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Abstract

This paper we investigate the existence and uniqueness of solutions to fuzzy
differential equations driven by Liu’s process. For this, it is necessary to provide
and prove a new existence and uniqueness theorem for fuzzy differential equa-
tions under weak Lipschitz condition. Then the results allows us to consider
and analyze solutions to a wide range of nonlinear fuzzy differential equations
driven by Liu’s process.
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1 Introduction

Most of phenomena and events in the real world occur unexpectedly
among which are the changes in economic and political systems, collapse
of governments, conflicts between tribes, wars, terrorist attacks. Thus,
it is not possible to anticipate or estimate, the price of stocks, valuable
papers, monetary units and precious metals accurately. Therefore, the
only way find out how this factor can affect the growth or drop in the
value of companies is focusing on the price of stocks.
Investigation on effects of the factors along with uncertainty theory can
help better understanding and more exact modeling of these phenomena.
The Fuzzy Set has been presented for the membership function by Zadeh
[19] in the beginning of 1965 .
The credibility theory was first introduced by Liu who then presented
the concept of credibility measure which is powerful tool for dealing with
fuzzy phenomena, to facilitate measuring of fuzzy events that are based
on normality, monotonicity, self-duality, and maximality axioms.
Then the concept of fuzzy process was proposed by that introduces a par-
ticular fuzzy process with stationary and independent increment named
Liu’s process which is just like a stochastic process described by Brown-
ian motion.
Since then some literatures has been published on the Liu’s process and
its applications in other sciences, such as economics and optimal con-
trol has been published [20]. Then Liu was inspired by stochastic notions
and ito process to introduce fuzzy differential equations [10] which were
driven by Liu’s process for better understanding the fuzzy phenomena.
In this paper, the following fuzzy differential equation is the considered

dx(t) = f(t, x(t)) + g(t, x(t))dCt (1.1)

where Ct is a Liu’ process, f, g are given functions which satisfy some
conditions that we will state later, and x(t) is the solution to the Eq.
(1.1) which is in fact a function of a fuzzy process. Regarding to the
importance of existence and uniqueness of a solution to fuzzy differen-
tial equations driven by Liu’s process, Liu investigated the existence and
uniqueness of the solution of fuzzy differential equations by employing
Lipschitz and Linear growth conditions [18]. Afterward, Fei studied the
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uniqueness of solution to the fuzzy differential equations driven by Liu’s
process with non-Lipschitz coefficients [4].
The main goal of this paper is to provide some weaker conditions to study
the existence and uniqueness of solution to the fuzzy differential equa-
tions. In this regard, we prove a new existence and uniqueness theorem
under the weak Lipschitz condition.
This paper is arranged as follows: Section 2 is devoted to preliminaries
on the theory of fuzzy differential equations in the sense of Liu such as
credibility theory, credibility measure, credibility space, expected value
and variance as well as the definitions of Liu’s process, Liu’s integral and
some necessary inequalities. In section 3, we will focus on the main results
including a new existence and uniqueness theorem for the solution of a
FDE under a weak condition. This theorem provides us the conditions
to deal with some problems that are not previously solvable. Finally,
an estimation for the error between approximate solution and accurate
solution is given and proven.

2 Preliminaries

Our aim in this section is mainly introducing some concepts such as
credibility measure, credibility space, fuzzy variables, independence of
fuzzy variables, expected value, variance, fuzzy process, Liu’s process,
and stopping time.
Assume that Θ is a non-empty set and P is the power set of Θ. Each
element of A in P is said to be an event. To provide an axiomatic def-
inition of credibility it is necessary to assign a number Cr{A} to each
event A which indicates the credibility that A will occur. Also, in order
to ensure that the number Cr{A} has certain mathematical properties
Liu [8]investigate the following four axioms :

(1) Axiom (Normality) Cr{Θ} = 1.
(2) Axiom (Monotonicity) Cr{A} ≤ Cr{B} whenever A ⊂ B.
(3) Axiom (Self-Duality) Cr{A}+ Cr{Ac} = 1 for any event A.
(4) Axiom (Maximality) Cr{UiAi} = supi Cr{Ai} for any events
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{Ai} with
supi Cr{Ai} < 0.5.

Definition 2.1 [18]. The set function Cr is called a credibility measure
which satisfies the normality, monotonicity, self-duality, and maximality
axioms.

Definition 2.2 [18]. Suppose that Θ be a nonempty set, P the power
set of Θ, and Cr a credibility measure. The triple (Θ,P ,Cr) is called a
credibility space.

Assume that (Θ,P ,Cr) be a credibility space. A filtration is a family
{Pt}t≥0 of increasing sub-σ-algebras of P (i.e. Pt ⊂ Ps ⊂ P for all 0 ≤
t < s <∞). The filtration is said to be right continuous if Pt =

⋂
s>tPs

for all t ≤ 0. When the credibility space is complete, the filtration is
observed to satisfy the usual conditions if it is right continuous and P0

contains all Cr-null sets.
We also define P∞ = σ(Ut≥0Pt) (i.e. σ-algebra generated by Ut≥0Pt.)
P-measurable fuzzy variable are determined by Lp(Θ,Rd) that will be
defined later.
If the fuzzy variable x(t) is P-measurable for all t ∈ [0, t], a process is
called P-adapted,

Definition 2.3 [18]. A fuzzy variable is defined as a (measurable) func-
tion
ξ : (Θ,P ,Cr) −→ R.

Definition 2.4 [18]. The expected value E[ξ] of a fuzzy variable ξ is
defined by

E[ξ] =
∫ +∞

0 Cr{ξ ≥ r}dr−
∫ 0
−∞Cr{ξ ≤ r}dr

provided that at least one of the two integrals is finite. Besides, the vari-
ance is defined by E[(ξ − e)2].
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Suppose that ξ and η be independent fuzzy variables with finite expected
values. Then for any numbers a and b, we have

E[aξ + bη] = aE[ξ] + bE[η].

Definition 2.5 [10]. Assume that ξ be a fuzzy variable, then the credi-
bility distribution µ(x) of ξ is defined as follows

µ(x) = max{1, 2Cr(ξ = x)}, x ∈ R.

Definition 2.6 [10]. A credibility distribution µ(x) is said to be regular
if it is a continuous and strictly increasing function with respect to x at
which 0 < µ(x) < 1, and

limx→−∞ µ(x) = 0, limx→+∞ µ(x) = 1.

Furthermore, the inverse function µ−1(α) is said to be the inverse credi-
bility distribution of ξ.

Definition 2.7 [9] A fuzzy process is a function from T× (Θ,P ,Cr) to
the set of real numbers where T is an index and (Θ,P ,Cr) is a credibility
space.

That means, a fuzzy process Xt(θ) is a function of two variables such
that the function Xt∗(θ) is a fuzzy variable for each t∗. For each fixed
θ∗, the function Xt(θ

∗) is said to be a sample path of the fuzzy process.
A fuzzy process Xt(θ) is called sample-continuous if the sample path is
continuous for almost all θ.
In this paper, we use the notation x(t) instead of xt(θ).
A fuzzy process is essentially a sequence of fuzzy variables indexed by
time or space. As one of the most important types of fuzzy processes, the
Liu’s process is defined as follows.

Definition 2.8 [10]. A fuzzy process Ct is called a Liu’s process if

(1) C0 = 0,
(2) Ct has stationary and independent increments,
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(3) every increment Ct+s −Cs is a normally distributed fuzzy variable
with expected value et and variance σ2t2 whose membership function
is

µ(x) = 2(1 + exp(π|x−et|√
6σt

))−1, −∞ < x < +∞.
The parameters e and σ are said to be the drift and diffusion co-
efficients, respectively. Liu’s process is called standard if e = 0 and
σ = 1.

A fuzzy counterpart of Ito integral is defined in the following based on
Liu’s process, which is said to be Liu’s integral.

Definition 2.9 [10]. Suppose that x(t) is a fuzzy process and Ct is a
standard Liu process. For any partition of closed interval [a, b] with a =
t1 < t2 < . . . < tk+1 = b, the mesh is written as

∆ = max1≤i≤k |ti+1 − ti|.

Then the Liu integral of x(t) with respect to Ct is

∫ b
a x(t)dCt = lim∆−→0

∑k
i=1 x(ti).(Cti+1

−Cti)

as the limit exists almost surely and is a fuzzy variable.

Theorem 2.1 [3]. Let h(t, c) be a continuously differentiable function
and Ct be a standard Liu’s process. Define x(t) = h(t,Ct). Then we have
the following chain rule

dx(t) = ∂h
∂t

(t,Ct)dt+ ∂h
∂c

(t,Ct)dCt,

which is called Liu formula.

Definition 2.10 [18]. The fuzzy variables ξ1, ξ2, · · · , ξm are said to be
independent if

Cr{⋂m
i=1{ξi ∈ Bi}} = min1≤i≤m Cr{ξi ∈ Bi}

for any sets B1,B2, · · · ,Bm of real numbers.
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Let us define a sequence of credibilistic stopping times.

Definition 2.11 [9]. A fuzzy variable τ : Θ → [0,∞] (it may take the
value ∞) is said to be an {Pt}-stopping time (or simply, stopping time)
if {θ : τ(θ) ≤ t} ∈ Pt for any t ≥ 0



τk = inf{t ≥ 0 : |x(t)| ≥ k},

σ1 = inf{t ≥ 0 : w(x(t)) ≥ 2ε},

σ2i = inf{t ≥ σ2i−1 : w(x(t)) ≤ ε} i = 1, 2, . . . ,

σ2i+1 = inf{t ≥ σ2i : w(x(t)) ≥ 2ε} i = 1, 2, . . . ,

where throughout this paper we set inf φ =∞.

Definition 2.12 [9]. If X = {Xt}t≥0 is a measurable process and τ is a
stopping time, then {Xτ∧t}t≥0 is said to be a stopped process of X.

There are several useful inequalities for fuzzy variables, such as Hölder
inequality and Chebyshev inequality. In the continuing, we introduce
generalized inequalities for fuzzy variables.

Theorem 2.2 (Hölders Inequality) [4]. Suppose that p and q are two
positive real numbers with 1

p
+ 1

q
= 1, ξ and η be independent fuzzy

variables with

E [ |ξ|p ] ≤ +∞ and E [ |η|q ] ≤ +∞.

We have

E [ |ξη| ] ≤ p

√
E [ |ξ|p ] q

√
E [ |η|q ].

Theorem 2.3 (Chebychev’s Inequality). Let ξ : θ → Rn be a fuzzy
variable so that E [ |ξ|p ] ≤ +∞ for some p, 0 ≤ p ≤ ∞.
Then Chebychev’s inequality becomes as the following,

Cr[ |ξ| ≥ λ ] ≤ 1
λp

E [ |ξ|p ] for all λ ≥ 0.
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Proof. Set A = {w | |ξ(w)| ≥ λ}. Then∫
θ |ξ(w)|pdCrw ≥

∫
A |ξ(w)|pdCrw ≥ λpCrA.

Before ending this section it is essential to introduce some symbols that
are used in next sections.
Notation 1: Lp(θ,Rd) is the family of Rd-valued fuzzy variables ξ with
E|ξ|p <∞.
Notation 2: `p([a, b],Rd) is the family of Rd-valued Pt-adapted pro-
cesses {f(t)}a≤t≤b so that

∫ b
a |f(t)|pdt <∞ almost surely.

Notation 3: Mp([a, b],Rd) is the family of processes {f(t)}a≤t≤b in
`p([a, b],Rd) so that

∫ b
a |f(t)|pdt <∞.

Notation 4: `p(R+,R
d) is the family of processes {f(t)}t>0 so that for

every T > 0, {f(t)}a≤t≤T ∈ `p([0, T ],Rd).

3 Main result

Throughout this paper, we study the fuzzy differential equations

dx(t) = f(x(t), t)dt+ g(x(t), t)dCt (3.1)

where Ct is a standard Liu’s process and f, g are some given functions.
x(t) is the solution to the Eq. (3.1) which is a fuzzy process in the sense
of Liu.
The Eq. (3.1) is equivalent to the following fuzzy integral equation:

x(t) = x0 +
∫ t

t0
f(x(s), s)ds+

∫ t

t0
g(x(s), s)dCs. (3.2)

In addition, let us state the following conditions.

(D) The Lipshitz condition: There exists a positive constant L for all
x(t), y(t) ∈ Rd and t ∈ [t0, T ], so that

|f(x(t), t)− f(y(t), t)|2 ∨ |g(x(t), t)− g(y(t), t)|2 ≤ L|x(t)− y(t)|2.
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(H) Weak condition: For t ∈ [t0, T ] we have

f(0, t), g(0, t) ∈ L2[t0, T ]

Remark 3.1 Let coefficient f(x(t), t) and g(x(t), t) of Eq. (3.1) satisfy
the conditions (D) and (H). We set I = |f(0, t)|2L2[0,T ], J = |g(0, t)|2L2[0,T ].
If x(t) is the solution of Eq. (3.1), then

E( sup
t0≤t≤T

|x(t)|2) ≤ K e6 L(T−t0+1)(T−t0), (3.3)

as the x(t) ∈M2([t0, T ],Rd), where K = (3|x0|2 + 6((T − t0)I + J)).

Theorem 3.1 Suppose that the conditions (D) and (H) hold. Then the
Eq. (3.1) has an unique solution such as x(t) ∈ M2([t0, T ],Rn) where
x(t) is in fact a function of a fuzzy process.

Proof. Let x(t) and x(t) are solutions of Eq.(3.1),
put a(w, s) = f(x(s), s)− f(x(s), s) and b(w, s) = g(x(s), s)− g(x(s), s)
where w ∈ θ. Then

x(t)− x(t) =
∫ t
t0

ads+
∫ t
t0

bdC(s).

By using Lipschitz condition and Holder inequality, we obtain

|x(t)− x(t)|2 ≤ 2|
∫ t
t0

ads|2 + 2|
∫ t
t0

bdCs|2 ≤
2(t− t0)

∫ t
t0

L|xs − x(s)|2ds+ 2|
∫ t
t0

bdCs|2.

Therefore,

supt0≤s≤t |x(s)− x(s)|2 ≤
2L(T − t0)

∫ t
t0
|x(s)− x(s)|2ds+ 2 supt0≤s≤t |

∫ t
t0

bdC(s)|2.

Noting Doob inequality and taking the expectation, we deduce

E(supt0≤s≤t |x(s)− x(s)|2) ≤ 2L(T + 4)
∫ t
t0

E(supt0≤r≤s |x(r)− x(r)|2)ds.

According to Gronwall inequality, we obtain

E( sup
t0≤t≤T

|x(t)− x(t)|2) = 0. (3.4)
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Hence x(t) = x(t) for all t0 ≤ t ≤ T a.s. The uniqueness has been proved.
Now, assume that x0(t) = x(0), t ∈ [t0, T ], and for n = 1, 2, . . ., define
Picard iterations sequence

xn(t) = x(0) +
∫ t
t0
f(xn−1(s), s)ds+

∫ t
t0
g(xn−1(s), s)dCs.

Obviously, x0(0) ∈ M2([0, T ],Rn). One can easily verify induction of
xn(0) ∈ M2([0, T ],Rn). According to Holder inequality and using in-
equality (a+ b)2 ≤ 2(a2 + b2), we get

(xn(t))2 = 3|x(0)|2+3(t−t0)
∫ t

t0
f 2(xn−1(s), s)ds+3(

∫ t

t0
g(xn−1(s), s)dCs)

2.

(3.5)
Taking the expectation

E|xn(t)|2 = 3E|x(0)|2 + 6(T − t0)E
∫ t
t0

[L|xn−1(s)|2 + f 2(0, s)]ds+
6E

∫ t
t0

[L|xn−1(s)|2 + g2(0, s)]ds

≤ A + 6L[T − t0 + 1]
∫ t

t0
E|xn−1(s)|2ds, (3.6)

where

A = 3E|x(0)|2 + 6[(T − t0)I + J].

Due to the Eq. (3.6), for any k ≤ 1, we have

max1≤n≤k E|xn(t)|2 ≤ B + 6L[T − t0 + 1]
∫ t
t0

max1≤n≤k E|xn(t)|2ds,

where

B = A + 6 L (T − t0)(T − t0 + 1)E|x(0)|2.

By using Gronwall inequality for t0 ≤ t ≤ T, n ≥ 1, we obtain

max
1≤n≤k

E|xn(t)|2 ≤ Be6 L (T+1)(T−t0), (3.7)

noting that
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|x1(t)− x0(t)|2 ≤ 2 |
∫ t
t0
f(x(0), s)ds |2 +2 |

∫ t
t0
g(x(0), s)ds |2

≤ 2(T − t0)
∫ t
t0
f 2(x(0), s)ds+ 2 |

∫ t
t0
g(x(0), s)ds |2.

Taking the expectation

E|x1(t)−x0(t)|2 ≤ 2(T − t0)E(
∫ t
t0
|f(x(s), s)|2ds) + 2E(

∫ t
t0
|g(x(s), s)|2ds)

≤ 4(T −t0)E(
∫ t
t0

(L|x(0)|2 + |f(0, s)|2)ds)+4E(
∫ t
t0

(L|x(0)|2 + |g(0, s)|2)ds)

≤ 4L(T−t0)2E(|x(0)|2)+4(T−t0)I+4L(T−t0)2E|x(0)|2+4J ≤ Q, (3.8)

where

Q = 4L(T − t0 + 1)(T − t0)E(|x(0)|2) + 4(T − t0)I + 4J.

Here we prove that for any n ≥ 0, we have

E|xn+1(t)− xn(t)|2 ≤ Q[R(T − t0)]n

n!
, t0 ≤ t ≤ T, (3.9)

where R = 2L(T − t0 + 1). From Eq. (3.8), we see that under n = 0, Eq.
(3.9) holds.

Noting that

|xn+1(t)− xn(t)|2

≤ 2 |
∫ t t0[f(xn(s), s)− f(xn−1(s), s)]ds |2 +2 |∫ t
t0

[g(xn(s), s)− g(xn−1(s), s)]ds |2

≤ 2L(T−t0)
∫ t

t0
|xn(s)−xn−1(s)|2ds+2 |

∫ t

t0
[g(xn(s), s)−g(xn−1(s), s)]ds |2 .

(3.10)
Now by D condition and taking the expectation, we have

E|xn+1(t)− xn(t)|2 ≤ 2L(t− t0 + 1)E
∫ t
t0
|xn(s)− xn−1(s)|2ds
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≤ 2L(t− t0 + 1)
∫ t
t0

E|xn(s)− xn−1(s)|2ds

≤ R
∫ t
t0

[QR(t0−s)]n−1

(n−1)!
ds = Q[R(T−t0)]n

(n)!
.

And we obtain

supt0≤t≤T |x
n+1(t)− xn(t)|2 ≤ 2L(T − t0)

∫ t
t0
|xn(s)− xn−1(s)|2ds

+2 supt0≤t≤T |
∫ t
t0

[g(xn(s), s)− g(xn−1(s), s)]dCs |2 .

Also, by taking the expectation

E(supt0≤t≤T E|xn+1(t)− xn(t)|2) ≤ 2L(T − t0 + 1)
∫ t
t0

E|xn+1(s)− xn(s)|2

≤ 4R
∫ t
t0

Q[R(t0−s)]n−1

(n−1)!
ds = Q[R(T−t0)]n

(n)!
.

Using the Chebyshev’s equality, we derive

Cr{supt0≤t≤T E|xn+1(t)− xn(t)| > 1
2n
} ≤ 4Q[R(T−t0)]

n!
,

since ∑∞
n=0

4Q[4R(T−t0)]n

n!
<∞,

by Borel-Cantell lemma, for almost all for ω ∈ θ. There is a positive
integer
n0 = n0(ω), so that n ≥ n0, we have

supt0≤t≤T |x
n+1(t)− xn(t)| ≤ 1

2n
.

We know that the partial sums

x0(t) +
∑n−1
i=0 [xi+1(t)− xi(t)] = xn(t)

are uniformly in t ∈ [0, T ]. It is clear, that x(t) is continuous and Pt is
adapted. On the other hand, from Eq. (3.9), the statement {xn(t)}n≤1 is
a Cauchy in L2 for every t. Therefore x(t) ∈ L2[0, T ] in Eq. (3.7). Let
n→∞ in Eq. (3.6) Then,

E|x(t)|2 ≤ Be6L(T+1)(T−t0), t0 ≤ t ≤ T.
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Therefore, x(t) ∈M2([t0, T ],Rd). We deduce that x(t) satisfies Eq. (3.1).
Note that (n→∞), so we have

E |
∫ t
t0
f(xn(s), s)ds−

∫ t
t0
f(x(s), s)ds |2 +E |∫ t

t0
g(xn(s), s)ds−

∫ t
t0
g(x(s), s)ds |2

≤ L(T − t0 + 1)
∫ t
t0

E|xn(s)− x(s)|2ds→ 0.

Then in Eq. (3.5), letting n→∞, t0 ≤ t ≤ T . We have

x(t) = x(0) +
∫ t
t0
f(x(s), s)ds+

∫ t
t0
g(x(s), s)dCs.

The following theorem gives an estimate of solution.

Theorem 3.2 Assume that the coefficients f(x(t), t) and g(x(t), t) sat-
isfy D conditions, then x(t) is the unique solution to Eq. (3.1), and xn(t)
be the iterations defined by Eq. (3.5), then

( sup
t0≤t≤T

|xn(t)− x(t)|2) ≤ 8Q[R(T − t0)]n

n!
e8R(T−t0), (3.11)

for all n ≥ 1, where Q and R are the same as defined in the proof of
Theorem 3.2, that is

Q = 4L(T − t0)(T − t0 + 1)E(|x(0)|2) + 4(T − t0)I + 4J.

Proof. From

xn(t)− x(t) =
∫ t
t0

[f(xn−1(s), s)ds− f(x(s), s)]ds

∫ t
t0

[g(xn−1(s), s)ds− g(x(s), s)]ds,

we derive that

E(supt0≤s≤t |x
n(t)− x(t)|2)

≤ 2L(T − t0 + 2)
∫ t
t0

E|xn−1(s)− x(s)|2

≤ 8R
∫ t
t0

E|xn(s)− xn−1(s)|2 + 8R
∫ t
t0

E|xn(s)− x(s)|2.
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Replacing Eq. (3.9) in to this, we get the following result

E(supt0≤s≤t |x
n(s)− x(s)|2)

≤ 8R(
∫ T
t0

Q[R(t0−s)]n−1

(n−1)!
ds+

∫ t
t0

E|xn(s)− x(s)|2ds)

≤ 8Q[R(T−t0)]n

n!
+ 8R

∫ t
t0

E(supt0≤r≤s |x
n(r)− x(r)|2)ds.

Consequently, by using Gronwall inequality Eq. (3.11), the proof is com-
pleted.
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