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Abstract

The goal of this paper is to calculate of order reduction of the KdV type
equation and the non-isospectral KdV type equation using the µ-symmetry
method. Moreover we obtain µ-conservation law of the non-isospectral KdV
type equation using the variational problem method.
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1 Introduction

Partial differential equations (PDEs) have been a most important sub-
ject of study in all areas of mathematical physics, engineering sciences
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and other technical arena. At present time, different methods are being
established to order reduction and conservation law of nonlinear PDEs,
such as, the symmetries method [15], the direct method [16], the general
theorem [16], the Noether theorem [6].

The Korteweg-de Vries (KdV) type equation

KdV : ut + αux + βuux + γuxxx = 0 ,

where α, β and γ are real constants, is one of the most popular equations
by Korteweg and de Vries known as water waves equations. This equation
used to model waves as long wavelength in liquids, hydro-magnetic waves
in cold plasma, acoustic-gravity waves in compressible fluids, acoustic
waves in anharmonic crystals, etc.

The non-isospectral KdV type equation with variable-coefficients (nvcKdV)
can be show as follows:

nvcKdV : ut +α(t)(uxxx +6uux)+4β(t)ux−γ(t)(xux +2u) = 0, (1.1)

where α(t), β(t) and γ(t) are arbitrary functions of time t.

The nvcKdV is important as this equation often model realistic situa-
tions in certain case. However, literature on the nvcKdV is rather limited
compared to the constant coefficient counterparts. Due to the physical
applications and mathematical properties of the nvcKdV, we have been
motivated to obtain µ-symmetry and µ-conservation law, etc.

Many researchers studied of the KdV type equation and the nvcKdV for
obtaining solutions, stabilization of global solutions, numerical solution,
Lie symmetry analysis using different methods. But, to the best of our
knowledge, the nvcKdV is not investigated via the µ-symmetry method
to order reduction and the variational problem method to µ-conservation
law. In this article, we calculate an order reduction of the nvcKdV using
the µ-symmetry method. Moreover we calculate µ-conservation law of
the nvcKdV using the variational problem method.

Because the nvcKdV is of odd order; therefore, it is no variational prob-
lem, but this equation is of even order in the potential form; hence, the
variational problem can be accepted. At first, we obtain µ-conservation
law of the nvcKdV in potential forms and using this technique, then we
can obtain µ-conservation law of the nvcKdV.
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The outline of this paper is as follows. Firstly, µ-symmetry and re-
duced equations for the nvcKdV is provided. Secondly, lagrangian for
the nvcKdV is shown in potential form. Finally, µ-conservation law for
the nvcKdV is described.

2 Background

In 2001, Muriel and Romero introduced a new method to order re-
duction of ordinary differential equations (ODEs), and they called it
as λ-symmetries method to order reduction of ODEs. In 2004, Gaeta
and Morando expanded λ-symmetries method of ODEs to µ-symmetries
method of the partial differential equations (PDEs) frame with p in-
dependent variables x = (x1, ..., xp) and q dependent variables u =
(u1, ..., uq), where µ = λidx

i is a horizontal one-form on first order jet
space (J (1)M,π,M) and also µ is a compatible, i.e. Diλj −Djλi = 0.

In 2006, Muriel, Romero and Olver have expanded the concept of vari-
ational problem and conservation law in the case of symmetries to the
case of λ-symmetries of ODEs. They have presented an adapted formula-
tion of the Nother’s theorem for λ-symmetry of ODEs. In 2007, Cicogna
and Gaeta have generalized the results obtained by Muriel, Romero and
Olver in the case of λ-symmetries for ODEs to the case of µ-symmetries
for PDEs, and in the case of µ-symmetry of the Lagrangian, the conser-
vation law is referred as µ-conservation law.

3 µ-prolongation And µ-symmetry

In this section, the foundational results of µ-prolongation and µ-symmetry
are briefly introduced. Let µ = λidx

i be horizontal one-form on first order
jet space (J (1)M,π,M) and compatible [7], i.e. Diλj −Djλi = 0, where
Di is total derivative xi and λi : J (1)M −→ R.

Suppose ∆(x, u(k)) = 0 is a scalar PDEs of order k for u = u(x1, ..., xp),
i.e. involving p independent variables x = (x1, ..., xp) and one dependent
variable. Let X = ξi∂xi + ϕ∂u be a vector field on M . We define Y =
X +

∑k
J=1 ΨJ ∂uJ

on k-th order jet space JkM as µ-prolongation of X if
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its coefficient satisfies the µ-prolongation formula

ΨJ,i = (Di + λi)ΨJ − uJ,m(Di + λi)ξ
m , (3.1)

where Ψ0 = ϕ. Let S ⊂ J (k)M be the solution manifold for ∆. If Y :
S −→ TS, we say that X is a µ-symmetry for ∆.

if µ = 0 in (3.1), then it can be assumed that ordinary prolongation
is as 0-prolongation in µ-prolongation and ordinary symmetry is as 0-
symmetry in µ-symmetry framework.

We consider an equation ∆ such that µ = λidx
i is a horizontal 1-form

and compatible on S∆. Suppose V = exp
( ∫

µ
)
X is an exponential vector

field, where X is a vector field on M . Then V is a general symmetry for
∆ if and only if X is a µ-symmetry for ∆.

In paper [7], an order reduction of PDEs under µ-symmetries is shown
as the following theorem.

Theorem 3.1 Let ∆ be a scalar PDE of order k for u = u(x1, ..., xp).
Let X = ξi( ∂

∂xi ) + ϕ( ∂
∂u

) be a vector field on M , with characteristic Q =
ϕ−uiξi, and let Y be the µ-prolong of order k of X. If X is a µ-symmetry
for ∆, then Y : SX −→ TSX , where SX ⊂ J (k)M is the solution manifold
for the system ∆X made of ∆ and of EJ := DJQ = 0 for all J with
| J |= 0, 1, ..., k − 1.

µ-symmetry of given equations (PDE): In order to determine µ-symmetry
of a given equation ∆ of order n, the same way as for ordinary symme-
tries is considered that a generic vector field X acting in M , and its
µ-prolongation Y of order n for a generic µ = λidx

i, acting in J (n)M .
Then applies Y to ∆, and restricts the obtained expression to the solution
manifold S∆ ⊂ J (n)M . The equation ∆∗ resulting by requiring this is zero
is the determining equation for µ-symmetries of ∆; this is an equation for
ξ, τ, ϕ and λi. If we require λi are functions on J (k)M , all the dependences
on uJ will be explicit, and one obtains a system of determining equation.
This system should be complemented with the compatibility conditions
between the λi. If we determine a priori the form µ, we are left with a
system of linear equation for ξ, τ, ϕ; similarly, if we fix a vector field X
and try to find the µ for which it is a µ-symmetry of the given equation
∆, we have a system of quasilinear equation for the λi [7].

32



4 µ-symmetry for the non-isospectral KdV type equation with
variable coefficients

The non-isospectral KdV type equation with variable coefficients (nvcKdV)
can be shown as follows:

ut + α(t)(uxxx + 6uux) + 4β(t)ux − γ(t)(xux + 2u) = 0,

where is a scalar PDE of order 3 for u = u(x, t). Let µ = λ1dx+ λ2dt be
a horizontal one-form and with the compatibility condition Dtλ1 = Dxλ2

when ut+α(t)(uxxx+6uux)+4β(t)ux−γ(t)(xux+2u) = 0. Suppose X =
ξ∂x+τ∂t+ϕ∂u is a vector field on M . In order to compute µ-prolongation
Y of order 3 of X, we can use of (3.1); therefore, µ-prolongation Y of X
is as

Y = X + Ψx∂ux + Ψt∂ut + Ψxx∂uxx + ...+ Ψttt∂uttt ,

where coefficients Y are as the following

Ψx = (Dx + λ1)ϕ− ux(Dx + λ1)ξ − ut(Dx + λ1)τ ,

Ψt = (Dt + λ2)ϕ− ux(Dt + λ2)ξ − ut(Dt + λ2)τ ,

Ψxx = (Dx + λ1)Ψx − uxx(Dx + λ1)ξ − uxt(Dx + λ1)τ ,

Ψxt = (Dt + λ2)Ψx − uxx(Dt + λ2)ξ − uxt(Dt + λ2)τ ,

Ψtt = (Dt + λ2)Ψt − utx(Dt + λ2)ξ − utt(Dt + λ2)τ , (4.1)

Ψxxx = (Dx + λ1)Ψxx − uxxx(Dx + λ1)ξ − uxxt(Dx + λ1)τ,

Ψxxt = (Dt + λ2)Ψxx − uxxx(Dt + λ2)ξ − uxxt(Dt + λ2)τ,

Ψxtt = (Dt + λ2)Ψxt − uxtx(Dt + λ2)ξ − uxtt(Dt + λ2)τ ,

Ψttt = (Dt + λ2)Ψtt − uttx(Dt + λ2)ξ − uttt(Dt + λ2)τ .

By applying Y to Eq. (1.1) and substituting

−(1/α(t))
(
ut + α(t)6uux + 4β(t)ux − γ(t)(xux + 2u)

)
= 0,

for uxxx , we obtain the following system 1 :

1 using Maple
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−3α(t)τu = 0, −3α(t)τuu = 0, −α(t)τuuu = 0, −3α(t)ξu = 0,

−6α(t)ξuu = 0, −α(t)ξuuu = 0, −3α(t)(λ1τ + τx) = 0,
... (4.2)

−3α(t)(τxx + τλ1x + 2λ1τx + λ2
1τ) = 0.

For any choice of the type

λ1 = Dx[f(x, t)] + g(x), λ2 = Dt[f(x, t)] + h(t), (4.3)

where f(x, t), g(x) and h(t) are arbitrary functions and λ1 and λ2 satisfy
to the compatibility condition, i.e. Dtλ1 = Dxλ2 on solutions to Eq. (1.1).
For instance, two cases are studied to obtain in µ-symmetry of Eq. (1.1)
as follows:

• When g(x) = 0 and h(t) = −γ(t), also α(t), β(t) and γ(t) are arbitrary
functions, then by substituting the functions

λ1 = Dxf(x, t) , λ2 = Dtf(x, t)− γ(t)

into the system of (4.2) and solving them, we obtain

ξ = F (x, t), τ = 0, ϕ = 0 ,

where f(x, t) = − ln(F (x, t)) and F (x, t) is an arbitrary positive func-
tion. Then

X = F (x, t)∂x ,

is µ-symmetry of Eq. (1.1) and corresponds to an ordinary symmetry

V = exp
( ∫

Dxf(x, t)dx+ (Dtf(x, t)− γ(t))dt
)
X ,

of exponential type. In this case, using Theorem 3.1, reduction of Eq.
(1.1) is

Q = ϕ− ξux − τut = −F (x, t)ux. (4.4)

• When g(x) = 0 and h(t) = −β′(t)/β(t), also α(t) = c1β(t) and γ(t) =
c2β(t) where c1 and c2 are arbitrary constants, then by substituting
the functions

λ1 = Dxf(x, t) , λ2 = Dtf(x, t)− β′(t)/β(t)
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into the system of (4.2) and solving them, we obtain

ξ = 0 , τ = F (x, t) , ϕ = 0 ,

where f(x, t) = − ln(F (x, t)) and F (x, t) is an arbitrary positive func-
tion. Then

X = F (x, t)∂t,

is µ-symmetry of Eq. (1.1) and corresponds to an ordinary symmetry

V = exp
( ∫

Dxf(x, t)dx+ (Dtf(x, t)− β′(t)/β(t))dt
)
X ,

of exponential type. In this case, using Theorem 3.1, reduction of Eq.
(1.1) is

Q = ϕ− ξux − τut = −F (x, t)ut. (4.5)

5 Lagrangian of the non-isospectral KdV type equation with
variable coefficients in potential form

In this section, we show that the nvcKdV does not admit a variational
problem since it is of odd order, but the nvcKdV in potential form admit-
ting a variational problem. In the book [16], a system admits a variational
formulation if and only if its Frechet derivative is self-adjoint. In fact, we
have the following theorem.

Theorem 5.1 Let ∆ = 0 be a system of differential equation. Then ∆ is
the Euler-Lagrange expression for some variational problem L =

∫
Ldx,

i.e. ∆ = E(L), if and only if the Frechet derivative D∆ is self-adjoint:
D∗∆ = D∆. In this case, a Lagrangian for ∆ can be explicitly constructed
using the homotopy formula L[u] =

∫ 1
0 u.∆[λu]dλ.

We consider the nvcKdV as

∆Ku : ut + α(t)(uxxx + 6uux) + 4β(t)ux − γ(t)(xux + 2u) = 0. (5.1)

The Frechet derivative of ∆Ku is

D∆Ku
=Dt +

(
6α(t)ux − 2γ(t)

)
+
(

6α(t)u+ 4β(t)− xγ(t)
)
Dx

+α(t)D3
x .
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Obviously, it does not admit a variational problem since D∗∆Ku
6= D∆Ku

.
But the well-known differential substitution u = vx yields the related
transformed the nvcKdV as the following

∆Kv : vxt +α(t)(vxxxx + 6vxvxx) + 4β(t)vxx−γ(t)(xvxx + 2vx) = 0. (5.2)

This equation is called ”the nvcKdV in potential form” and its Frechet
derivative is

D∆Kv
=DxDt +

(
6α(t)vxx − 2γ(t)

)
Dx +

(
6α(t)vx + 4β(t)

−xγ(t)
)
D2

x + α(t)D4
x .

which is self-adjoint: D∗∆Kv
= D∆Kv

. By Theorem 5.1, the nvcKdV in
potential form ∆Kv has a Lagrangian of the form

L[v] =
∫ 1

0
v.∆Bv[λv]dλ=−1

2

(
vxvt + α(t)(2v3

x − v2
xx) + 4β(t)v2

x

− γ(t)xv2
x

)
+ DivP.

Hence, Lagrangian of the nvcKdV in potential form ∆Kv, up to Div-
equivalence is

L∆Kv
[v] = −1

2

(
vxvt + α(t)(2v3

x − v2
xx) + 4β(t)v2

x − γ(t)xv2
x

)
. (5.3)

6 µ-conservation laws

A conservation law is a relation Div P :=
∑p

i=1DiP
i = 0, where P =

(P 1, · · · , P p) is a p−dimensional vector. Let µ = λidx
i be a horizontal

one-form and compatibility condition, i.e,Diλj = Djλi . A µ-conservation
law is a relation as

(Di + λi)P
i = 0, (6.1)

where P i is a vector and the M−vector P i is called a µ-conserved vector.

The following theorem about the existence ofM−vector P i and µ-conservation
law can be seen in [6]:
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Theorem 6.1 Consider the n−th order Lagrangian L = L(x, u(n)), and
vector field X, then X is a µ-symmetry for L, i.e. Y [L] = 0 if and only if
there exists M−vector P i satisfying the µ-conservation law (Di+λi)P

i =
0.

Using the other theorems in [6] and Theorem 6.1, the M−vector P i is
obtained for first and second order Lagrangian, as the following:

• For first order Lagrangian L(x, t, u, ux, ut) and the vector field X =
ϕ (∂/∂u) is a µ-symmetry for L, then the M−vector P i := ϕ (∂L/∂ui),
is a µ-conserved vector.
• For second order Lagrangian L and the vector field X = ϕ (∂/∂u) is a
µ-symmetry for L, then the M−vector

P i := ϕ
∂L
∂ui

+ ((Dj + λj)ϕ)
∂L
∂uij

− ϕDj
∂L
∂uij

, (6.2)

is a µ-conserved vector.

7 µ-conservation laws of the non-isospectral KdV type equa-
tion with variable coefficients in potential form

In this section, we want to compute µ-conservation law for the nvcKdV
in potential form ∆Kv in subsection (7.1) and using it, we compute µ-
conservation law for the nvcKdV ∆Ku in subsection (7.2).

7.1 µ-conservation laws of the non-isospectral KdV type equation with
variable coefficients in potential forms

We consider the second order Lagrangian (5.3), i.e.

L∆Kv
[v] = −1

2

(
vxvt + α(t)(2v3

x − v2
xx) + 4β(t)v2

x − γ(t)xv2
x

)
,

for the nvcKdV in potential form

∆Kv = vxt + α(t)(vxxxx + 6vxvxx) + 4β(t)vxx − γ(t)(xvxx + 2vx)

=E(L∆Kv
). (7.1)
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Suppose X = ϕ∂v is a vector field for L∆Kv
[v]. Let µ = λ1dx+ λ2dt be a

horizontal one-form and with the compatibility condition Dtλ1 = Dxλ2

when ∆Kv = 0. In order to compute µ-prolongation of order 2 of X, we
can use of (3.1), we have,

Y = ϕ∂v + Ψx∂vx + Ψt∂vt + Ψxx∂vxx + Ψxt∂vxt + Ψtt∂vtt ,

where coefficients Y are as the following:

Ψx = (Dx + λ1)ϕ, Ψt = (Dt + λ2)ϕ, Ψxx = (Dx + λ1)Ψx,

Ψxt = (Dt + λ2)Ψx, Ψtt = (Dt + λ2)Ψt. (7.2)

Thus, the µ-prolongation Y acts on the L∆Kv
[v], and substituting

(
α(t)(2v3

x−

v2
xx) + 4β(t)v2

x − γ(t)xv2
x

)
/ − vx for vt, we obtain the system as the fol-

lowing:

α(t)ϕvv = 0 , −(1/2)α(t)
(
ϕx + λ1ϕ

)
= 0,

−α(t)ϕv = 0 , −2α(t)
(
ϕx + λ1ϕ

)
= 0 ,

α(t)
(
λ1vϕ+ 2λ1ϕv + 2ϕxv

)
= 0 ,

(7.3)

α(t)
(
2λ1ϕx + λ1xϕ+ ϕxx + λ2

1ϕ
)

= 0 ,

(1/2)
(
xγ(t)ϕx − ϕt − 4β(t)λ1ϕ− λ2ϕ− 4β(t)ϕx + xγ(t)λ1ϕ

)
= 0 .

Suppose ϕ = F (x, t), where F (x, t) is an arbitrary positive function sat-
isfying L∆Kv

[v] = 0, then a special solution of the system (7.3) is given
by

λ1 = −Fx(x, t)

F (x, t)
, λ2 = −Ft(x, t)

F (x, t)
, (7.4)

where λ1 and λ2 are satisfying to Dtλ1 = Dxλ2. Hence,

X = F (x, t)∂v

is a µ-symmetry for L∆Kv
[v], then, using Theorem 6.1, there existsM−vector

P i satisfying the µ-conservation law (Di + λi)P
i = 0. Then, by of (6.2),

the M−vector P i is as
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P 1 =−
(

1

2
vt + α(t)(vxxx + 4v2

x) + 4β(t)vx − xγ(t)vx

)
F (x, t),

P 2 =−vx
2
F (x, t) , (7.5)

and (Dx + λ1)P 1 + (Dt + λ2)P 2 = 0, or corresponds to DxP
1 + DtP

2 +
λ1P

1 + λ2P
2 = 0 , is a µ-conservation law for second order Lagrangian

L∆Kv
[v]. Therefore we have obtained the following corollary:

Corollary 7.1 µ-conservation law for the nvcKdV in potential form ∆Kv =
E(L∆Kv

) is as

DxP
1 +DtP

2 + λ1P
1 + λ2P

2 = 0, (7.6)

where P 1 and P 2 are the M−vector P i of (7.5).

Remark 7.1 µ-conservation law for the nvcKdV in potential form ∆Kv ,
satisfying to the Noether’s Theorem for µ-symmetry, i.e.

(Di + λi)P
i = (Dx + λ1)P 1 + (Dt + λ2)P 2

=F (x, t)
(
vxt + α(t)(vxxxx + 6vxvxx) + 4β(t)vxx

− γ(t)(xvxx + 2vx)
)

(7.7)

=QE(L∆Kv
) .

7.2 µ-conservation laws of the non-isospectral KdV type equation with
variable coefficients

We consider the nvcKdV in potential form

∆Kv = vxt + α(t)(vxxxx + 6vxvxx) + 4β(t)vxx − γ(t)(xvxx + 2vx) = 0,

or equivalently

Dx

(
vt + α(t)(vxxx + 3v2

x) + 4β(t)vx − γ(t)(xvx + 2v)
)

= 0,

vt + α(t)(vxxx + 3v2
x) + 4β(t)vx − γ(t)(xvx + 2v) =F1(t),
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where F1(t) is an arbitrary function. If we substitute

F1(t)− α(t)(vxxx + 3v2
x)− 4β(t)vx + γ(t)(xvx + 2v)

for vt and substitute u for vx in the M−vector P i of (7.5), then, we obtain
M−vectors P 1 and P 2 as the following

P 1 =−1

2

(
F1(t) + α(t)(uxx + 5u2) + 4β(t)u− γ(t)(xu

+ 2
∫
udx)

)
F (x, t), (7.8)

P 2 =−u
2
F (x, t) .

Therefore we have obtained the following corollary:

Corollary 7.2 µ-conservation law for the nvcKdV is as

DxP
1 +DtP

2 + λ1P
1 + λ2P

2 = 0, (7.9)

where P 1 and P 2 are the M−vector P i of (7.8).

Remark 7.2 The nvcKdV satisfying to the characteristic form, i.e.

(Di + λi)P
i = (Dx + λ1)P 1 + (Dt + λ2)P 2

=F (x, t)(ut + α(t)(uxxx + 6uux) + 4β(t)ux (7.10)

− γ(t)(xux + 2u))

=Q∆Ku .
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Mathematics , 1979, 61, P.31–53.

[2] T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long
waves in nonlinear dispersive systems, Trans. R. Soc. (Lond) ser.A, 1992,
272, P.234-356.

[3] W. Bluman, F. Cheviakov, C. Anco, Construction of conservation law:
how the direct method generalizes Nother’s theorem, Group analysis of
differential equations and integrability, 2009, 12 P.1–23.

40



[4] J.L. Bona, Bryant, P.J., A mathematical model for long waves gener- ated
by wave makers in nonlinear dispersive systems, Proc. Cambridge Phil.
Soc., 1973, 4, P.12–34.

[5] G. Cicogna, G. Gaeta, P. Morando, On the relation between standard and
µ-symmetries for PDEs, J. Phys. A. , 2004, 37, P. 9467–9486.

[6] G. Cicogna, G. Gaeta, Norther theorem for µ-symmetries, J. Phys. A.,
2007, 40, P.11899–11921.

[7] G. Gaeta, P. Morando, On the geometry of lambda-symmetries and PDEs
reduction, J. Phys. A., 2004, 37, P.6955–6975.

[8] G. Gaeta, Lambda and mu-symmetries, SPT2004 , World Scientific,
Singapore, 2005.

[9] KH. Goodarzi, M.Nadjafikhah, µ-symmetry and µ-conservation law for
the extended mKdV equation, JNMP (2014),3, P.371–381.

[10] D.J.Korteweg, G. de Vries, On the change of form of long waves advancing
in a rectangular canal and on a new type of long stationary waves, Phil.
Mag. 1895, 39, P.422–443.

[11] A. Kudryashov, I. Sinelshchikov, A note on the Lie symmetry analysis and
exact solutions for the extended mKdV equation, Acta. Appl.Math., 2011,
113, 41–44.

[12] C. Muriel, J.L. Romero, New methods of reduction for ordinary differential
equation, IMA J. Appl. Math., 2001, 66, P.111–125.

[13] C. Muriel, J.L. Romero, C∞-symmetries and reduction of equation
without Lie point symmetries, J. Lie Theory, 2003, 13, P.167–188.

[14] C. Muriel, J.L. Romero, P.J. Olver, Variationl C∞-symmetries and Euler-
Lagrange equations, J. Diff. Eqs, 2006, 222, P.164–184.

[15] C. Muriel, J.L. Romero, Prolongations of vector fields and the invariants-
by-derrivation property, Theor. Math. Phys., 2002, 133,P.1565–1575.

[16] P.J. Olver, Applications of Lie Groups to Differential Equations, New
York, 1986.

[17] C. Vasconcellos, P. N. da Silva, Stabilization of the linear Kawahara
equation, Applied and Computational Mathematics, 2015, 3, P. 45-67.

41


