

Mathematics Scientific Journal

Vol. 8, No. 1, (2012),45-57

Generalized composition operators from logarithmic Bloch type spaces to Q_K type spaces

Sh. Rezaei $^{\mathrm{a},*}$ H. Mahyar $^{\mathrm{b}}$

^aDepartment of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran.

^bDepartment of Mathematics, Kharazmi (Tarbiat Moallem) University, Tehran, Iran.

Received 25 July 2011; accepted 17 April 2012

Abstract

In this paper boundedness and compactness of generalized composition operators from logarithmic Bloch type spaces to Q_K type spaces are investigated.

Key words: Generalized composition operator; Logarithmic Bloch type space; \mathcal{Q}_K type space.

2010 AMS Mathematics Subject Classification : 47B38; 30D45; 46E15.

* Corresponding author's E-mail: sh.rezaei@srbiau.ac.ir(Sh. Rezaei)

1 Introduction

Let $\mathcal{H}(\mathbb{D})$ be the space of all analytic functions on the open unit disk \mathbb{D} in the complex plane \mathbb{C} and $\alpha \in (0, \infty)$. The Bloch type space $\mathcal{B}^{\alpha} = \mathcal{B}^{\alpha}(\mathbb{D})$ is the space of all $f \in \mathcal{H}(\mathbb{D})$ satisfying

$$b_{\alpha}(f) = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} |f'(z)| < \infty.$$

The little Bloch type space \mathcal{B}^{α}_0 consists of those functions $f \in \mathcal{B}^{\alpha}$ for which

$$\lim_{|z| \to 1} (1 - |z|^2)^{\alpha} |f'(z)| = 0.$$

For $\beta \in [0, \infty)$, the logarithmic Bloch type space $\mathcal{B}^{\alpha}_{\log^{\beta}} = \mathcal{B}^{\alpha}_{\log^{\beta}}(\mathbb{D})$ introduced by Stevic in [9], is the space of all $f \in \mathcal{H}(\mathbb{D})$ satisfying

$$b_{\alpha,\beta}(f) = \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\alpha} (\ln \frac{e^{\frac{\beta}{\alpha}}}{1 - |z|^2})^{\beta} |f'(z)| < \infty.$$

The little logarithmic Bloch type space $\mathcal{B}^{\alpha}_{\log^{\beta},0}$ consists of those functions $f \in \mathcal{B}^{\alpha}_{\log^{\beta}}$ for which

$$\lim_{|z| \to 1} (1 - |z|^2)^{\alpha} (\ln \frac{e^{\frac{\beta}{\alpha}}}{1 - |z|^2})^{\beta} |f'(z)| = 0.$$

In some papers (see [9]), the definitions of this kind of spaces are based on the coefficient 1 - |z|, instead of $1 - |z|^2$. We first show that these are equivalent.

Obviously, $1 - |z| < 1 - |z|^2 < 2(1 - |z|)$ and $\ln \frac{e^{\frac{\beta}{\alpha}}}{1 - |z|^2} < \ln \frac{e^{\frac{\beta}{\alpha}}}{1 - |z|}$ for all $z \in \mathbb{D}$. On the other hand,

$$\ln \frac{e^{\frac{\beta}{\alpha}}}{1-|z|} = \ln \frac{e^{\frac{\beta}{\alpha}}}{1-|z|^2} + \ln(1+|z|)$$
$$< \ln \frac{e^{\frac{\beta}{\alpha}}}{1-|z|^2} + \ln \frac{e}{1-|z|^2}$$
$$= (1+\frac{\alpha}{\beta}) \ln e^{\frac{\beta}{\alpha}} + 2 \ln \frac{1}{1-|z|^2}$$
$$\leq \max\{1+\frac{\alpha}{\beta},2\} \ln \frac{e^{\frac{\beta}{\alpha}}}{1-|z|^2}.$$

Therefore, we can replace $1 - |z|^2$ by 1 - |z| in the definitions of Bloch type spaces and logarithmic Bloch type spaces.

The space $\mathcal{B}^{\alpha}_{\log^{\beta},0}$ is a Banach space with the norm $||f|| := |f(0)| + b_{\alpha,\beta}(f)$, and $\mathcal{B}^{\alpha}_{\log^{\beta},0}$ is a closed subspace of $\mathcal{B}^{\alpha}_{\log^{\beta}}$. If $\beta = 0$, then $\mathcal{B}^{\alpha}_{\log^{\beta}}$ ($\mathcal{B}^{\alpha}_{\log^{\beta},0}$) coincides with the Bloch type space \mathcal{B}^{α} (little Bloch type space \mathcal{B}^{α}_{0}). For $\beta = 1$, the space $\mathcal{B}^{\alpha}_{\log^{\beta}}$ is the generally weighted Bloch space (see [5]). When $\alpha = \beta = 1$, the space $\mathcal{B}^{\alpha}_{\log^{\beta}}$ is just the weighted Bloch space \mathcal{B}_{\log} .

For $p \in (0, \infty)$ and $\alpha > -1$, the weighted Bergman space \mathcal{A}^p_{α} is the space of all $f \in \mathcal{H}(\mathbb{D})$ for which

$$||f||_{\mathcal{A}^p_{\alpha}}^p = \int_{\mathbb{D}} |f(z)|^p (1-|z|^2)^{\alpha} dA(z) < \infty,$$

where dA is the normalized area measure on \mathbb{D} . It is well known that \mathcal{A}^p_{α} is a Banach space for $p \geq 1$, and in the case that $0 , it is a complete metric space with the distance <math>d(f,g) = ||f - g||^p_{\mathcal{A}^p_{\alpha}}$. In the special case when p = 2, \mathcal{A}^2_{α} is a Hilbert space. For a general background about weighted Bergman spaces we refer to [16].

For $p \in (0, \infty)$ and $\alpha > -1$, the weighted Dirichlet type space \mathcal{D}^p_{α} is the space of all $f \in \mathcal{H}(\mathbb{D})$ for which $f' \in \mathcal{A}^p_{\alpha}$. Note that \mathcal{D}^p_{α} is a Banach space with the norm $||f|| := |f(0)| + ||f'||_{\mathcal{A}^p_{\alpha}}$. When $\alpha = 0$, \mathcal{D}^p_{α} coincides with the Dirichlet space \mathcal{D}^p .

For $a \in \mathbb{D}$, $G(z, a) = \log \frac{1}{|\sigma_a(z)|}$ is the Green's function on \mathbb{D} , where $\sigma_a(z) = \frac{a-z}{1-\bar{a}z}$ is the Möbius transformation of \mathbb{D} . For $s \in (0, \infty)$, the space \mathcal{Q}_s consists of all $f \in \mathcal{H}(\mathbb{D})$ for which

$$\sup_{a\in\mathbb{D}}\int_{\mathbb{D}}|f'(z)|^2G^s(z,a)dA(z)<\infty,$$

and its closed subspace $\mathcal{Q}_{s,0}$ consists of those functions $f \in \mathcal{Q}_s$ such that

$$\lim_{|a| \to 1} \int_{\mathbb{D}} |f'(z)|^2 G^s(z, a) dA(z) = 0.$$

It is well known that $Q_1 = BMOA$ ($Q_{1,0} = VMOA$), the space of all analytic functions of bounded (vanishing) mean oscillation [1].

In [15], Zhao introduced a general family of analytic function spaces, called the F(p,q,s)-spaces with $p \in (1,\infty)$, $q \in (-2,\infty)$ and $s \in [0,\infty)$, consisting of all $f \in \mathcal{H}(\mathbb{D})$ such that

$$\sup_{a\in\mathbb{D}}\int_{\mathbb{D}}|f'(z)|^p(1-|z|^2)^qG^s(z,a)dA(z)<\infty.$$

The closed subspace $F_0(p,q,s)$ of F(p,q,s) consists of those functions $f \in F(p,q,s)$ such that

$$\lim_{|a| \to 1} \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'(z)|^p (1 - |z|^2)^q G^s(z, a) dA(z) = 0.$$

If $q + s \leq -1$, F(p, q, s) reduces to the space of constant functions. The interest in the F(p,q,s)-spaces arises from the fact that they cover a lot of well-known function spaces which are listed in the following.

- $F(2,0,s) = Q_s$, $F_0(2,0,s) = Q_{s,0}$
- $F(2,0,s) = \mathcal{B}, \quad F_0(2,0,s) = \mathcal{B}_0 \ (s > 1)$
- F(2,0,1) = BMOA, $F_0(2,0,1) = VMOA$
- $F(p, pq 2, s) = \mathcal{B}^q$, $F_0(p, pq 2, s) = \mathcal{B}_0^q$ (s > 1)
- $F(p, pq 2, 1) = BMOA_p^q$ (The BMOA type spaces)
- $F_0(p, pq 2, 1) = VMO\dot{A}_p^q$ (The VMOA type spaces)
- $F(p,q,0) = \mathcal{A}_{q-p}^{p} (q-p > -1), \quad F(p,q,0) = \mathcal{D}_{q}^{p} (q > -1)$ $F(2,1,0) = H^{2}$ (The Hardy space)

In [10] Wulan and Zhou introduced a new space, \mathcal{Q}_K type space. For a right-continuous and nondecreasing function $K: [0,\infty) \to [0,\infty)$, and for $p \in (0,\infty)$, $q \in (-2,\infty)$, the \mathcal{Q}_K type space denoted by $\mathcal{Q}_K(p,q)$ consists of $f \in \mathcal{H}(\mathbb{D})$ for which

$$||f||_{K,p,q}^p = \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'(z)|^p (1 - |z|^2)^q K(G(z,a)) dA(z) < \infty.$$

The space $\mathcal{Q}_K(p,q)$ is a Banach space with the norm $\|f\|_{\mathcal{Q}_K(p,q)} :=$ $|f(0)| + ||f||_{K,p,q}$, when $p \ge 1$. The closed subspace $\mathcal{Q}_{K,0}(p,q)$ of $\mathcal{Q}_K(p,q)$ consists of those functions $f \in \mathcal{Q}_K(p,q)$ such that

$$\lim_{|a| \to 1} \int_{\mathbb{D}} |f'(z)|^p (1 - |z|^2)^q K(G(z, a)) dA(z) = 0.$$

If q + 2 = p, $\mathcal{Q}_K(p,q)$ is Möbius invariant i.e, $||f \circ \sigma_a||_{K,p,q} = ||f||_{K,p,q}$ for all $a \in \mathbb{D}$. We say that the space $\mathcal{Q}_K(p,q)$ is trivial if it contains constant functions only. For example, if $\int_0^1 (1 - r^2)^q K(\log \frac{1}{r}) r dr = \infty$, then $\mathcal{Q}_K(p,q)$ is trivial [10]. Also by [10, Theorem 3.1], if K(1) > 0 then the kernel function K can be chosen as bounded. Throughout the paper, we assume K(1) > 0 and

$$\int_{0}^{1} (1 - r^{2})^{q} K(\log \frac{1}{r}) r dr < \infty.$$

By [10, Theorem 2.1] we have $\mathcal{Q}_K(p,q) \subseteq \mathcal{B}^{\frac{q+2}{p}}$ and for a fixed $r \in (0,1)$,

$$||f||_{K,p,q}^p \ge \pi r^2 K(\log \frac{1}{r}) b_{\frac{q+2}{p}}^p(f),$$

for all $f \in \mathcal{Q}_K(p,q)$. In the sequel, we use the inequality

$$b_{\frac{q+2}{2}}(f) \le C \|f\|_{K,p,q}.$$
 (1.1)

Also by [10, Theorem 2.1], we have $\mathcal{Q}_K(p,q) = \mathcal{B}^{\frac{q+2}{p}}$ if and only if

$$\int_0^1 (1 - r^2)^{-2} K(\log \frac{1}{r}) r dr < \infty$$

Now we recall some particular cases. If p = 2, q = 0, we have that $\mathcal{Q}_K(p,q) = \mathcal{Q}_K$. For more details on the spaces of \mathcal{Q} classes we refer to [4,?,12]. For $s \in [0,\infty)$, if $K(t) = t^s$, then $\mathcal{Q}_K(p,q) = F(p,q,s)$.

Let φ be an analytic self-map of \mathbb{D} and $g \in \mathcal{H}(\mathbb{D})$, the generalized composition operator C^g_{φ} is defined by

$$(C^g_{\varphi}f)(z) = \int_0^z f'(\varphi(\xi))g(\xi)d\xi, \quad f \in \mathcal{H}(\mathbb{D}), \ z \in \mathbb{D},$$

which is introduced in [6]. When $g = \varphi'$, this operator is essentially (up to a constant) the composition operator C_{φ} , which is defined by $C_{\varphi}f = f \circ \varphi$. Darus and Ibrahim has defined an integral operator on a class of analytic functions in the unit disk [3]. Zhang and Liu gave characterization of the compact generalized composition operators from Bloch type spaces to Q_K type spaces in terms of K-Carleson measure in [14]. Essential norm

of generalized composition operators from weighted Dirichlet or Bloch type spaces to \mathcal{Q}_K type spaces was studied in [8]. A characterization of boundedness and compactness of generalized composition and Volterra type operators between \mathcal{Q}_K spaces was provided in [7]. In this paper, we determine conditions under which the generalized composition operator C_{φ}^g from logarithmic Bloch type spaces to \mathcal{Q}_K type spaces is bounded or compact without using Carleson measure. In this paper constants are denoted by C, they are positive and not necessarily the same in each occurrence.

2 Main results

Note that, if $C^g_{\varphi}(\mathcal{B}^{\alpha}_{\log^{\beta}}) \subseteq \mathcal{Q}_K(p,q)$, then $C^g_{\varphi} : \mathcal{B}^{\alpha}_{\log^{\beta}} \to \mathcal{Q}_K(p,q)$ is bounded, by the closed graph theorem. We now give an equivalent condition for boundedness and compactness of this operator.

Theorem 2.1 Let $\alpha, p \in (0, \infty)$, $\beta \in [0, \infty)$, $q \in (-2, \infty)$, $g \in \mathcal{H}(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} . Then $C^g_{\varphi}(\mathcal{B}^{\alpha}_{\log^{\beta}}) \subseteq \mathcal{Q}_K(p,q)$ if and only if

$$L := \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{|g(z)|^p (1 - |z|^2)^q K(G(z, a))}{(1 - |\varphi(z)|^2)^{\alpha p} (\ln \frac{e^{\frac{\beta}{\alpha}}}{1 - |\varphi(z)|^2})^{\beta p}} dA(z) < \infty.$$
(2.1)

Proof. Suppose that $C^g_{\varphi}(\mathcal{B}^{\alpha}_{\log^{\beta}}) \subseteq \mathcal{Q}_K(p,q)$. By [9, Theorem 3] there exist two functions $f_1, f_2 \in \mathcal{B}^{\alpha}_{\log^{\beta}}$ such that

$$\frac{C}{(1-|z|)^{\alpha}(\ln\frac{e^{\frac{\beta}{\alpha}}}{1-|z|})^{\beta}} \le |f_1'(z)| + |f_2'(z)|, \quad z \in \mathbb{D}.$$

Using (1), we get

$$\frac{C}{(1-|\varphi(z)|^2)^{\alpha}(\ln\frac{e^{\frac{\beta}{\alpha}}}{1-|\varphi(z)|^2})^{\beta}} \le |f_1'(\varphi(z))| + |f_2'(\varphi(z))|, \quad z \in \mathbb{D}.$$

It follows that

$$\frac{C|g(z)|^{p}(1-|z|^{2})^{q}K(G(z,a))}{(1-|\varphi(z)|^{2})^{\alpha p}(\ln\frac{e^{\frac{\beta}{\alpha}}}{1-|\varphi(z)|^{2}})^{\beta p}} \leq 2^{p}(|f_{1}'(\varphi(z)|^{p}+|f_{2}'(\varphi(z)|^{p})|g(z)|^{p}(1-|z|^{2})^{q}K(G(z,a)).$$

Integrating with respect to z, we have

$$\int_{\mathbb{D}} \frac{|g(z)|^{p}(1-|z|^{2})^{q}K(G(z,a))}{(1-|\varphi(z)|^{2})^{\alpha p}(\ln\frac{e^{\frac{\beta}{\alpha}}}{1-|\varphi(z)|^{2}})^{\beta p}} dA(z) \leq C(\|C_{\varphi}^{g}(f_{1})\|_{\mathcal{Q}_{K}(p,q)}^{p} + \|C_{\varphi}^{g}(f_{2})\|_{\mathcal{Q}_{K}(p,q)}^{p}).$$

Since $C^g_{\varphi}(\mathcal{B}^{\alpha}_{\log^{\beta}}) \subseteq \mathcal{Q}_K(p,q)$, the inequality (2.1) follows.

Conversely, for $f \in \mathcal{B}^{\alpha}_{\log^{\beta}}$ we have

$$\begin{split} \|C_{\varphi}^{g}(f)\|_{\mathcal{Q}_{K}(p,q)}^{p} &= \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'(\varphi(z))|^{p} |g(z)|^{p} (1-|z|^{2})^{q} K(G(z,a)) dA(z) \\ &\leq b_{\alpha,\beta}^{p}(f) \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} \frac{|g(z)|^{p} (1-|z|^{2})^{q} K(G(z,a))}{(1-|\varphi(z)|^{2})^{\alpha p} (\ln \frac{e^{\frac{\beta}{\alpha}}}{1-|\varphi(z)|^{2}})^{\beta p}} dA(z) \\ &\leq L \|f\|_{\mathcal{B}^{\alpha}_{\log\beta}}^{p}, \end{split}$$

which implies that $C^g_{\varphi}(\mathcal{B}^{\alpha}_{\log^{\beta}}) \subseteq \mathcal{Q}_K(p,q)$. \Box Moreover, the above argument shows that $C^g_{\varphi} : \mathcal{B}^{\alpha}_{\log^{\beta}} \to \mathcal{Q}_K(p,q)$ is, infact, bounded if and only if $L < \infty$.

For example, if $q = \beta = 0$, p = 2, $\alpha = 1$, K(t) = 1, g(z) = 1 and $\varphi(z) = z$, then L is infinity. Note that in this case, by [13, Theorem 1.2.1] the lacunary series $f(z) = \sum_{k=0}^{\infty} z^{2^k}$ is in $\mathcal{B}^{\alpha}_{\log^{\beta}} = \mathcal{B}$ and by [11, Theorem 7], it is not in $\mathcal{Q}_K(p,q) = \mathcal{Q}_K$, hence $C^g_{\varphi}(\mathcal{B}^{\alpha}_{\log^{\beta}}) \subseteq \mathcal{Q}_K(p,q)$ does not hold.

By [9, Lemma 3], we have the following estimates for the growth rate of the functions f in $\mathcal{B}^{\alpha}_{\log^{\beta}}$

$$|f(z)| \le C \begin{cases} |f(0)| + ||f||_{\mathcal{B}^{\alpha}_{\log\beta}} & \alpha \in (0,1) \text{ or } \alpha = 1, \beta > 1 \\ |f(0)| + ||f||_{\mathcal{B}^{\alpha}_{\log\beta}} \ln \ln \frac{e^{\frac{\beta}{\alpha}}}{1-|z|} & \alpha = \beta = 1 \\ |f(0)| + ||f||_{\mathcal{B}^{\alpha}_{\log\beta}} (\ln \frac{e^{\frac{\beta}{\alpha}}}{1-|z|})^{1-\beta} & \alpha = 1, \beta \in (0,1) \\ |f(0)| + \frac{||f||_{\mathcal{B}^{\alpha}}}{(1-|z|)^{\alpha-1} (\ln \frac{e^{\frac{\beta}{\alpha}}}{1-|z|})^{\beta}} & \alpha > 1, \beta \ge 0, \end{cases}$$
(2.2)

for some C > 0 independent of f. By (1) we can replace 1 - |z| by $1 - |z|^2$ in (2.2).

Using (1.1), (2.2) and similar to the proof of [7, Lemma 2.1], we have the following Lemma.

Lemma 2.1 Let $\alpha, p \in (0, \infty)$, $\beta \in [0, \infty)$, $q \in (-2, \infty)$, $g \in \mathcal{H}(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} such that $C^g_{\varphi}(\mathcal{B}^{\alpha}_{\log^{\beta}}) \subseteq \mathcal{Q}_K(p,q)$. Then C^g_{φ} is Compact if and only if for any bounded sequence (f_n) in $\mathcal{B}^{\alpha}_{\log^{\beta}}$ which converges to zero uniformly on compact subsets of \mathbb{D} as $n \to \infty$, we have $\|C^g_{\varphi}(f_n)\|_{\mathcal{Q}_K(p,q)} \to 0$ as $n \to \infty$.

By Lemma 2.1 we prove the main result of this paper.

Theorem 2.2 Let $0 \leq \beta < \alpha < \infty$, $p \in (0, \infty)$, $q \in (-2, \infty)$, $g \in \mathcal{H}(\mathbb{D})$ and φ be an analytic self-map of \mathbb{D} such that $C^g_{\varphi}(\mathcal{B}^{\alpha}_{\log^{\beta}}) \subseteq \mathcal{Q}_K(p,q)$. Then C^g_{φ} is compact if and only if

$$\lim_{r \to 1} \sup_{a \in \mathbb{D}} \int_{|\varphi(z)| > r} \frac{|g(z)|^p (1 - |z|^2)^q K(G(z, a))}{(1 - |\varphi(z)|^2)^{\alpha p} (\ln \frac{e^{\frac{\beta}{\alpha}}}{1 - |\varphi(z)|^2})^{\beta p}} dA(z) = 0.$$
(2.3)

Proof. Let (2.3) hold and (f_n) be a sequence in the closed unit ball of $\mathcal{B}^{\alpha}_{\log^{\beta}}$ such that $f_n \to 0$ uniformly on compact subsets of \mathbb{D} as $n \to \infty$.

By hypothesis for every $\varepsilon > 0$, there is $\delta \in (0, 1)$ such that

$$\sup_{a\in\mathbb{D}}\int_{|\varphi(z)|>\delta}\frac{|g(z)|^p(1-|z|^2)^qK(G(z,a))}{(1-|\varphi(z)|^2)^{\alpha p}(\ln\frac{e^{\frac{\beta}{\alpha}}}{1-|\varphi(z)|^2})^{\beta p}}dA(z)<\varepsilon.$$

Let $\Delta = \{ w \in \mathbb{D} : |w| \le \delta \}$. Then

$$\begin{split} \|C_{\varphi}^{g}(f_{n})\|_{\mathcal{Q}_{K}(p,q)}^{p} &= \sup_{a\in\mathbb{D}}\int_{\mathbb{D}}|f_{n}'(\varphi(z))|^{p}|g(z)|^{p}(1-|z|^{2})^{q}K(G(z,a))dA(z) \\ &= \sup_{a\in\mathbb{D}}[\int_{|\varphi(z)|\leq\delta}|f_{n}'(\varphi(z))|^{p}|g(z)|^{p}(1-|z|^{2})^{q}K(G(z,a))dA(z)] \\ &+ \int_{\delta<|\varphi(z)|<1}|f_{n}'(\varphi(z))|^{p}|g(z)|^{p}(1-|z|^{2})^{q}K(G(z,a))dA(z)] \\ &\leq \sup_{w\in\Delta}|f_{n}'(w)|^{p}\sup_{a\in\mathbb{D}}\int_{|\varphi(z)|\leq\delta}|g(z)|^{p}(1-|z|^{2})^{q} \\ &\times K(G(z,a))dA(z) \\ &+ b_{\alpha,\beta}^{p}(f_{n})\sup_{a\in\mathbb{D}}\int_{\delta<|\varphi(z)|<1}\frac{|g(z)|^{p}(1-|z|^{2})^{q}K(G(z,a))}{(1-|\varphi(z)|^{2})^{\alpha p}(\ln\frac{e^{\frac{\beta}{\alpha}}}{1-|\varphi(z)|^{2}})^{\beta p}}dA(z) \\ &\leq \sup_{w\in\Delta}|f_{n}'(w)|^{p}\sup_{a\in\mathbb{D}}\int_{|\varphi(z)|\leq\delta}|g(z)|^{p}(1-|z|^{2})^{q} \\ &\leq \sup_{w\in\Delta}|f_{n}'(w)|^{p}\sup_{a\in\mathbb{D}}\int_{|\varphi(z)|\leq\delta}|g(z)|^{p}(1-|z|^{2})^{q} \\ &\times K(G(z,a))dA(z) + \varepsilon, \end{split}$$

since $b_{\alpha,\beta}^p(f_n) \leq \|f_n\|_{\mathcal{B}^{\alpha}_{\log\beta}} \leq 1$. By [2, VII, Theorem 2.1], the sequence (f'_n) converges to zero uniformly on compact subsets of \mathbb{D} as $n \to \infty$. In particular, $\sup_{w \in \Delta} |f'_n(w)|^p \to 0$ as $n \to \infty$. Hence the boundedness of the kernel function K and the boundedness of g on the compact subset $\{z : |\varphi(z)| \leq \delta\}$ of \mathbb{D} implies that $\|C^g_{\varphi}(f_n)\|_{\mathcal{Q}_K(p,q)} \to 0$ as $n \to \infty$. Therefore, by Lemma 2.1, $C^g_{\varphi} : \mathcal{B}^{\alpha}_{\log\beta} \to \mathcal{Q}_K(p,q)$ is compact.

Conversely, let C^g_{φ} be compact. Since

$$b_{\alpha,\beta}\left(\frac{z^n}{n^{1-\alpha+\beta}}\right) = \sup_{z\in\mathbb{D}} (1-|z|^2)^{\alpha} \left(\ln\frac{e^{\frac{\beta}{\alpha}}}{1-|z|^2}\right)^{\beta} n^{\alpha-\beta} |z|^{n-1}$$
$$\leq \sup_{z\in\mathbb{D}} (1-|z|^2)^{\alpha} \left(\frac{e^{\frac{\beta}{\alpha}}}{1-|z|^2}\right)^{\beta} n^{\alpha-\beta} |z|^{n-1}$$
$$\leq C \sup_{z\in\mathbb{D}} (1-|z|)^{\alpha-\beta} n^{\alpha-\beta} |z|^{n-1},$$

and for $0 \leq \beta < \alpha < \infty$, $f(x) = n^{\alpha-\beta}x^{n-1}(1-x)^{\alpha-\beta}$ has a maximum in $\frac{n-1}{n-1+\alpha-\beta}$, the sequence $(\frac{z^n}{n^{1-\alpha+\beta}})$ is norm bounded in $\mathcal{B}^{\alpha}_{\log^{\beta}}$. It is well known that the series $\sum_{n=1}^{\infty} \frac{r^n}{n^{1-\alpha+\beta}}$ converges for any $r \in (0,1)$. Hence the sequence $(\frac{z^n}{n^{1-\alpha+\beta}})$ converges to zero uniformly on compact subsets of \mathbb{D} , using Lemma 2.1, we have $\|C^g_{\varphi}(\frac{z^n}{n^{1-\alpha+\beta}})\|_{\mathcal{Q}_K(p,q)} \to 0$ as $n \to \infty$. Whence for given $\varepsilon > 0$,

$$n^{(\alpha-\beta)p} \int_{\mathbb{D}} |\varphi(z)|^{p(n-1)} |g(z)|^p (1-|z|^2)^q K(G(z,a)) dA(z) < \varepsilon$$

for large enough n. Thus for each $r \in (0, 1)$,

$$n^{(\alpha-\beta)p}r^{p(n-1)} \int_{|\varphi(z)|>r} |g(z)|^p (1-|z|^2)^q K(G(z,a)) dA(z) < \varepsilon.$$

Taking $r \ge n^{\frac{\beta-\alpha}{n-1}}$, we obtain

$$\sup_{a \in \mathbb{D}} \int_{|\varphi(z)| > r} |g(z)|^p (1 - |z|^2)^q K(G(z, a)) dA(z) < \varepsilon.$$
(2.4)

On the other hand, for any f in the closed unit ball $\mathbb{B}_{\mathcal{B}_{\log^{\beta}}^{\alpha}}$ of $\mathcal{B}_{\log^{\beta}}^{\alpha}$, if we set $f_t(z) = f(tz)$, then $f_t \to f$ uniformly on compact subsets of \mathbb{D} as $t \to 1$. Since $C_{\varphi}^g : \mathcal{B}_{\log^{\beta}}^{\alpha} \to \mathcal{Q}_K(p,q)$ is compact, using Lemma 2.1, $\|C_{\varphi}^g(f_t - f)\|_{\mathcal{Q}_K(p,q)} \to 0$ as $t \to 1$. Let $\varepsilon > 0$ be given. Choose $t \in (0, 1)$ such that

$$\int_{\mathbb{D}} |(C_{\varphi}^{g} f_{t})'(z) - (C_{\varphi}^{g} f)'(z)|^{p} (1 - |z|^{2})^{q} K(G(z, a)) dA(z) < \varepsilon.$$

Using this inequality along with (2.3), we have

$$\begin{split} &\int_{|\varphi(z)|>r} |(C_{\varphi}^{g}f)'(z)|^{p}(1-|z|^{2})^{q}K(G(z,a))dA(z) \\ &\leq C(\varepsilon + \int_{|\varphi(z)|>r} |(C_{\varphi}^{g}f_{t})'(z)|^{p}(1-|z|^{2})^{q}K(G(z,a))dA(z)) \\ &\leq C\varepsilon(1+\sup_{z\in\mathbb{D}} |f_{t}'(z)|^{p}). \end{split}$$

Thus for every $f \in \mathbb{B}_{\mathcal{B}^{\alpha}_{\log^{\beta}}}$ and every $\varepsilon > 0$, there exists a $\delta = \delta(f, \varepsilon)$ such that

$$\int_{|\varphi(z)|>r} |(C^g_{\varphi}f)'(z)|^p (1-|z|^2)^q K(G(z,a)) dA(z) < \varepsilon,$$
(2.5)

for all $r \in [\delta, 1)$. As mentioned in the previous theorem, there are two functions $f_1, f_2 \in \mathcal{B}^{\alpha}_{\log^{\beta}}$ such that for each $z \in \mathbb{D}$,

$$\frac{C}{(1-|z|^2)^{\alpha}(\ln\frac{e^{\frac{\beta}{\alpha}}}{1-|z|^2})^{\beta}} \le |f_1'(z)| + |f_2'(z)|.$$

Let $\delta = \max_{1 \le k \le 2} \delta(\frac{f_k}{\|f_k\|}, \varepsilon)$ and using (2.5) then we have

$$\begin{split} &2\varepsilon > \sup_{a\in\mathbb{D}} \int_{|\varphi(z)|>r} \frac{1}{\|f_1\|_{\mathcal{B}^{\alpha}_{\log\beta}}^p} |(C_{\varphi}^g f_1)'(z)|^p (1-|z|^2)^q K(G(z,a)) dA(z) \\ &+ \sup_{a\in\mathbb{D}} \int_{|\varphi(z)|>r} \frac{1}{\|f_2\|_{\mathcal{B}^{\alpha}_{\log\beta}}^p} |(C_{\varphi}^g f_2)'(z)|^p (1-|z|^2)^q K(G(z,a)) dA(z) \\ &\geq C \sup_{a\in\mathbb{D}} \int_{|\varphi(z)|>r} (|f_1'(\varphi(z))|^p + |f_2'(\varphi(z))|^p)|g(z)|^p (1-|z|^2)^q K(G(z,a)) dA(z) \\ &\geq C \sup_{a\in\mathbb{D}} \int_{|\varphi(z)|>r} \frac{|g(z)|^p (1-|z|^2)^q K(G(z,a))}{(1-|\varphi(z)|^2)^{\alpha p} (\ln \frac{e^{\frac{\beta}{\alpha}}}{1-|\varphi(z)|^2})^{\beta p}} dA(z), \end{split}$$

for all $r \in [\delta, 1)$, which implies (2.3). \Box

Acknowledgement

The authors would like to thank the referee for some valuable and useful comments which have improved this paper.

References

- [1] A. Baernstein II, Analytic functions of bounded mean oscillation, Aspects of contemporary complex analysis, Academic Peress, London, (1980) 3-36.
- [2] J. B. Conway, Functions of One Complex Variable, Spinger-Verlag, New York, 1978.
- [3] M. Darus and R. W. Ibrahim, Integral operator defined by K-th Hadamard product of hypergeometric functions, Mathematics Scientific Journal (MSJ), Vol. 4, No. 2, S. N. 9, (2009) 59-73.
- [4] M. Essén and H. Wulan, On analytic and meromorphic functions and spaces of \mathcal{Q}_K type, Illinois J. Math. 46 (4) (2002) 1233-1258.
- [5] H. Li, P. Liu and M. Wang, Composition operators between generally weighted Bloch spaces of polydisk, J. Inequal. Pure Appl. Math. 8 (3) (2007), Article 85, 1-8.
- [6] S. Li and S. Stević, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl. 338 (2) (2008) 1282-1295.
- [7] H. Mahyar and Sh. Rezaei, Generalized composition and Volterra type operators between Q_K spaces, Quaestiones Mathematicae. 35 (1) (2012).
- [8] Sh. Rezaei and H. Mahyar, Essential norm of generalized composition operators from weighted Dirichlet or Bloch type space to \mathcal{Q}_K type space, Bull. Iranian Math. Soc. to appear.
- [9] S. Stevic, On new Bloch type spaces, Appl. Math. Compute, 215 (2009) 841-849.
- [10] H. Wulan and J. Zhou, \mathcal{Q}_K type spaces of analytic functions, J. Function Spaces and Applications, 4 (1) (2006) 73-84.
- [11] H. Wulan, K. Zhu, Lacunary series in Q_K spaces, Studia. Math. 178 (3) (2007) 217-230.
- [12] H. Wulan and P. Wu, Characterization of Q_T spaces, J. Math. Ana. Appl. 254 (2001) 484-497.
- [13] J. Xiao, Holomorphic Q Classes, Lecture Notes in Mathematics, Vol. 1767, Springer-Verlag, Berlin, Heidelberg, 2001.

- [14] F. Zhang and Y. Liu, Generalized composition operators from Bloch type spaces to Q_K type spaces, Jurnal of Function Spaces and Applications, 8 (1) (2010), 55-66.
- [15] R. Zhao, On a general family of function spaces, Ann. Acad. Sci. Fenn. Math. Diss, 105 (1996) 1-56.
- [16] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate texts in Mathematics, Vol. 226, Springer, New York, 2005.