

Theory of Approximation and Applications Vol. 11, No.1, (2017), 57-68

Higher Derivations Associated with the Cauchy–Jensen Type Mapping

Hamidreza Reisi ^a,∗

^a Department of Mathematics, Semnan University, Semnan, Iran

Received 23 October 2015; accepted 2 August 2016

Abstract

Let H be an infinite–dimensional Hilbert space and $K(H)$ be the set of all compact operators on H. We will adopt spectral theorem for compact self-adjoint operators, to investigate of higher derivation and higher Jordan derivation on $K(H)$ associated with the following cauchy–Jencen type functional equation

$$
2f(\frac{T+S}{2} + R) = f(T) + f(S) + 2f(R)
$$

for all $T, S, R \in K(H)$.

Key words: Cauchy–Jensen type higher derivation, Cauchy–Jensen type higher Jordan derivation, Approximate–strong, C^{*}-algebra.

2010 AMS Mathematics Subject Classification :

∗ Hamidreza.reisi@gmail.com

1 Introduction

If H is a Hilbert space, then an operator T in $B(H)$ is called a compact operator if the image of unit ball of H under T is a compact subset of H. Note that if the operator $T : H \longrightarrow H$ is compact, then the adjoint of T is compact, too. The set of all compact operators on H is shown by $K(H)$. It is easy to see that $K(H)$ is a C^* -algebra [3]. Moreover, every operator on H with finite range is compact. We denote by $P(H)$ the set of all finite range projections on Hilbert space H.

An approximate unit for a C^* -algebra $\mathcal A$ is an increasing net $(u_\lambda)_{\lambda \in \Lambda}$ of positive elements in the closed unit ball of A such that $a = \lim_{\lambda} a u_{\lambda} =$ $\lim_{\lambda} u_{\lambda} a$ for all $a \in \mathcal{A}$. Every C^* -algebra admits an approximate unit [4].

Example 1.1 Let H be a Hilbert space with orthonormal basis $(e_n)_{n=1}^{\infty}$. The C^{*} $-algebra K(H)$ is non-unital, since $dim(H) = \infty$. If P_n is a projection on $\mathbb{C}e_1 + ... + \mathbb{C}e_n$, then the increasing sequence $(P_n)_{n=1}^{\infty}$ is an approximate unit for $K(H)$.

Theorem 1.1 ([4]). Let $T : H \longrightarrow H$ be a compact self-adjoint operator on Hilbert space H. Then there is an orthonormal basis of H consisting of eigenvectors of T . The nonzero eigenvalues of T are from finite or countably infinite set $\{\lambda_k\}_{k=1}^{\infty}$ of real numbers and $T = \sum_{k=1}^{\infty} \lambda_k P_k$, where P_k is the orthogonal projection on the finite-dimensional space of eigenvectors corresponding to eigenvalues. If the number of nonzero eigenvalues is countably infinite, then the series converges to T in the operator norm.

The problem of stability of functional equations originated from a question of Ulam [5] concerning the stability of group homomorphisms: let $(G1, *)$ be a group and let $(G2, *, d)$ be a metric group with the metric $d(.,.)$. Given $\varepsilon > 0$, does there exist a $\delta(\varepsilon) > 0$ such that if a mapping $h: G_1 \longrightarrow G_2$ satisfies the inequality

$$
d(h(x * y), h(x) * h(y)) < \delta
$$

$$
58\,
$$

for all $x, y \in G_1$, then there exists a homomorphism $H : G_1 \to G_2$ with

$$
d(h(x), H(x)) < \varepsilon
$$

for all $x \in G_1$? If the answer is affirmative, we would say that the equation of homomorphism $H(x * y) = H(x) * H(y)$ is stable. Thus, the stability question of functional equations is that how do the solutions of the inequality differ from those of the given functional equation?

Hyers [6] gave the first affirmative answer to the question of Ulam for Banach spaces. Let X and Y be Banach spaces. Assume that $f: X \longrightarrow Y$ satisfies

$$
||f(x + y) - f(x) - f(y)|| \le \varepsilon
$$

for all $x, y \in X$ and some $\varepsilon > 0$. Then, there exists a unique additive mapping $T: X \longrightarrow Y$ such that

$$
||f(x) - T(x)|| \le \varepsilon
$$

for all $x \in X$. This method is called the direct method or Hyers-Ulam stability of functional equations.

Let N be the set of natural numbers. For $m \in \mathbb{N} \cup \{0\} = \mathbb{N}_0$, a sequence $H = \{h_0, h_1, ..., h_m\}$ (resp. $H = \{h_0, h_1, ..., h_n, ...\}$ of linear mappings from C^* -algebra A into C^* -algebra B is called a higher derivation of rank m (resp. infinite rank) from A into B if

$$
h_n(xy) = \sum_{l+j=n} h_l(x)h_j(y)
$$

holds for each $n \in \{0, 1, ..., m\}$ (resp. $n \in \mathbb{N}_0$) and all $x, y \in A$. A higher derivation H from A into B is said to be continuous if each h_n is continuous on A. The higher derivation H on A is called be strong if h_0 is an identity mapping on A . Of course, a higher derivation of rank 0 from A into B (resp. a strong higher derivation of rank 1 on A) is a homomorphism (resp. a derivation). So a higher derivation is a generalization of both a homomorphism and a derivation.

Definition 1.1 Let A be a C^* -algebra without unit. A sequence $H =$ ${h_0, h_1, ..., h_m, ...\}$ of mapping from A into A is called approximate –

$$
59\,
$$

strong if, $\lim_{n} h_0(x_n)x = x \lim_{n} h_0(x_n) = x$ for all $x \in A$ when $\{x_n\}_n$ is approximate unit in A.

Theorem 1.2 [16] Let X is a normed spaces and Y is a Banach space. If $f: X \longrightarrow Y$ be mapping for which there exists a function $\psi: X^3 \longrightarrow Y$ $[0,\infty)$ such that;

$$
\sum_j \frac{1}{2^j} \psi(2^jx, 2^jy, 2^jz) < \infty
$$

and

$$
\|2f(\frac{x+y}{2}+z)-f(x)-f(y)-2f(z)\| < \psi(x,y,z)
$$

for all $x, y, z \in X$. Then, there exists a unique additive mapping L : $X \longrightarrow Y$ such that

$$
||f(x) - L(x)|| < \frac{1}{4}\psi(x, x, x)
$$

for all $x \in X$.

In this paper, we will adopt spectral theorem for compact self-adjoint operators, to investigate of higher derivation and higher Jordan derivation on $K(H)$ associated with the following cauchy–Jencen type functional equation

$$
2f(\frac{T+S}{2} + R) = f(T) + f(S) + 2f(R)
$$

for all $T, S, R \in K(H)$.

2 Higher derivation on $K(H)$

It is easy to see that if a continuous mapping $f: X \longrightarrow Y$ with $f(ix) =$ $if(x)$ for all $x \in X$ satisfy conditions of theorem 1.2, then the mapping $L: X \longrightarrow Y$ given in statement of theorem 1.2 is a $\mathbb{C}-\text{linear}$. We us this fact in this paper.

Lemma 2.1 Assume that a mapping $f : X \longrightarrow B$ is additive and for

$$
60\,
$$

each fixed $x \in X$, $f(\lambda x) = \lambda f(x)$ for all $\lambda \in \mathbb{T}_{\theta_0}^1 := \{e^{i\theta} : 0 \le \theta \le \theta_0\}.$ Then f is $\mathbb{C}-linear$.

Proof. If λ belong to \mathbb{T}^1 , then there exists $\theta \in [0, 2\pi]$ such that $\lambda = e^{i\theta}$. It follows from $\frac{\theta}{n} \to 0$ as $n \to \infty$ there exists $n_0 \in \mathbb{N}$ such that $\lambda_1 = e^{i\frac{\theta}{n}}$ belong to $\mathbb{T}_{\theta_0}^1$ and $f(\lambda x) = f(\lambda_1^{n_0} x) = \lambda_1^{n_0} f(x) = \lambda f(x)$ for all $x \in X$. Let $t \in (0,1)$. putting $t_1 = t + i(1-t^2)^{\frac{1}{2}}$, $t_2 = t - i(1-t^2)^{\frac{1}{2}}$. Then we have $t=\frac{t_1+t_2}{2}$ $\frac{+i_2}{2}$ and $t_1, t_2 \in \mathbb{T}^1$. It follows that

$$
f(tx) = f(\frac{t_1 + t_2}{2}x) = \frac{t_1}{2}f(x) + \frac{t_2}{2}f(x) = tf(x).
$$

If $\lambda \in B_1 := {\lambda \in \mathbb{C}}; |\lambda| \leq 1$, then there exists $\theta \in [0, 2\pi]$ such that $\lambda = |\lambda| e^{i\theta}$. It follows that

$$
f(\lambda x) = f(|\lambda| e^{i\theta} x) = |\lambda| f(e^{i\theta} x) = \lambda f(x).
$$

for all $x \in X$. If $\lambda \in \mathbb{C}$ then, there exist $n_0 \in \mathbb{N}$ (from $\frac{\lambda}{n} \to 0$ as $\to \infty$) such that $\lambda_0 = \frac{\lambda}{n_e}$ $\frac{\lambda}{n_0} \in B_1$. It follows that

$$
f(\lambda x) = f(n_0 \lambda_0 x) = n_0 \lambda_0 f(x) = \lambda f(x)
$$

for all $x \in X$. \Box

Lemma 2.2 Let $\phi = {\varphi_0, \varphi_1, ..., \varphi_m, ...\}$ is a sequence of continuous mappings from $K(H)$ into $K(H)$ such that; $\varphi_m(TP) = \sum_{l+j=m} \varphi_l(P) \varphi_j(T)$ for all $T \in K(H)$ and $P \in P(H)$.

1) If $\phi = {\varphi_0, \varphi_1, ..., \varphi_m, ...\}$ is an approximate–strong, then for approximate unit $\{P_n\} \subset P(H)$, we have $\lim_n \varphi_m(P_n) = 0$ for each $m \in$ $\{1, 2, 3, \cdots\}.$

2) If $\varphi_0(0) = 0$, then $\varphi_m(0) = 0$ for each $m \in \{1, 2, 3, \dots\}$.

Proof. It is clear. \Box

Definition 2.1 Let A be a C^{*}-algebra. A sequence $H = \{h_0, h_1, ..., h_m, ...\}$ of mapping from A into A with $h_0(0) = 0$ is called a Cauchy–Jensen type

61

higher derivation if for each $m \in \mathbb{N}_0$

$$
h_m(xy) = \sum_{l+j=m} h_l(x)h_j(y)
$$

and

$$
2h_m\left(\frac{x+y}{2} + 2\lambda z\right) = h_m(x) + h_m(y) + 2\lambda h_m(z)
$$

for all $x, y, z \in A$ and $\lambda \in \mathbb{C}$.

Theorem 2.1 Let $\phi = {\varphi_0, \varphi_1, ..., \varphi_m, ...\}$ is an approximate–strong of continuous mappings from $K(H)$ into $K(H)$ for which for each $m \in \mathbb{N}_0$ there exists a function $\psi_m : K(H)^3 \longrightarrow [0, \infty)$ such that;

$$
\sum_{j} \frac{1}{2^{j}} \psi_{m}(2^{j}T, 2^{j}S, 2^{j}R) < \infty \tag{2.1}
$$

and

$$
||2\varphi_m(\frac{T+S}{2} + \lambda R) - \varphi_m(T) - \varphi_m(S) - 2\lambda\varphi_m(R)|| < \psi_m(T, S, R)
$$
 (2.2)

for all $T, S, R \in K(H)$, $\lambda \in \{1, i\}$ and $m \in \mathbb{N}_0$.

If $\varphi_m(2^nTP) = \sum_{l+j=m} 2^n \varphi_l(T) \varphi_j(P)$ for each $T \in K(H)$ and $P \in$ $P(H)$, then $\phi = {\varphi_0, \varphi_1, ..., \varphi_m, ...\}$ is a cauchy–Jensen type higher derivation.

Proof. From continuity of φ_m and by the same reasoning as in the proof of the theorems of [16], for each $m \in \mathbb{N}_0$, there exists R–linear mapping $h_m: K(H) \longrightarrow K(H)$ with $h_m(T) = \lim_{n \to \infty} \frac{1}{2^n} \varphi_m(2^n T)$ such that

$$
||h_m(T) - \varphi_m(T)|| < \frac{1}{4} \psi_m(T, T, T)
$$

for all $T \in K(H)$. It follows from (2.2) and lema 2.1 that h_m is a $\mathbb{C}-\text{linear}$ for each $m \in \mathbb{N}_0$.

We show that $h_m \equiv \varphi_m$ for each $m \in \mathbb{N}_0$. Let $\{P_k\} \subset P(H)$ be approxi-

$$
62\,
$$

mate unit of $K(H)$. Then by lema 2.2 and linearity of φ_m we get

$$
h_m(T) = \lim_{n} \frac{1}{2^n} \varphi_m(2^n T) = \lim_{n,k} \frac{1}{2^n} \varphi_m(2^n T P_k)
$$

$$
= \lim_{n,k} \frac{1}{2^n} \sum_{l+j=m} 2^n \varphi_l(P_k) \varphi_j(T)
$$

$$
= \lim_{k} \sum_{l+j=m} \varphi_l(P_k) \varphi_j(T) = \varphi_m(T)
$$

for all $T \in K(H)$ and $m \in \mathbb{N}_0$. Now, let $S, T \in K(H)$. There are compact self adjoint operators S_1 , S_2 such that $S = S_1 + iS_2$. According to Theorem 1.1 we have $S = S_1 + iS_2 = \sum_{l=1}^{\infty} \alpha_l P_l + i \sum_{j=1}^{\infty} \beta_j P_j$ where $P_k \in P(H)$ and $\alpha_k, \beta_k \in \mathbb{C}$ for all $k \in \{1, 2, 3, \dots\}$. It follows from linearity and continuity of φ and T that

$$
\varphi_m(TS) = \varphi_m\left(T\left\{\sum_{l=1}^{\infty} \alpha_l P_l + i \sum_{j=1}^{\infty} \beta_j P_j\right\}\right)
$$

\n
$$
= \sum_{l=1}^{\infty} \varphi_m\left(T\alpha_l P_l\right) + i \sum_{j=1}^{\infty} \varphi_m\left(T\beta_j P_j\right)
$$

\n
$$
= \sum_{l=1}^{\infty} \sum_{s+k=m} \varphi_k(T)\varphi_s\left(\alpha_l P_l\right) + i \sum_{j=1}^{\infty} \sum_{s+k=m} \varphi_k(T)\varphi_s\left(\beta_j P_j\right)
$$

\n
$$
= \sum_{s+k=m} \varphi_k(T) \sum_{l=1}^{\infty} \varphi_s\left(\alpha_l P_l\right) + i \sum_{s+k=m} \varphi_k(T) \sum_{j=1}^{\infty} \varphi_s\left(\beta_j P_j\right)
$$

\n
$$
= \sum_{s+k=m} \varphi_k(T) \left\{\sum_{l=1}^{\infty} \varphi_s(\alpha_l P_l) + i \sum_{j=1}^{\infty} \varphi_s(\beta_j P_j)\right\}
$$

\n
$$
= \sum_{k+s=m} \varphi_k(T) \varphi_s(S).
$$

This means that ϕ is a cauchy–Jensen type higher derivation. \Box

Corollary 1 Let $p \in (0,1)$, $\theta \in [0,\infty)$ be real numbers. Suppose that $\phi = {\varphi_0, \varphi_1, ..., \varphi_m, ...\}$ is an approximate–strong of continuous mappings from $K(H)$ into $K(H)$ with $\varphi_0(0) = 0$ such that, $\varphi_m(2^nTP) =$ $\sum_{l+j=m} 2^n \varphi_l(T) \varphi_j(P)$ for each $m \in \mathbb{N}_0$, $T \in K(H)$ and $P \in P(H)$.

63

$$
\|2\varphi_m(\frac{T+S}{2}+\lambda R)-\varphi_m(T)-\varphi_m(S)-2\lambda\varphi_m(R)\|<\theta(\|T\|^p+\|S\|^p+\|S\|^p)
$$

for all $\lambda \in \{1, i\}$ and all $T, S, R \in K(H)$ and for each $m \in \mathbb{N}_0$, then $\phi = {\varphi_0, \varphi_1, ..., \varphi_m, ...\}$ is a Cauchy-Jensen type higher derivation.

Proof. Setting $\phi(T, S, R) := \theta(||T||^p + ||S||^p + ||R||^p)$ all $T, S, R \in K(H)$. Then by Theorem 2.1 we get the desired result. \Box

Corollary 2 Let p_1, p_2, p_3 and θ be positive real numbers with $p_1 + p_2 + p_3$ $p_3 < 1$ and let $\phi = {\varphi_0, \varphi_1, ..., \varphi_m, ...}$ be an approximate-strong of continuous mappings from $K(H)$ into $K(H)$ with $\varphi_0(0) = 0$ such that, $\varphi_m(2^nTP) = \sum_{l+j=m} 2^n \varphi_l(T) \varphi_j(P)$ for each $m \in \mathbb{N}_0$, $T \in K(H)$ and $P \in P(H)$.

If

$$
||2\varphi_m(\frac{T+S}{2}+\lambda R)-\varphi_m(T)-\varphi_m(S)-2\lambda\varphi_m(R)|| < \theta(||T||_1^p.||S||_2^p.||S||_3^p)
$$

for all $\lambda \in \{1, i\}$ and all $T, S, R \in K(H)$ and for each $m \in \mathbb{N}_0$, then $\phi = {\varphi_0, \varphi_1, ..., \varphi_m, ...\}$ is a Cauchy–Jensen type higher derivation.

Proof. Setting $\phi(T, S, R) := \theta(||T||_1^p$ $_{1}^{p}.$ || S || $_{2}^{p}$ $_{2}^{p}.$ || R || $_{3}^{p}$ j_3^p all $T, S, R \in K(H)$. Then by Theorem 2.2 we get the desired result. \Box

3 Higher Jordan derivations on $K(H)$

Definition 3.1 Let A be a C^{*}-algebra. A sequence $H = \{h_0, h_1, ..., h_m, ...\}$ of mapping from A into A with $h_0(0) = 0$ is called a Cauchy–Jensen type higher Jordan derivation if for each $m \in \mathbb{N}_0$,

$$
h_m(xy) = \sum_{l+j=m} \left[h_l(x)h_j(y) + h_j(x)h_l(y) \right]
$$

64

If

and

$$
2h_m(\frac{x+y}{2} + \lambda z) = h_m(x) + h_m(y) + 2\lambda h_m(z)
$$

for all $x, y, z \in A$ and $\lambda \in \mathbb{C}$.

Theorem 3.1 Let $\phi = {\varphi_0, \varphi_1, ..., \varphi_m, ...\}$ is an approximate-strong of continuous mappings from $K(H)$ into $K(H)$ for which for each $m \in \mathbb{N}_0$ there exists a function $\psi_m : K(H)^3 \longrightarrow [0, \infty)$ such that;

$$
\sum_{j} \frac{1}{2^t} \psi_m(2^t T, 2^t S, 2^t R) < \infty
$$

and

$$
||2\varphi_m(\frac{T+S}{2} + \lambda R) - \varphi_m(T) - \varphi_m(S) - 2\lambda\varphi_m(R)|| < \psi_m(T, S, R)
$$

for all $T, S, R \in K(H)$ and $m \in \mathbb{N}_0$. If $\varphi_m(2^nTP+2^nPT) = \sum_{l+j=m} \left[2^n\varphi_l(T)\varphi_j(P) + \varphi_l(T)\varphi_j(P)\right]$ $2^{n}\varphi_j(P)\varphi_l(T)\big]$ for all $T \in K(H)$ and $P \in P(H)$, then $\phi = {\varphi_0, \varphi_1, ..., \varphi_m, ...}$ is a higher Jordan derivation.

Proof. By the same reasoning as the proof of Theorem 2.1, for each $m \in \mathbb{N}_0$, there exists a unique $\mathbb{C}-$ linear mapping $h_m : K(H) \longrightarrow K(H)$ with $h_m(T) = \lim_{n \to \infty} \frac{1}{2^n} \varphi(2^n T)$ such that

$$
||h_m(T) - \varphi_m(T)|| < \frac{1}{4}\psi(T, T, T)
$$

for all $T \in K(H)$ and $m \in \mathbb{N}_0$.

We show that $h_m \equiv \varphi_m$ for each $m \in \mathbb{N}_0$. Let $\{P_k\} \subset P(H)$ be approximate unit of $K(H)$. Then by lema 2.2 and linearity of φ_m we get

$$
h_m(T) = \lim_{n} \frac{1}{2^n} \varphi_m(2^n T) = \lim_{n,k} \frac{1}{2^n} \varphi_m(2^{n-1} T P_k + 2^{n-1} P_k T)
$$

=
$$
\lim_{n,k} \frac{1}{2^n} \sum_{l+j=m} [2^{n-1} \varphi_l(T) \varphi_j(P_k) + 2^{n-1} \varphi_j(T) \varphi_l(P_k)]
$$

=
$$
\lim_{n,k} \frac{1}{2} \sum_{l+j=m} [\varphi_l(T) \varphi_j(P_k) + \varphi_j(T) \varphi_l(P_k)] = \varphi_m(T)
$$

65

for all $T \in K(H)$ and $m \in \mathbb{N}_0$. Now, Let $S, T \in K(H)$. There are compact self-adjoint operators S_1, S_2 such that $S = S_1 + iS_2 = \sum_{l=1}^{\infty} \alpha_l P_l +$ $i \sum_{j=1}^{\infty} \beta_j P_j$ where $P_k \in P(H)$ and $\alpha_k, \beta_k \in \mathbb{C}$ for all $k \in \{1, 2, 3, \dots\}$. It follows from linearity and continuity of φ and T that

$$
\varphi_m(TS+ST) = \varphi_m \left(T \left\{ \sum_{l=1}^{\infty} \alpha_l P_l + i \sum_{j=1}^{\infty} \beta_j P_j \right\} + \left\{ \sum_{l=1}^{\infty} \alpha_l P_l + i \sum_{j=1}^{\infty} \beta_j P_j \right\} T \right)
$$

\n
$$
= \sum_{l=1}^{\infty} \varphi_m \left(\alpha_l T P_l + \alpha_l P_l T \right) + i \sum_{j=1}^{\infty} \varphi_m \left(\beta_j T P_j + \beta_j P_j T \right)
$$

\n
$$
= \sum_{l=1}^{\infty} \sum_{s+k=m} \left[\varphi_s(T) \varphi_k(\alpha_l P_l) + \varphi_s(\alpha_l P_l) \right] \varphi_k(T)
$$

\n
$$
+ i \sum_{j=1}^{\infty} \sum_{s+k=m} \left[\varphi_s(T) \varphi_k(\beta_j P_j) + \varphi_s(\beta_j P_j) \right] \varphi_k(T)
$$

\n
$$
= \sum_{s+k=m} \varphi_s(T) \left\{ \sum_{l=1}^{\infty} \varphi_k(\alpha_l P_l) + i \sum_{j=1}^{\infty} \varphi_k(\beta_j P_j) \right\} + \left\{ \sum_{l=1}^{\infty} \varphi_s(\alpha_l P_l) + i \sum_{j=1}^{\infty} \varphi_s(\alpha_l P_l) \right\} + \sum_{j=1}^{\infty} \varphi_s(\alpha_l P_l) + i \sum_{j=1}^{\infty} \varphi_s(T) \varphi_k(S)
$$

This means that ϕ is a cauchy–Jensen type higher Jordan derivation. \Box

Corollary 3 Let $p \in (0,1), \theta \in [0,\infty)$ be real numbers. Suppose that $\phi = {\varphi_0, \varphi_1, ..., \varphi_m, ...\}$ is an approximate–strong of continuous mappings from $K(H)$ into $K(H)$ with $\varphi_0(0) = 0$ such that, $\varphi_m(2^nTP + 2^nPT) =$ $\sum_{l+j=m} \left[2^n \varphi_l(T) \varphi_j(P) + 2^n \varphi_j(P) \varphi_l(T)\right]$ for each $m \in \mathbb{N}_0$, $T \in K(H)$ and $P \in P(H)$.

If

$$
||2\varphi_m(\frac{T+S}{2}+\lambda R)-\varphi_m(T)-\varphi_m(S)-2\lambda\varphi_m(R)|| < \theta(||T||^p+||S||^p+||S||^p)
$$

for all $\lambda \in \{1, i\}$ and all $T, S, R \in K(H)$ and for each $m \in \mathbb{N}_0$, then $\phi = {\varphi_0, \varphi_1, ..., \varphi_m, ...\}$ is a Cauchy–Jensen type higher derivation.

Proof. Setting $\phi(T, S, R) := \theta(||T||^p + ||S||^p + ||R||^p)$ all $T, S, R \in K(H)$. Then by Theorem 3.1 we get the desired result. \Box

66

Corollary 4 Let p_1, p_2, p_3 and θ be positive real numbers with $p_1 + p_2 +$ $p_3 < 1$ and let $\phi = {\varphi_0, \varphi_1, ..., \varphi_m, ...}$ is an approximate-strong of continuous mappings from $K(H)$ into $K(H)$ with $\varphi_0(0) = 0$ such that, $\varphi_m(2^nTP + 2^nPT) = \sum_{l+j=m} \left[2^n\varphi_l(T)\varphi_j(P) + 2^n\varphi_j(P)\varphi_l(T)\right]$ for each $m \in \mathbb{N}_0$, $T \in K(H)$ and $P \in P(H)$.

If

$$
||2\varphi_m(\frac{T+S}{2} + \lambda R) - \varphi_m(T) - \varphi_m(S) - 2\lambda \varphi_m(R)|| < \theta(||T||_1^p. ||S||_2^p. ||S||_3^p)
$$

for all $\lambda \in \{1, i\}$ and all $T, S, R \in K(H)$ and for each $m \in \mathbb{N}_0$, then $\phi = {\varphi_0, \varphi_1, ..., \varphi_m, ...\}$ is a Cauchy-Jensen type higher derivation.

Proof. Setting $\phi(T, S, R) := \theta(||T||_1^p$ $_{1}^{p}$. $||S||_{2}^{p}$ $_{2}^{p}.$ || R || $_{3}^{p}$ j_3^p all $T, S, R \in K(H)$. Then by Theorem 3.1 we get the desired result. \Box

References

- [1] G. Roussy, J. A. Pearcy, Foundations and industrial applications of microwaves and radio frequency fields, John Wiley, New York, 1995.
- [2] R. A. Van Gorder, K. Vajravelu, A variational formulation of the Nagumo reaction-diffusion equation and the Nagumo telegraph equation, Nonlinear Analysis: Real World Applications 4 (2010), 2957–2962.
- [3] G.Douglas, Banach Algebra Techniques in Operator Theory, Springer. New York, (1997).
- [4] C. J. Murphy, C^* -Algebra and operator theory, Academic press, INC. New York, (1997).
- [5] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1960.
- [6] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941), 222-224.
- [7] J. M. Rassias, M. J. Rassias, On the Ulam stability of Jensen and Jensen type mappings on restricted domains, J. Math. Anal. Appl. USA 281 (2003), 516–524.
- [8] B. E. Johnson, Approximately multiplication maps between Banach algebra,J. Landen math. soc. 37 (1988), 294–316.
- [9] M. Eshaghi Gordji, Jordan *-homomorphisms between unital C^{*}-Algebras: A fixed point approach, Fixed point theory 12(2) (2011), 341– 348.
- [10] M. Eshaghi Gordji, A. Najati and A. Ebadian, Stability and superstability of Jordan homomorphisms and Jordan derivations on Banach algebras and C [∗]−algebras: a fixed point approach, Acta Math. Sci. Ser. B Engl. Ed. 31 (2011), 1911-1922.
- [11] M. Eshaghi Gordji, Th. M. Rassias, Ternary homomorphisms between unital ternary C^* -algebras, Proc. Rom. Acad. Ser. A Math. Phys. Tech. Sci. Inf. Sci. 12 (2011), 189-196.
- [12] M. Eshaghi Gordji, N. Ghobadipour, C. Park, Jordan ∗−homomorphisms on C^* -algebras, Oper. Matrices 5 (2011), 541-551.
- [13] A. Ebadian, S. Kaboli Gharetapeh, M. Eshaghi Gordji, Nearly Jordan ∗−homomorphisms between unital C [∗]−algebras, Abstr. Appl. Anal., (2011) 12 pp.
- [14] M. Eshaghi Gordji, Z. Alizadeh, Y. J. Cho, H. Khodaei, On approximate C^* -ternary m-homomorphisms: a fixed point approach, Fixed Point Theory Appl. (2011), Art. ID 454093, 14 pp.
- [15] S. Kaboli Gharetapeh, M. Eshaghi Gordji, M. B. Ghaemi and E. Rashidi, Ternary Jordan homomorphisms in C^{*}-ternary algebras, *J. Nonlinear* Sci. Appl. 4 (2011), 1-10.
- [16] C. Baak, Cauchy–Rassias stability of Cauchy–Jensen additive mappings in Banach spaces, Acte mathematica sinica, English series 22, No6, (2006), 1789–1796.

68