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Abstract

In this paper, a numerical solution of time fractional advection-dispersion equations are presented.
The new implicit finite difference methods for solving these equations are studied. We examine
practical numerical methods to solve a class of initial-boundary value fractional partial differential
equations with variable coefficients on a finite domain. Stability, consistency, and (therefore) conver-
gence of the method are examined and the local truncation error is O(At + h). This study concerns
both theoretical and numerical aspects, where we deal with the construction and convergence anal-
ysis of the discretization schemes. The results are justified by some numerical implementations. A
numerical example with known exact solution is also presented, and the behavior of the error is

examined to verify the order of convergence.
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1 Introduction

Fractional order partial differential equations are generalizations of clas-
sical partial differential equations. We consider the initial-boundary value
problem to a time-dependent time fractional advection-dispersion equa-
tion:

“u(x, 8um 8%u(x,

(x, t) € [xg, SL’R]X[O,T], 0<a<l.

(1.1)

We also assume an initial condition u(x,0) = ug(z) for z; < x < zg and
a natural set of boundary conditions for this problem: u(zy,t) = 0 for
all £ > 0 and u(zg,t) =0 for all t > 0.

Where 2424 i Caputo fractional order derivative [1,4,5,8]:

o
0%u(w,t) 1 T ou(z, s) ds
ote I'(l-a) /0 ds  (t—s)>’ (1.2)

where I'(.) is the Gamma function.

Assume that this time fractional advection-dispersion equation has a
unique and sufficiently smooth solution.

2 Structure of the new Scheme

To establish the numerical approximation scheme, let ¢, = k At, (k =
0,1,..., M) to be the integration time 0 < t; < T, and Az = h > 0 to

M, with z; = xp +17h

be the grid size in z-direction, Ax =
for i = 0,...,N. Define u" = u(z;,t™), and f* = f(x;,t™). Let U™
denote the numerical approximation to the exact solution u]". a usual,

we take the following finite difference approximation for time fractional
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derivative appeared in problem 1.1:

O%u(x, thtly 1 k u(zq, 9H1) —u(z;, t9)
ote — TI'(l—a) &j=0 At (2 1)

x fiAre e +O(AY),

Therefore, we write

O%u(my, thH1) Ao k u(wi, tFIH) —u(zy, tF—7)
ote — I'(2—a) &j=0 At (2 2)

<[(j+ 17 =]+ O(AY),

On the other hand, we have

ou (1‘1, tk+1) (l.“ tk+1) o u(xi,l, tk—i—l)
p— h 2.
o N + O(h), (2.3)

O%u(xs, thY)  w(wyyq, M) = 2u(wy, M) 4+ u(a;_q, tFTY)

(2.4)
Apply (2.2)- (2.4) to (1.1) We have
o k=3 41y _y(z;, th=3 . _ 1
t1 Z tjgt(t])[(j—i—l)la—jla]:
u(fﬂz+17tk+l) 2U($h§k+l)+u($i—1,tk+1) _ U(Iivtkﬂ)—}?(zi—l’tkﬂ) (25)
I+ O(AL + h),
Also, we define 0, = (j + 1) —j " for j = 0,1,2,...,M and
pi = BELQ=9) 1 = APTEZ9) Then we have
b0 O3 —ui ) = i (el = 20l ) = o (0 )
+AD(2 = ) fiT
(2.6)
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Since the local truncation error is O(At + h), therefore this method is
consistent [9]. We can also written as matrix form:

Ifk=0,

Oo(u; =) = pi (ugy = 2u; +ug_y) = 7i (g ) + AT (2= ) £,

)

Where
—piu}H+(1+2p2-+m)u}+(—n—pi)uztl = u?+AtaF(2—a)fi1, (2.7)

Ifk >0,

—piulll (L4 2p ) wft + (= — p)ult! =
uf + A T2 = a) fFF S 0w =)
= (22 uf + Tio w2+ 1) (2.8)
—(+ 27— ) Ol + At T(2 — a) i

(i=1,2...N—1,k=1,2,...,M—1).

Egs. (2.7) and (2.8) can also written as matrix form:

AU' =U"+ At*T(2 - a)F' |
AU = g, U + .+ @, U + 0, U° + At*T'(2 — ) FF* k>0,

UO = Ug
(2.9)
And matrix A = [A; j|(v—1)x(n-1)is defined as follows:
—Di forj=i+1
14 2p;+r; forj=1
Aij =3 -pi—r forj=i—1 (2.10)
0 forj<i—1
0 forj>1+4+1
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3 Stability and convergence

Theorem 3.1 The implicit system defined by the linear difference equa-
tions (2.7) and (2.8) has unique solution and unconditionally stable for
al0<a<1.

Proof. we will apply Gerschgorin theorem to conclude that every eigen-
value of the matrix has a magnitude strictly large than 1.

According to the Gerschgorin theorem, the eigenvalue of the matrix A
are in the disks centered at A;; = 1+ 2p; + r;, with radius

N-1
R, = Y |Ayl=l-pl|+]-p—ril=+2pi+mr,
J=1,j#i

Hence every eigenvalue A of the matrix A has a real part larg than 1, and
therefore a magnitude larger than 1. So the spectral radius of A™! is less
than one. This proves that the scheme has unique solution.To prove the
unconditional stability of (2.7) and (2.8), let u¥, a¥, (i = 1,2,..., N—1,k =
1,2,..., M — 1) be the solution of (2.7) and (2.8) with initial value and
respectively, the computation of fF, (i = 1,2,.... N—=1,k=1,2,.... M—1)
is exact. Then error ¥ = a¥ — u¥ satisfies:

Ifk=0,

— i E}H + (14 2p; + 1) 811 + (—r — pi)ail_l = 8? , (3.1)

Ifk >0,

—piell + (L4 2p + 1) el + (= — et =

(3.2)

k k-1 k—j
digg + 2721 djag; 7+ Okeo

It is equivalent to the following matrix form:
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AE'=E" |

AEM! =, EF + .+ ,E* + 0,E°, k > 0,

Where EF = [e¥ ¢k ... ek |]7. Let us use mathematical induction method
to prove:

B o < 1B, k=1,2, ..

In fact, if & = 1, suppose |¢}| = maxj<;<y_1 |¢}| , note that p; , r; > 0
we have:

B o = lei] < letl +mller] = leioal) + pillet] = leial) <

—plefal + M+ 2p4 1) el |+ (= —po)lef | <
| = piety + (A +2p+ 1) el + (= — p)ety] = 1e)] < |E”||s -

Therefore |E'||oc < [|E?||oe -
Suppose if k < 5, [|Ef|oc < ||E°||o hold, then when k = s + 1, let

et = maxycieny €]
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similar to former estimate, we have:

B o = le*
< e+ (e ™ = 1)

+pi(ler ™ = leit])

—pulerfil + (1 2p+ ) e

IN

+(=r = i)l
<|-meali +Q+2p+m)e™
+(—r = p)eity
< [JAE" o
< dylef] + X521 djga et
+0,]¢7)|
< B floo + 521 dis [ B |l
+0,]| E° |
< (di + X521 dj + 65 1B o
= [|E%|«.
Therefore |E**!||oc < ||E°|s. So the implicit scheme defined by the

linear difference equations (2.7) and (2.8) is unconditionally stable and
finished the proof of Theorem 3.1.

Theorem 3.2 Suppose that u(x;,ty) is the exact solution of (1.1) at grid
point (x;, ), uf is the difference solution of (2.7) and (2.8), then there

exists positive M, such that

le¥]loe < 0.1, M(AET™ + At*h) ,(k=1,2,..., M) (3.3)

where ||e*]|oo = max;<;<y_1 |€¥| and M is a constant independent of h, At

Proof. Since uf = u(x;,t,) — e , notice that ¢¥ = 0, We have from (2.7)
and (2.8):
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Ifk=0,

—pieiq +(1+2pi+ri) e} + (—ri —pi)ej_y = R}

Ifk >0,
—Dpi 6?111 + (14 2p; + 1) et 4 (—r; — pi)efjf =

k k-1 k=i | pk+l
diei + 3352 djae; T+ Ry

Where |[RF| < M(At e+ At*h), (k=1,2,..,.M—1,i=1,2,..,N—1)
and M is a constant independent of h, At.

Lets use mathematical induction method to prove the theorem.

if k£ =1, suppose |le!]|oc = |e}| = maxj<i<n_1|e}| , we have:

le'loo = le]] <
—pilef] + Q4 2p+1) el |+ (= —p)lep | <

| — pety +(L+2p41m) ef + (=i —p)e | =|R}| <
M(AH® + Ath) = 0, M(AF* 4+ At*h).

Suppose that k < s, [le*||lo < 0. M(AtF® + At*h) hold,
then when k = s + 1, let |ef™'| = maxj<icn_1|ef™!| , notice that
07 <60.',j=0,1,2,..,k.
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therefore

les oo = lei ™| <

dil|e®]|oo + X521 djsalle® ™ oo + M(AET + At*h) =

YiZo djalle” [loo + M(AEF® + Ateh) <

(di02 + doflty + dsf5 + ..+ dsft + DM(ALHY + At*h) <
07 (520 dj + 0)M(AET™ + At*h) = 67" M(AE + At®h)

Therefore Theorem 3.2 is proved. O

Since

];1 ka k_l 1
i % i, i _
e (T ) e 7 T ol G R T e QS

Hence there exists constant C > 0, such that
"o < E*C(ALT™ + At*h) = (KAH)*.C(At+h), k=1,2,..., M.

When kAt < T, We get the following theorem:

Theorem 3.3 Suppose that u(x;,ty) is the exact solution of (1.1) at grid
point (xz;,ty) is implicity difference solution of (2.7) and (2.8), then there
exists positive constant C', such that

| w(ws, ty) —ul | < C(At + h),(i=1,2,... N, k=1,2,....M).
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4 Numerical experiments

In this section, we carry out numerical experiments to investigate the
performance and convergence behavior of The implicit finite difference
method for time fractional advection-dispersion equation.

Example. We start with the following fractional a = 0.2 advection-
dispersion equation with

a=02,0<r<2,0<t<1.

forcing function

2—a

) (R ()4 2047 3209,

fa,t) = 2(
the initial condition
u(z,0) = 2% (2 —1z)?,
and the boundary condition
u(0,t) = u(2,t) = 0,

The exact solution of this fractional advection-dispersion flow equation
is given by

u(z,t) = 2 (2—2)*(1 + 1),

We have shown the exact and numerical solutions with o = 0.2 in figure
1.

5 Conclusion and Suggestions

We have developed the implicit finite difference method, for solving the
fractional partial differential equation. For this method, we drive con-
vergence rates. However, focusing on theoretical aspects, we do not deal
with couple equations in this paper. We plan to address this issue and
some other approaches in a forthcoming paper.
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Table 1
Maximum error behavior for versus grid size reduction for the Example prob-
lem with o = 0.2 at time ¢t = 1.0.

M N  MaximumError Error rate
10 10 0.248776 -

20 20 0.143465 1.73

40 40 0.077287 1.86

80 80 0.0399791 1.93
160 160 0.020316 1.97
320 320 0.010232 1.98

Fig. 1. Numerical solutions and exact solution at time ¢t = 1.0. The solid line
corresponds to the exact solution, the stared line corresponds to numerical
solution of The implicit finite difference method with « = 0.2, At = 8—10 and

— L
h = 55-
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