|
0 0 0 0 0.0020000000530.003 5.3E(-11)
0.1 0.00020000000000.0002 0 0.0029000000480.0029 4.8E(-11)
0.2 0.00040000000010.0004 1E(-13) 0.0028000000430.0028 4.3E(-11)
0.3 0.00060000000040.0006 4E(-13) 0.0027000000380.0027 3.8E(-11)
0.4 0.00080000000100.0008 1E(-12) 0.0026000000340.0026 3.4E(-11)
0.5 0.00100000000020.001 2E(-12) 0.0025000000310.0025 3.1E(-11)
0.6 0.0012000000030.0012 3E(-12) 0.0024000000270.0024 2.7E(-11)
0.7 0.0014000000050.0014 5E(-12) 0.0023000000240.0023 2.3E(-11)
0.8 0.0016000000080.0016 8E(-12) 0.0022000000210.0022 2.1E(-11)
0.9 0.0018000000110.0018 1.1E(-11) 0.0021000000180.0021 1.8E(-11)
1 0.00200000000160.002 1.6E(-11) 0.0020000000160.002 1.6E(-11)

Table 3: Numerical results for x = 0.05 and t = 0.001 in Example (4.2)

r uV HPM uExact |Error(u(V HPM))|uV HPM uExact |Error(u(V HPM))|
0 0.00010000000000.00010 0 0.000600000000 0.0006 0
0.1 0.00013000000000.00013 0 0.000590000000 0.00058 0
0.2 0.00016000000000.00016 0 0.000560000000 0.00056 0
0.3 0.00019000000000.00019 0 0.000540000000 0.00054 0
0.4 0.00022000000000.00022 0 0.000520000000 0.00052 0
0.5 0.00025000000000.00025 0 0.000500000000 0.00050 0
0.6 0.00028000000000.00028 0 0.000480000000 0.00048 0
0.7 0.00031000000000.00031 0 0.000460000000 0.00046 0
0.8 0.00034000000000.00034 0 0.000440000000 0.000440 0
0.9 0.00037000000000.00037 0 0.000420000000 0.00042 0
1 0.00040000000000.00040 0 0.000420000000 0.00042 0

Table 4: Numerical results for x = 0.01 and t = 0.01 in Example (4.3)

r uV HPM uExact |Error(u(V HPM))|uV HPM uExact |Error(u(V HPM))|
0 0.0000010000000000.000001 0 0.0000060000000040.000006 4E(-15)
0.1 0.0000013000000000.0000013 0 0.0000058000000040.00000584E(-15)
0.2 0.0000016000000000.0000016 0 0.0000056000000030.00000563E(-15)
0.3 0.0000019000000000.0000019 0 0.0000054000000030.00000543E(-15)
0.4 0.0000022000000010.0000022 1E(-15) 0.0000052000000030.00000523E(-15)
0.5 0.0000025000000010.0000025 1E(-15) 0.0000050000000030.000005 3E(-15)
0.6 0.0000028000000010.0000028 1E(-15) 0.0000048000000030.00000483E(-15)
0.7 0.0000031000000010.0000031 1E(-15) 0.0000046000000020.00000462E(-15)
0.8 0.0000034000000010.0000034 1E(-15) 0.0000044000000020.00000442E(-15)
0.9 0.0000037000000010.0000037 1E(-15) 0.0000042000000020.00000422E(-15)
1 0.0000040000000020.000004 2E(-15) 0.0000040000000020.000004 2E(-15)

Table 5: Numerical results for x = 0.05 and t = 0.001 in Example (4.3)
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                                                                                                                                − Exact solution  

                                                                                                                                    ° VHPM solution        
•HPM solution 

 
Compare between VHPM, HPM and Exact solution in Example (4.1) with x=0.01 & t=0.5 

                                     
             Comparison between VHPM and Exact solution in Example (4.2) x=0.01 & t=0.01        Comparison between VHPM and Exact solution in Example (4.2) with x=0.05 & t=0.001 

 

                                                     
 

            Comparison between VHPM and Exact solution in Example (4.3) x=0.01 & t=0.01          Comparison between VHPM and Exact solution in Example (4.3) with x=0.05 & t=0.001 
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5 Conclusion
In this work, a new type of nonlinear fuzzy Volterra integral equations was introduced. These equations were
includedN multifold integrals, whichN = 1, 2, 3, ..., with nonlinear fuzzy kernels are presented for the first time.
The variational homotopy perturbation method was successfully employed for solving them. This method was
based on the variational iteration method and homotopy perturbation method by using the Adomian decompo-
sition method. The obtained results by this method was illustrated without absolute error or very near to exact
solutions. Obtained data evince that the convergence rate is very fast, and lower approximations can accede high
accuracy. In fact the numerical method was developed by variational Homotopy perturbation method for men-
tioning nonlinear fuzzy integral equations and special case, for all fuzzy integral equations. The computations in
this paper were performed by using Maple 18.
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