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Abstract

In this paper, a new and efficient approach based on operational matrices with respect to the gener-
alized Laguerre polynomials for numerical approximation of the linear ordinary differential equations
(ODEs) with variable coefficients is introduced. Explicit formulae which express the generalized La-
guerre expansion coefficients for the moments of the derivatives of any differentiable function in terms
of the original expansion coefficients of the function itself are given in the matrix form. The main
importance of this scheme is that using this approach reduces solving the linear differential equations
to solve a system of linear algebraic equations, thus greatly simplify the problem. In addition, several
numerical experiments are given to demonstrate the validity and applicability of the method.
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1 Introduction

Orthogonal polynomials play a prominent role in pure, applied and com-
putational mathematics, as well as in the applied sciences and also in
many fields of numerical analysis such as quadratures, approximation
theory and so on [1-4]. In particular case, these polynomials have an im-
portant role in the spectral methods. These methods (spectral methods)
have been successfully applied in the approximation of partial, differen-
tial and integral equations. Three most widely used spectral versions are
the Galerkin, collocation and Tau methods. Their utility is based on the
fact that if the solution sought is smooth, usually only a few terms in
an expansion of global basis functions are needed to represent it to high
accuracy [5-11]. We must note to this point that numerical methods for
ordinary, partial and integral differential equations can be classified into
the local and global categories.

The finite-difference and finite-element methods are based on local ar-
guments, whereas the spectral methods are in the global class [12,13].
Spectral methods, in the context of numerical schemes for differential
equations, belong to the family of weighted residual methods, which are
traditionally regarded as the foundation of many numerical methods such
as finite element, spectral, finite volume and boundary element methods.
Also the linear ODEs with variable coefficients and their solutions play a
major role in the branch of modern mathematics and arise frequently in
many applied areas. Therefore, a reliable and efficient technique for the
solution of them is too important.

The analytic results on the existence and uniqueness of solutions to
the second order linear ODEs have been investigated by many authors
[14,15], however the existence and uniqueness of the solution for ODEs
under their conditions is beyond the scope of this paper. We assume that
the ODEs which we consider in this paper with their conditions have so-
lutions. During the last decades, several methods have been used to solve
higher order linear ODEs such as Adomian’s decomposition method [16-
18], Taylor collocation method [19-22], Haar functions method [23,24],
Tau method [25,26], Wavelet method [27], Hybrid function method [28],
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Legendre wavelet method [29], collocation method based on Jacobi poly-
nomials [30], Taylor polynomial solutions [31], Boubaker polynomial ap-
proach [32], and Bernoulli polynomial approach [33]. In this paper, we
develop a new and efficient approach to obtain the numerical solution of
the general linear ODEs with variable coefficients of the form

dj∑
k=1

Ak,j(x)y(j)(x) +
dj−1∑
k=1

Ak,j(x)y(j−1)(x) + ...+
d0∑
k=1

Ak,j(x)y(0)(x) = g(x),

0 ≤ x ≤ ∞,

j ≥ 0, dt > 0, t = 0, ..., j,

(1.1)
with the conditions

j∑
k=0

αiky
(k)(ai) = µi, i = 0, 1, ..., j. (1.2)

The main importance of our work is considering the general linear ODEs
(1.1) with respect to (1.2), wherein the other papers only considered par-
icular cases of our general problem. Also using the generalized Laguerre
polynomials as the basic functions for numerical approximation wherein
the classical Laguerre polynomials are particular cases of them, is the
other superiority of our paper. The remainder of this paper is organized
as follows: In section 2, we introduce the properties of generalized La-
guerre polynomials and the basic formulation of them required for our
subsequent development. Section 3, is devoted to the operational matri-
ces of generalized Laguerre polynomials (derivative and moment) with
some useful theorems. Section 4, summarizes the application of gener-
alized Laguerre polynomials to the solution of problem (1.1) and (1.2).
Thus, a set of linear equations is formed and a solution of the consid-
ered problem is introduced. Section 5, is devoted to approximations by
generalized Laguerre polynomials and a useful theorem. In section 6, the
proposed method is applied for three numerical experiments. An appli-
cation of the method for the high order linear differential equation is
presented in section 7. Finally, we have monitored a brief conclusion in
section 8. Note that we have computed the numerical results by Matlab
(version 2013) programming.
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2 The generalized Laguerre polynomials

In this part, we define the generalized Laguerre polynomials and their
properties such as their Sturm-Liouville ODE, three terms recursion for-
mula and etc. Let Λ = (0,+∞), then Laguerre polynomials are denoted
by Lαn(x)(α > −1), and they are the eigenfunctions of the Sturm-Liouville
problem

x−αex(xα+1e−x(Lαn(x))′)′ + λnL
α
n(x) = 0, x ∈ Λ, (2.1)

with the eigenvalues λn = n [13].
Laguerre polynomials are orthogonal in L2

wα(Λ) space with the weight
function wα(x) = xαe−x, satisfy in the following relation∫ +∞

0
Lαn(x)Lαm(x)wα(x)dx = γαnδm,n, γ

α
n =

Γ(n+ α + 1)

Γ(n+ 1)
, (2.2)

where δm,n is a kronecker delta function. The explicit form of these poly-
nomials is in the form

Lαn(x) =
n∑
i=0

Eα
i x

i, (2.3)

where

Eα
i =

n+ α

n− i

 (−1)i

i!
. (2.4)

These polynomials are satisfied in the following three terms recurrence
formula

(n+ 1)Lαn+1(x) = (2n+ α + 1− x)Lαn(x)− (n+ α)Lαn−1(x),

Lα0 (x) = 1, Lα1 (x) = α + 1− x.
(2.5)

The case α = 0 leads to the classical Laguerre polynomials, which are
used most frequently in practice and will simply be denoted by Ln(x). An
important property of the Laguerre polynomials is the following deriva-
tive relation [13]:

(Lαn(x))′ =
n−1∑
i=0

Lαi (x). (2.6)
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Further, (Lαi (x))(k) are orthogonal with respect to the weight function
wα+k. i.e.,

∫ +∞

0
(Lαi )(k)(x)(Lαj )(k)(x)wα+k(x)dx = γα+k

n−k δi,j, (2.7)

where γα+k
n−k is defined in (2.7).

A function y(x) ∈ L2
wα [0,∞), can be expressed in terms of the generalized

Laguerre polynomials as

y(x) =
∞∑
i=0

aiL
α
i (x), (2.8)

where the coefficients ai are given by

ai =
1

γαi

∫ +∞

0
Lαi (x)y(x)w(α)(x)dx. (2.9)

In practice, only the first m+ 1 terms of the generalized Laguerre poly-
nomials are considered. Then we have

ym(x) =
m∑
i=0

aiL
α
i (x) = Lα(x)TA, (2.10)

where the generalized Laguerre polynomials coefficients vector A and the
generalized Laguerre polynomials vector L(α)(x) are given by

A = [a0, a1, ..., am]T ,

L(α)(x) = [Lα0 (x), Lα1 (x), ..., Lαm(x)]T .

(2.11)
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3 The operational matrices of the Laguerre polynomials (deriva-
tive and moment)

In this section, we present the operational matrices of generalized La-
guerre polynomials (derivative and moment). To do this, first we intro-
duce the concept of the operational matrix.

3.1 The operational matrix

Definition 1. Suppose

φ = [φ0, φ1, ..., φn], (3.1)

where φ0, φ1, ..., φn are the basic functions on the given interval [a, b].
The matrices En×n and Fn×n are named as the operational matrices of
derivatives and integrals respectively if and only if

d
dt
φ(t) = Eφ(t),∫ x

a φ(t) dt ' Fφ(t).
(3.2)

Further assume g = [g0, g1, ..., gn], named as the operational matrix of
the product, if and only if

φ(x)φT (x) ' Ggφ(x). (3.3)

In other words, to obtain the operational matrix of a product, it is suffi-
cient to find gi,j,k in the following relation

φi(x)φj(x) '
i+j∑
k=0

gi,j,kφk(x), (3.4)

which is called the linearization formula [34]. Operational matrices are
used in several areas of numerical analysis and they hold particular im-
portance in various subjects such as integral equations [35], differential
and partial differential equations [36] and etc. Also many textbooks and
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papers have employed the operational matrices for spectral methods. Now
we present the following theorem.

Theorem 1. If we consider the generalized Laguerre approximation

y(x) ∼=
m∑
i=0

aiL
(α)
i (x) =

(
L(α)(x)

)T
A, (3.5)

then

xiy(j)(x) ∼= BTL(α)(x) =
((
GiDj

)T
A
)T
L(α)(x), (3.6)

where

Di,j =

 1, i > j,

0, i ≤ j.
(3.7)

and

Gi,j =



−(i+ α), j = i− 1,

−i, j = i,

−(i+ α), j = i+ 1,

0, otherwise.

(3.8)

Proof: First, we obtain the operational matrix with respect to the deriva-
tive operator. For this goal, we must obtain a matrix D which satisfy in
the following formula

(
L

(α)
0 (x)

)′
(
L

(α)
1 (x)

)′
...(
L(α)
n (x)

)′


= D



L
(α)
0 (x)

L
(α)
1 (x)

...

L(α)
n (x)


, (3.9)

but by using (2.6), we can obtain the matrix D as the following

Di,j =

 1, i > j,

0, i ≤ j.
(3.10)
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Now by j-times repeating the formula (3.9), we can obtain the operational
matrix with respect to y(j)(x) as the following



(
L

(α)
0 (x)

)j
(
L

(α)
1 (x)

)j
...(
L(α)
n (x)

)j


= Dj



L
(α)
0 (x)

L
(α)
1 (x)

...

L(α)
n (x)


. (3.11)

Also for obtaining the operational matrix with respect to the moment
operator we must obtain a matrix G, which satisfy in the following rela-
tion 

xL
(α)
0 (x)

xL
(α)
1 (x)

...

xL(α)
n (x)


= G



L
(α)
0 (x)

L
(α)
1 (x)

...

L(α)
n (x)


, (3.12)

but by using (2.5), we can obtain the matrix G as the following

Gi,j =



−(i+ α), j = i− 1,

−i, j = i,

−(i+ α), j = i+ 1,

0, otherwise.

(3.13)

Now by j-times repeating the formula (3.12), we can obtain the opera-
tional matrix with respect to xjy(x), as the following



xjL
(α)
0 (x)

xjL
(α)
1 (x)

...

xjL(α)
n (x)


= Gj



L
(α)
0 (x)

L
(α)
1 (x)

...

L(α)
n (x)


. (3.14)
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Now using formulae (3.11) and (3.14), yields

xiy(j)(x) '
n∑
k=0

akx
i
(
L

(α)
k (x)

)(j)
= ATxi



(
L

(α)
0 (x)

)(j)

(
L

(α)
1 (x)

)(j)

...(
L(α)
n (x)

)(j)


=

ATGiDj



L
(α)
0 (x)

L
(α)
1 (x)

...

L(α)
n (x)


=
(
(GiDj)

T
A
)T
L(α)(x),

(3.15)

so the proof is completed. 2

4 The method of solution

In this section, we describe our new approach for solving the linear dif-
ferential equations with variable coefficients (1.1), with respect to the
conditions (1.2). Our approach is based on approximating the exact so-
lution of (1.1), by truncating the generalized Laguerre expansion as

y(x) '
m∑
i=0

aiL
(α)
i (x) =

(
L(α)(x)

)T
A, (4.1)

where
A = [a0, a1, ..., am]T , (4.2)

and
L(α)(x) =

[
L

(α)
0 (x), L

(α)
1 (x), ..., L(α)

m (x)
]T
. (4.3)

Also we assume that the coefficients Ak,j(x) have the Taylor series ex-
pansion in the following form

Ak,j(x) =
mj∑
i=0

e
(j)
k,ix

i. (4.4)
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Now by substituting Eqs. (4.1) and (4.4) into Eq. (1.1), we obtain

sj∑
k=1

mj∑
i=0

e
(j)
k,ix

iy(j)(x)+
sj−1∑
k=1

mj−1∑
i=0

e
(j−1)
k,i xiy(j−1)(x)+...+

s0∑
k=1

m0∑
i=0

e
(0)
k,ix

iy(j)(x) ' f(x),

(4.5)

therefore from Eq. (4.5), we must simplify xi
(
y(j)(x)

)
as the following

xiy(j)(x) '
m∑
i=0

aiL
(α)
i (x) = (L(α)(x))

T
B

(i)
(j) =

(GiDj)
T
A)T

(
L(α)(x)

)
,

(4.6)

where D and G, are defined in Eqs. (3.7) and (3.8), respectively. Also we
approximate the right hand side of Eq. (1.1), as

f(x) =
m∑
i=0

biL
(α)
i (x) =

(
L(α)(x)

)T
B, (4.7)

where

B = [b0, b1, ..., bm]T , (4.8)

and

L(α)(x) =
[
L

(α)
0 (x), L

(α)
1 (x), ..., L(α)

m (x)
]T
. (4.9)

Using Eqs. (4.6) and (4.7), into Eq. (4.5), we obtain

(L(α)(x))T (
sj∑
k=1

mj∑
i=0

e
(j)
i,kB

(i)
(j) +

sj∑
k=1

mj∑
i=0

e
(j−1)
i,k B

(i)
(j−1) + ....

sj∑
k=1

mj∑
i=0

e
(0)
i,kB

(i)
(0)) =

(L(α)(x))TF ' (L(α)(x))TB.

(4.10)
From linear independency of the generalized Laguerre polynomials, we
conclude

F = B, (4.11)

where

F = [f0, f1, ..., fm]. (4.12)

Therefore from identity (4.11), we have a system of m + 1 algebraic
equations of m+ 1 unknown coefficients ai(i = 0, ..,m). Finally, we must
obtain the corresponding matrix form of the boundary conditions. For
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this purpose from Eq. (1.2), the values y(j)(a) can be written as

y(j)(a) =
(
L(α)(a)

)T (
Dj
)T
A, a ∈ [0,+∞). (4.13)

Substituting (4.13), in the boundary conditions (1.2) and then simplifying
it, we obtain the following matrix form

j∑
i=0

bi,ly
(l)(ai) =

(
L(α)(ai)

)T 
j∑
i=0

bi,lD
iA

 = σl, ai ∈ [0,+∞). (4.14)

Now from Eqs. (4.11) and (4.14), we have m+j+1 algebraic equations of
m+1 unknown coefficients. Thus for obtaining the unknown coefficients,
we must eliminate j arbitrary equations from these m+ j + 1 equations.
But because of the necessity of holding the boundary conditions, we
eliminate the last j equations from (4.11). Finally, replacing the last j
equations of (4.11) by the j equations of (4.14), we obtain a system of
m+ 1 equations of m+ 1 unknowns ai(i = 0, ..,m).

5 Approximations by Generalized Laguerre polynomials

Now in this section, we present some useful theorems which show the
approximations of functions by the generalized Laguerre polynomials.
For this purpose, let us define Λ = {x | 0 ≤ x <∞} and

J
(α)
N = span{L(α)

0 (x), L
(α)
1 (x), ..., L(α)

n (x)}.

The L2
w(α)(Λ)− orthogonal projection π

(α)
N : L2(Λ) → J

(α)
N is a mapping

in a way that for any y(x) ∈ L2(Λ), we have

〈π(α)
N (y)− y,Φ〉 = 0, ∀Φ ∈ J (α)

N .

Due to the orthogonality, we can write

π
(α)
N (y) =

N−1∑
k=0

ckL
(α)
k (x), (5.1)
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where ci (i = 0, 1, ..., N − 1) are constants in the following form

ci =
1

γ
(α)
k

< y(x), L
(α)
k >L2

w(α)
.

In the literature of spectral methods, π
(α)
N (y) is named as the general-

ized Laguerre expansion of y(x) and approximates y(x) on (0,+∞). In
the spectral methods, by substituting the generalized Laguerre expansion
π

(α)
N (y) in the ODEs and their boundary conditions, we obtain a residual

term which is symbolically showed by Res(x) as a function of x,N, and
α. Different strategies for minimizing a residual term Res(x), lead to the
different versions of spectral methods such as Galerkin, Tau and colloca-
tion methods. For instance, in the collocation methods the residual term
Res(x) is vanished in particular points named as collocated points. Also
estimating the distance between y(x) and its generalized Laguerre expan-
sion as measured in the weighted norm ‖.‖wα is an important problem
in numerical analysis. The following theorem provides the basic approx-
imation results for generalized Laguerre expansion.

Theorem 2. we have

‖ dl

dxl
(π

(α)
N (y)− y) ‖w(α+l)≤ N (l−m)/2 ‖ dm

dxm
y(x) ‖wα+m ,

0 ≤ l ≤ m, ∀y ∈ Bm
(α)(Λ),

where

Bm
(α)(Λ) = {∀y ∈ L2

wα :
dly

dxl
∈ L2

wα+l
(Λ), 0 ≤ l ≤ m}.

Proof: See [13]. �
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6 The test experiments

In this section, some numerical experiments are given to illustrate the
properties of the method and all of them were performed on a computer
using a program written in Matlab 2013.

Experiment 1. Consider the following linear differential equation with
variable coefficients [37],

y′′(x) + xy′(x) + xy(x) = 1 + x+ x2, −1 ≤ x ≤ 1,

y(0) = 1, y′(0) + 2y(1)− y(−1) = −1.

(6.1)

Now we approximate the exact solution of (6.1), by

y(x) '
6∑
i=0

aiL
(α)
i (x) =

(
L(α)(x)

)T
A, (6.2)

where
A = [a0, a1, ..., a6]. (6.3)

Also we expand the right hand side of (6.1) as

1 + x+ x2 =
6∑
i=0

biL
(α)
i (x) = (L(α)(x))TB, (6.4)

where
B = [1, 2, 3/2, 0, 0, 0, 0] . (6.5)

First we reduce Eq. (6.1) into the following matrix form

(D2 +GD +G)T )A = B. (6.6)

Also its boundary conditions as

6∑
i=0

aiL
(α)
i (0) = (L(α)(0))TA = 0. (6.7)
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and

6∑
i=0

aiL
(α)
i (1) = (L(α)(1))TA = 1. (6.8)

By implementation of our method which is presented in section 4, and
also after the augmented matrices of the system and boundary condi-
tions are computed, we obtain the numerical solutions. The comparison
between our method and Taylor method is shown in table 1. Also the
approximate and exact solutions are shown in figure 1.

Table 1. The comparison between our method (n = 6 and α = 3) and the

approximate solutions of Taylor method (n = 4) of experiment 1.

x Our method Taylor method

-1.0 -1.0000000000 -0.9999999999

-0.8 -0.8000000000 -0.7999999996

-0.6 -0.6000000000 -0.5999999998

-0.4 -0.3879999999 -0.4000000000

-0.2 -0.1889999999 -0.2000000000

0.0 -0.9999999999 -1.0000000000

0.2 0.1999999999 0.2000000000

0.4 0.3899999999 0.4000000000

0.6 0.6000000000 0.5999999999

0.8 0.8000000000 0.7999999997

1.0 1.0000000000 0.9999999988
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Figure 1. The comparison between exact and approximate solutions of n = 14 and α = 3/2 of
experiment 1.

Experiment 2. Consider the second-order differential equation

(x2 + 1)y′′(x) + y′(x) = 1, (6.9)

with the boundary conditions

y(0) = 0, y(1) = 1. (6.10)

The exact solution of (6.9) is y(x) = x.

Now we approximate the exact solution of (6.9), by

y(x) '
5∑
i=0

aiL
(α)
i (x) =

(
L(α)(x)

)T
A, (6.11)

where
A = [a0, a1, ..., a5]. (6.12)

Also we expand the right hand side of (6.9) as

1 '
5∑
i=0

biL
(α)
i (x) = (L(α)(x))TB, (6.13)

where
B = [1, 0, 0, 0, 0, 0]. (6.14)

Now, first we reduce Eq. (6.9) into the following matrix form

(G2D2 +D2 +D)TA = B. (6.15)
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Also its boundary conditions as

5∑
i=0

aiL
(α)
i (0) = (L(α)(0))TA = 0. (6.16)

and
5∑
i=0

aiL
(α)
i (1) = (L(α)(1))TA = 1. (6.17)

By implementation of our method which is presented in section 4, and
also after the augmented matrices of the system and boundary conditions
are computed, we obtain the solution

y(x) = x, (6.18)

which is the exact solution.

Experiment 3. Consider the third-order linear differential equation

x2y′′′(x) + y′′(x) = 2, (6.19)

y(0) = 0, y(1) = 1, y(−1) = 1. (6.20)

Now we approximate the exact solution of (6.19) by

y(x) '
5∑
i=0

aiL
(α)
i (x) = (L(α)(x))TA. (6.21)

Also we expand the right hand side of (6.19) as

2 '
5∑
i=0

biL
(α)
i (x) = (L(α)(x))TB, (6.22)

where

B = [2, 0, 0, 0, 0]. (6.23)

Now we must reduce Eq. (6.19) into the following matrix form

(
G2D3 +D2

)T
A = B. (6.24)
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and also its boundary conditions as

5∑
i=0

aiL
(α)
i (0) =

(
L(α)(0)

)T
A = 0, (6.25)

5∑
i=0

aiL
(α)
i (1) =

(
L(α)(1)

)T
A = 1. (6.26)

and

5∑
i=0

aiL
(α)
i (−1) =

(
L(α)(1)

)T
A = 1. (6.27)

After the augmented matrices of the system and boundary conditions are
computed, we obtain the solution

y(x) = x2, (6.28)

which is the exact solution.

7 Application of the method for the high order linear differ-
ential equation

In this section, we report the numerical results obtained for a high order
linear differential equation by the above mentioned procedure. This shows
that it is straightforward to extend the method to the high order linear
differential equations as follows.

Experiment 4. Let us consider the eighth order linear differential equa-
tion [38,39]

y(8)(x)− y(x) = −8ex, 0 ≤ x ≤ 1, (7.1)
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with the initial conditions

y(0) = 1, y′(0) = 0, y′′(0) = −1,

y′′′(0) = −2, y(4)(0) = −3, y(5)(0) = −4,

y(6)(0) = −5, y(7)(0) = −6.

(7.2)

The exact solution of this equation is y(x) = (1−x)ex. By implementation
of our method which is presented in section 4, and also after the aug-
mented matrices of the system and boundary conditions are computed,
we obtain the numerical solutions. The comparison between our method
and other numerical methods are shown in tables 2 and 3. Also the exact
and approximate solutions are shown in figure 2. We see that our method,
HPM and MDM methods obtain good results than the other methods for
this experiment. These methods rather than the Taylor polynomial set
obtain better results near the corner of interval. In other words, in the
interior points between 0 and 1, the Taylor method give better results.
This matter is seen by [17,18] also, which is due to the affinity of Taylor
series to the origin.
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Table 2. The comparison between the exact and approximate solutions of
HPM, MDM and present methods of experiment 4.

x Exact Present method HPM method MDM method

0.0 1.0000000000 1.0000000000 1.0000000000 1.0000000000

0.1 0.9946538262 0.9946538261 0.9946538263 0.9946538262

0.2 0.9771222065 0.9771222063 0.9771222065 0.9771222014

0.3 0.9449011653 0.9449011651 0.9449011653 0.9449010769

0.4 0.8950948185 0.8950948183 0.8950948186 0.8950941522

0.5 0.8243606353 0.8243606351 0.8243606356 0.8243574386

0.6 0.7288475201 0.7288475205 0.728847522 0.7288359969

0.7 0.6041258122 0.6041258121 0.6041258211 0.6040917111

0.8 0.4451081856 0.4451081852 0.445108220 0.4450208387

0.9 0.2459603111 0.2459603101 0.2459604249 0.2457599482

1.0 0.0000000000 0.0000000000 3.326× 10−7 4.212943× 10−4

Table 3. The comparison between the exact and approximate solutions of

present and Taylor methods of experiment 4.

x Exact Present method Taylor method

0.0 1.0000000000 1.0000000000 1.0000000000

0.1 0.9946538262 0.9946538261 0.9946538266

0.2 0.9771222065 0.9771222063 0.9771222093

0.3 0.9449011653 0.9449011651 0.9449011752

0.4 0.8950948185 0.8950948183 0.8950948487

0.5 0.8243606353 0.8243606351 0.8243607328

0.6 0.7288475201 0.7288475205 0.7288478604

0.7 0.6041258122 0.6041258121 0.6041269662

0.8 0.4451081856 0.4451081852 0.4451117669

0.9 0.2459603111 0.2459603101 0.2459703618

1.0 0.0000000000 0.0000000000 2.57× 10−5
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Figure 2. The comparison between the exact and approximate
solutions of n = 12 and α = 2 of experiment 4.

8 Conclusion

In this paper, we have introduced a new and efficient approach for nu-
merical approximation of the linear differential equations with variable
coefficients. The method is based on the approximation of the exact solu-
tion with the generalized Laguerre polynomials approximation and also
variable coefficients with Taylor series expansion. Implementation of the
method reduces the problem to a system of algebraic equations. In addi-
tion, application of the method for numerical solution of high order ODEs
is presented. Finally, some test experiments are presented for showing the
accuracy and efficiency of the present method with the other methods
such as HPM, MDM and Taylor series.
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