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Abstract

In this paper, we investigate the existence of positive solutions for the elliptic
equation A%2u + c¢(z)u = Af(u) on a bounded smooth domain € of R”, n >
2, with Navier boundary conditions. We show that there exists an extremal
parameter A* > 0 such that for A < A\*, the above problem has a regular
solution but for A > A*, the problem has no solution even in the week sense.
We also show that \* = % if limy_o0 f(t) —at =1 > 0 and for A < \*, the
solution is unique but for [ < 0 and % < A < A", the problem has two branches
of solutions, where A; is the first eigenvalue associated to the problem.
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1 Introduction and statement of main results

Consider the problem

A?u+cu= Af(u)in Q
u=Au=0 on 02,

(P)

where A? is the biharmonic operator, € is a smooth bounded do-
main in R”, n > 2, A > 0 and ¢ = ¢(x) a positive continuous
function in Q and the conditions imposed on f are as follows:

H, : is a function defined in[0, co)

H, : f isC', positive, nondecreasing and convex (1.1)
and i)
. t

Hy: lim o =ae (0, +00). (1.2)

By a solution of (Py) we mean a function u € C*(Q) satisfying (Py).
In the sequel we are interested only in nonnegative solutions and
for which we have considered only A > 0. From maximum principle,
if u is a nonnegative solution then u(z) > 0 for a.e.

Problems of the form (P)) occur in a variety of situations. They
generate equations that arise in models of combustion [7,8], thermal
explosions [7], nonlinear heat generation [11], and the gravitational
equilibrium of polytropic stars [5,10]. In particular, the Helmholtz
problem occur in the study of electromagnetic radiation, seismol-
ogy, acoustics [2,6,15]...

For ¢ = 0, Abid et al. have studied in [1], the following problem

A%y = Af(u)in
u=Au=20 on 0.

(1.3)

Before that, in 1996 Radulescu and Minorescu have considered the
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following harmonic problem

—Au = Af(u) in €
u=20 on 0f,

(1.4)

and proved in [13], that there exists 0 < A* < 00, a critical value of
the parameter A, such that (1.4) has a minimal, positive, classical
solution uy for 0 < A < A* and does not have solutions for A > \*.
The value of a was crucial in the study of (1.4) and of the behav-
ior of uy, when X\ approaches A*. In the case when a = +oo, it is
proved in [4] that a minimal weak solution u* exists for A = A*. In
[12], Martel proves that in this case u* is the unique weak solution
of (Ey+). Recently, Sanchon in [14] generalizes these results for the
p-Laplacian.

In this paper, we study the existence of the critical bifurcation
parameter \*, the regularity of the eventual solutions and the exis-
tence of extremal solution, this means solution for (Py). We give a
new proof to show that every weak solution is a classical one. We
begin by introducing the following definition.

Definition 1.1 A weak solution of (Py) is a functionu € L'(Q),u >
0 such that f(u) € L'(Q) and

/QuA2C—|—/ch§:)\/Qf(u)C (1.5)

for all ¢ € C*(Q) with AC = ¢ =0 on 9.

2

We say that u is a weak super-solution of (Py) if 7 =" is replaced

by” >7 for all ¢ € C*(Q), ¢ >0 and AC = =0 on 9.

Remark 1.1 If u is a weak solution of (Py) and u € L*(Q), we
say that w 1s reqular solution. By elliptic reqularity, we know that
reqular solutions are smooth and solve (Py) in the classical sense.
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Throughout the paper, we denote |||/, the LP(£2)-norm for 1 < p <
oo and ||.|| the H?-norm given by

Jull? = [ 1Auf
Q

For regular solutions, we introduce a notion of stability.

Definition 1.2 A regular solution u of (Py) is said to be stable
if the first eigenvalue ny(c, \,u) of the linearized operator L . =
—A+c— Af'(u) given by

L1agk+ [ e =2 [ fu)?
mc, A\ u) = inf 8 8 2

e H2(Q)NHA(2)\{0} I3

Y

is positive in HY(Q). In other words,

APt < [18eP+ [ e forany ¢ € HAQ)NHYQ).
Q Q Q
(1.6)
If m(c, A\, u) <0, the solution u is said to be unstable.

We denote by \; the first eigenvalue of L = A?+c in ) with Navier
boundary condition and ¢; a positive normalized eigenfunction as-
sociated, that is, such that

A+ cpr = A1 in Q
p1 >0 in Q
o1 =Ap; =0 on 0f)

(1.7)

leafl2 =1

Next, we let
A :={X\ > 0 such that (P,) admits a solution} and \* :=sup A < +o0.

We denote

ro 1= inf@~ (1.8)

t>0 ¢
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Our first main statement asserts the existence of the critical value
M-,

Theorem 1.1 Let f a positive function satisfying (1.1) and (1.2).
Then there exists a critical value \* € (0,00) such that the following
properties hold true.

(i) For any A € (0,\*), problem (Py) has a minimal solution wy,
which is the unique stable solution of (Py) and the mapping
A = uy 1S increasing.
(it) For any X € (0,2L), wy is the unique solution of problem (Py).
(i5i) If problem (Py+) has a solution u, then
w= = i
and m (¢, \*,u*) = 0.
(iv) For A > \*, the problem (Py) has no weak solution.

For the next results, let

[:= lim (f(t) - at). (1.9)

t—o00

We distinguish two different situations strongly depending on the
sign of [.

Theorem 1.2 Assume that | > 0. The following results hold.

(i) 3 =&

(ii) Problem (Py) has no solution.

(111) /\lin/\l uy = oo uniformly on compact subsets of §2.
% *

Theorem 1.3 Assume that | < 0 and the function c¢ is nonnega-
tive. Then we have.
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(i) The critical value X\* belongs to (2L, i—o)
(11) (Px+) has a unique solution u*.
(11i) The problem (P\) has an unstable solution vy for any A €
(34, \*) and the sequence (vy)y satisfies

(a) hH)\l vy = 00 uniformly on compact subsets of €2,
A—ZL

(b) lim vy = u* uniformly in €.
A= A*

2 Proof of Theorem 1.1

In the proof of this Theorem we shall make use of the following
auxiliary results.

Lemma 2.1 Given g € LY(), there exists an unique v € L'(2)
which is a weak solution of

Ay +cv=gin
v=Av =0 on 09,

(2.1)

in the sense that

/QUAZH/QCUCZ/Qgg (2.2)
for all ¢ € C*(Q) with A = ¢ =0 on 9.

Moreover, there exists a constant ¢y independents of g such that
o]y < colglls-
In addition, if g > 0 a.e in §2, then v > 0 a.e in ().

Proof. For the uniqueness, let v; and vy be two solutions of (2.1).
Then v = v; — vy satisfies

| oai+et) =0
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for all ¢ € C*(Q) with A¢ = ¢ = 0. Given ¢ € D(Q), there exist a
¢ solution of
A’C+cC=¢in Q
{ ¢ =A¢ =0 on 09,
it follows that

/vgozo.
Q

Since ¢ is arbitrary, we deduce that v = 0.

for the existence, since f = f* — f~, we can assume that f > 0.
Let f.(x) = min{f(x),n}, then the family (f,), converge to f in
LY(9).

Now let v,, the solution of

A?v, +cv, = f,in Q
4 (2.3)
v, = Av, = 0 on 0f).
The sequence (v,), is monotone nondecreasing.
On the other hand, we have
/Q(Uk —) = /Q(fk — f1)Co:
where (j is defined by
A%y +cly=1in Q
Co + cCo (2.4)
go = AC@ = 0 on 0f).

So
[l =l <eo [ 1~ filde,
Q Q

and (v,), is a Cauchy sequence in L'(f2). Passing to the limit in
(2.3), after multiplication by (, we have that v = lim v, is a weak
solution of equation (2.1). If we take ¢ = (j in (2.2), we obtain

ol = [ o= [ f6 <l
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Lemma 2.2 [If (P)) has a weak super solution u, then there exists
a weak solution u of (Py) such that 0 < u < @ and u does not
depend on 7.

Proof. We use a standard monotone iteration argument and max-
imum principle for the operator —A + ¢. Let ug = 0 and u,, the
solution of

A%Up i1 + ctupr = Mf(u,) in - Q,

Aty = Upip =0 on 0f),

which exists by Lemma 1. We prove that 0 = up < u; < ... < u, <
... < wand (uy,), converge to u € L'(Q2) which is a weak solution
of (Py). Moreover u is independent of @ by construction. O

The existence of the critical value \* is a consequence of the follow-
ing auxiliary result.

Lemma 2.3 Problem (Py) has no solution for any A > \1/ro, but
has at least one solution provided X\ is positive and small enough.

Proof. To show that (Py) has a solution, we use the Lemma 2. To
this aim, let ¢, € C*(Q)) given by (2.4). The choice of (, implies
that (o is a super solution of (Py) for A < 1/f(]|¢o]|s)- By lemma
2, there exist a weak solution u of (Py) such that 0 < u < (.
Because (5 € C*(Q), u € L*(Q) (u is a regular solution) and
then u € C*(Q). It follows that problem (P,) has a solution for

A< 1/ f([1Collse)-

Assume now that u is a solution of (P,) for some A > 0. Using ¢
given by (1.7) as a test function, we get

/QUAQSﬁ +/ch<,01 = A/ﬂf(u)%
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This yields
(A1 = Arp) /Q p1u > 0.

Since p; > 0 and u > 0, we conclude that the parameter A should
belong to (0, Ay /79).
This completes our proof. O

Lemma 2.4 Assume that the problem (Py) has a solution for some
A € (0, \*). Then there exists a minimal solution denoted by uy for
the problem (Py). Moreover, for any N € (0,\), the problem (Py)
has a solution.

Proof. Fix A € (0,\*) and let u be a solution of (Py). As above,
we use the Lemma 2 to obtain a solution of (Py), uy which is inde-
pendent of u used as super solution (as mentioned in the proof of
Lemma 2).

Since wu, is independent of the choice of u, then it is a minimal
solution.

Now, if u is a solution of (P ), then u is a super solution of the prob-
lem (Py) for any A" in (0, A) and Lemma 2 completes the proof. O

Proof of Theorem 1 (i)

First, we claim that u, is stable. Indeed, arguing by contradiction,
we deduce that the first eigenvalue
m = m(c, A\, uy) is non positive. Then, there exists an eigenfunction

YpeCH) and AY==0 on 09,
such that

A%+ cp — Af'(up)y =me¢ in Q and ¥ >0 in €.
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Consider u® := uy — €. Hence

At teut=Af(u) = —mep | f(un)—f(ur—e)—e f'(un)¥| = etp(—m+o.(1)).
Since 17, < 0 for € > 0 small enough, we have
A?uf +cuf — Mf(uf) >0 in Q.

Then, for € > 0 small enough, we use the strong maximum principle
(Hopf’s Lemma) to deduce that u® > 0. u® is a super solution of
(Py), so by Lemma 2 we obtain a solution u such that v < u® and
since u® < uy, then we contradict the minimality of w,.

Now, we show that (P)) has at most one stable solution. Assume
the existence of another stable solution v # wy of problem (Py).
Let ¢ := v — uy, then by maximum principle ¢ > 0 and from (1.6)
taking ¢ as a test function, we have

M S < [1ael+ o= [ oator [ e = [ [7@0=fm)]e
Therefore
/Q {f(v) — fluy) — f'(v)(v— u/\)}sp > 0.

Thanks to the convexity of f, the term in the brackets is non posi-
tive, hence

f) = flux) = f'(v)(v —ux) =0 in Q,

which implies that f is affine over [uy, v] in . So, there exists two
real numbers a and b such that

flz)=ax+0b in [O,mng].

Finally, since uy and v are two solutions to A%w + cw = aw + b, we
obtain that

Oz/ﬂ(u,\Av—vAuA):b/ﬂ(v—u,\):b/ggo.
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This is impossible since b = f(0) > 0 and ¢ is positive in 2.
Finally, by Lemma 4 and the definition of u,, we have that the
function A — w) is an increasing mapping.

Proof of Theorem 1 (ii)

In this stage, we need the following results.

Proposition 2.1 Let Q2 C R" a smooth bounded open subset of R",
n > 2. Assume that f is a function satisfying (1.1) and (1.2). If
(Py) has a weak solution wu, then u is a regular solution and hence
a classical solution.

Proof. By convexity of f, we have a = sup f’(¢) and
>0

f(t) <at+ f(0) forall t>0. (2.5)
Let u a weak solution of (Py), f(u) € LY(9).
By elliptic regularity, v € LP(Q2), for all p > 1 such that

n

<
P n—4

(p < ocoifn=2,3andp < coifn = 4) (2.6)

Again by (2.5), f(u) € L? for all p satisfying (2.6) so u € W*" ()
for all » > 1 such that

r< n8 (r <ooifn =2,3,4,5,6,7andr < ccifn = 8)
n —
(2.7)
By iteration and after k(n) = [%] + 1 operations, the solution u

belongs to L>(€).
By elliptic regularity and standard bootstrap argument, u € C*(Q).
(]

Proposition 2.2 Let Q C R™ a smooth bounded open subset of
R™, n > 2. Assume that f(t) = fo(t) = at + b, where a,b > 0. Then
(i) X =

a
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(i) The problem (Py) has no weak solution for A = \*

A
Proof. Let 0 < A < 22, the problem (Py), given by
a

A?u+ (c—Xa)u = Ab in Q
Au=u=0 on 0N

(2.8)

has a unique solution in C*(Q).

A
Since Aa < A1, by Maximum principle v > 0. Now let A = —
a

If the problem (2.8) has a solution u, then by multiplication (2.8) by
71 a positive function associated to A\; and introduced by (1.7) and
integration by parts, it follows that [, 1 = 0 which is impossible
since p; > 0 in Q. So for fo(t) = at + b, a and b > 0, we have

A
A* = 2L and the equation (Py+) has no solution. O
a

For the proof of Theorem 1 (ii), let A € (0,2%), b= f(0) and w a
solution for the problem (2.8) when

fo(t) = at + b. Since we have for the function f in Theorem 1,
f(w) < aw+ f(0), then w is a super-solution of (Py) and hence by
Lemma 2 and Proposition 1, the equation (P,) has a solution.

For the uniqueness, let u a solution of (Py) for a reel A € (0, Aa—l) We
denote A\;(L) the first eigenvalue of an operator L, that is A\;(A? +
C) = )\1.

Because a = sup f'(t), we have A% + ¢ — Af'(u) > A% + ¢ — \a and
>0
S0

M(A% 4 c— Af'(u) > M(A% 4 ¢ — a)
that is
n(c,\,u) > A1 — Aa > 0.

The solution w is stable then, by Theorem 1 (i), we obtain u = w,.
O
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Proof of Theorem 1 (iii)

Suppose that (Py) has a solution w. then, for every A € (0, \*),
we have uy < u and so u* = /\lirrAl uy is well defined in L'(Q) and
% *

furthermore u* is a weak then classical solution for (Pj«).

Since 0 < u* < u, w* is a minimal solution and also satisfies (1.6)
for A = A* so m (¢, \*,u*) > 0.

Now, consider the nonlinear operator

G (0,400) x C*(Q)NE — C%(Q)
(A, u) — A%u+ cu — \f(u),

where o € (0,1) and E the function space defined by
E:={uec HQ)/Au=u=0 on 09} (2.9)

Assuming that the first eigenvalue (¢, \*, u*) is positive. By the
implicit function theorem applied to the operator G, it follows that
problem (Py) has a solution for A in a neighborhood of A\*. But this
contradicts the definition of \* so n;(c, A*, u*) = 0.

Furthermore, u* is a the unique solution for (Py+) and we can pro-
ceed as in the proof of of Theorem 1.1(ii). O

Proof of Theorem 1 (iv)

If the problem (P,) has a weak solution u for A > A\*, then by
Proposition 2, u is a classical solution for (P,) and this contradicts
the definition of A\*.
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3 Proof of Theorem 1.2

In the proof of Theorem 1.2, we shall use the following auxiliary
result which is a reformulation of Theorem due to Hormander [9]
and maximum principle.

Lemma 3.1 Let 2 be an open bounded subset of R™, n > 2 with
smooth boundary. Let (u,) be a sequence of nonnegative functions
defined on Q and satisfying A*u, +cu, > 0 for a positive continues
function c. Then the following alternative holds.

(i) nlgngO u,, = 0o uniformly on compact subsets of €1,

or
(11) (uy) contains a subsequence which converges in Lj,,(S) to some
function w.

We first prove the following result.

Proposition 3.1 Let f be a positive function satisfying (1.1) and
(1.2). Then the following assertions are equivalent.

(i) xr =2

a

(i1) (Px+) has no solution.

(111) )\linAl uy = 0o uniformly on compact subsets of €.
H *

Proof.

(i)=(ii). By contradiction. Assume that (Py«) has a solution u. By

(ii) of Theorem 1.1, u = u* = /\lirg\l uy and my (¢, \*,u*) = 0. Thus
% *

there exists ¢ € C*(Q) satisfying

A% +cp — N f'(u*)y =0 in Q
Y >0 in Q (3.1)
AY =19 =0on 0.
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Using ¢ given by (1.7) as a test function, we obtain
/Q (A — X" f(u"))orh = 0 (3.2)

A
Since ¢1 > 0, ¥ > 0, \* = 2Loand a = sup f'(t), we have
a

>0
AL — A f(u*) > 0.
Then equality (3.2) gives f'(u*) = a in Q.
This implies that f(t) = at+0b in [0, mazqu®] for some scalar b > 0
and this impossible by Proposition 2.2. Hence (Py+) has no solution.

(ii)=(iii). By contradiction, suppose that (iii) doesn’t hold. By
Lemma 3.1 and up to subsequence,

uy converges locally in L'(€) to the function u* as A — \*.

Claim: uy is bounded in L?*(2).

Indeed, if not, we may assume that

Uy = k?)\UJ)\
with
27 _ : _
WA dx = and )\ILII)\I* ky = oo (3.3)
We have
A , 1 .
k—f(u,\) —0 in L. () as A= A%
A
and then
A%wy, + cwy — 0 in L,.(Q). (3.4)
We have

/]Aw,\]2:/A2w>\wA
Q Q

= ARy,

then
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Af(u
/Q‘Aw/\ﬁg/g fli)\)\)wA

@*/Qaw% f(0)

—Ww
by
<a>\*+60/ wy
Q
<a>\*+00 ‘Q‘,

for some ¢y > 0 independent of .
Then (w,) is bounded in H*(€2) and up to a subsequence, we obtain

wy = w weakly in HY(Q) and
wy — W strongly in L*() as A=A (3.5)

Moreover, by the trace Theorem
Awy =wy, =0 on oY)

It follows by (3.5), that w = 0 in © and this contradicts (3.3).
This complete the proof of the claim.

Thus uy is bounded in L*(2) and with the same argument above,
uy is bounded in H*(€)) and up to a subsequence, we have

uy — u* weakly in H*(Q) and
uy — u* in L*(Q) as A= A\
and
A?u* +cu* = N f(u*) in Q
Au*=u* =0 on 02

and this impossible by the hypothesis (ii).
It’s obvious that (iii)=-(ii) and hence (ii)<(iii).

(iii)=-(i). If (iil) occurs, that (ii) also is true and we have )\hII)\l |lurlle =
4) *
oo. Let
Uy = /{)\U))\ with H’LU,\HQ =1. (36)
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Up to subsequence, we obtain
wy = w weakly in H*() and

wy = w in L*() as A— A (3.7)

We have also

A
k—f(uA) — Naw as A— A" (3.8)
A
and
—Awy + cwy = —Aw + cw in L* ()
and then

—Aw+cw = aXNw in €

w =0 on OS2

(3.9)
Taking ¢, as a test function in (3.9), we obtain

)\1/ wey :/w(—Ag01+cgol)) :/a)\*wgol
Q Q Q

A

Since 7 > 0 and w > 0 in 2, we have \* = 2L and this complete
a

the proof of Proposition 3.1.

To finish the proof of Theorem 1.2, we need only to show that
(Px,) has no solution. Assume that u is a solution of (P, ). Since

[ := lim (f(t) - at> >0 and a=supf(t),
t—o0 tzo
we have [ € (0,00) and f(t) —at > 0 and
2 A1 :
Au+cu=—f(u) in Q. (3.10)
a

Taking ¢ as a test function in (3.10), we get f(u) = aw in Q, which
contradicts f(0) > 0. This concludes the proof of Theorem 1.2. O
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4 Proof of Theorem 1.3

(i) We have shown that

Suppose that \* = % By Proposition 3.1, we have

/\111&1 uy = oo uniformly on compact subsets of €.
% *

Let uy be the minimal solution of (P) for 2 < A < A*. Then,
multiplying (Py) by ¢; and integrating by parts, we obtain

Lor(an=270m)) = [ or(0n—axyun—A(f () —au) ) =0
(4.1)

/\/9901 (f(u)\) — au)\> >0 (4.2)

Passing to the limit in the inequality (4.2) as A tends to A*, we find

and then

0<lA*/g01<O,
Q

which is impossible and then \* # %

If \* = 2+ let u be a solution of problem (Py«) which exists by
Proposﬂnon 3.1. Multiplying (Py+) by o1 and integrating by parts,
we obtain

A
>\1/ upr = = fu)er
Q To JQ
that is
(7w = rou)er =0
then f(u) = rou in 2, and this contradicts the fact that f(0) > 0

(i) Since A* > 21 the existence of a solution to (Py-) is assured
by Proposition 3.1 and the uniqueness is given by Theorem 1.1.

30



(iii) In this stage, we will use the mountain pass Theorem of Am-
brosetti and Rabinowitz.

Theorem 4.1 [3] Let E be a real Banach space and J € C*(E,R).
Assume that J satisfies the Palais-Smale condition and the follow-
mg geometric assumptions.

(1) There exist positive constants R and p such that
J(u) > J(ug) + p, for allu e E with ||u — u|| = R.
(2) there exists vg € E such that ||vg—uop|| > R and J(vo) < J(uo).
Then the functional J possesses at least a critical point. The

critical value 1s characterized by

a:=inf max J(u),
g€l ueg([0,1])

where
D= {g € C([0,1).) | 9(0) = ua. g(1) = v

and satisfies
a > J(ug) + p.

Let
J:E—R

1 1
— = [ |A 2—1——/ 2—/F
U 2/Q| ul 2ch ; (u),

where E' is the function space defined by (2.9) and
t
F(t) = )\/ F(s)ds, for all > 0,
0

We take v as the stable solution uy for each A € (%7 ).
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The energy functional J belongs to C*'(FE,R) and

(J’(u),’u):/QAu-Av—l—/chv—)\/Qf(u)v,

for all u,v € E.

Since 1 (¢, A,uy) > 0, the function wuy is a local minimum for J.
In order to transform it into a local strict minimum, consider the
perturbed functional J. defined by

J.: FE— R

€ 9 £ 9 (43)
u — J(u)+§/Q|A(u—uA)\ —|—§/Qc]u—uA| )

for all € € [0, &g}, where

_§)\CL—)\1
4N

o -
We observe that J. is also in C'(FE,R) and

J’,:/AA/—A/ /A—A /—
(Jl(u),v) | Bu v+ | cuy Qf(u)v—l—é ; (u—wuy)Av +¢ Qc(u Uy )1
for all u,v € FE. Using the same arguments of Mironescu and

Réadulescu in [13, Lemma 9], we show that J. satisfies the Palais-

Smale condition and so we have the next lemma.

Lemma 4.1 Let (u,) C E be a Palais-Smale sequence, that is,

sup | Je ()] < 400, (4.4)
|2 (un)|| 2+ — 0 as n — oo. (4.5)

Then (uy) is relatively compact in E.

Now, we need only to check that the two geometric assumptions
are fulfilled. First, since u, is a local minimum of J, there exists
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R > 0 such that for all u € E satisfying ||u — u,|| = R, we have
J(u) > J(uy) . Then

T(u) > Jo(us) +g/ﬂ]A(u—u>\)\2.

Since u — u) is not harmonic, we can choose

e R

p: >0

and wuy becomes a strict local minimal for J., which proves (1).
Also, we have

A € €
Jeltpr) = S Mt —edt /Q Priia+2 A /Q Flun)un— /Q F(tgy), V> 0.
(4.6)
Recall that tigrn (f(t) — at) is finite, then there exists § € R such

that
ft)>at+p,Yt>0.

Hence \
F(t) > %tQ L BN V> 0.
This yields

Ja(t901) (/\1 5/\1 CL/\) g /
<(Z+-2) 4o ,
2 IR AT AR

which implies that

A A A
(1 ot _a> <0,Ve €0, g

1
li — J(t <
imsup - (ter) 5 + 5 5

t——+o0

Therefore
tlg-noo Je(tgol) =

and so, Ve € [0, €], there exists vg € E such that
Je(vo) < Je(un)

and (2) is proved. Finally, let v. (respectively. c.) be the critical
point (respectively. critical value) of J..
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Remark 4.1 The fact that J. increases with € implies that for all
e € [0,e0], cc € [co,Ce0]- Then, c. is uniformly bounded. Thus, for
all e € [0, &), the critical point v. satisfies ||ve — uy|| > R.

Recall that for any € € [0,¢0], the function v. belongs to E and
satisfies

A A
) B .
A%, + cv. = 71+€f(v5)+71+6f(u,\) in Q, (4.7)
and
Js<vs> = Ce¢. (48)

By Lemma 3.1, Remark 2, (4.7) and (4.8), there exists v € E such
that

v >vin E, as ¢ — 0,
satisfying

A%+ cv = Af(v) in Q.

From Remark 4.1, we see that v # u,.

Proof of (a). By contradiction, suppose that (a) doesn’t hold.
By Lemma 3.1 there is a sequence of positives scalars (u,) and a
sequence (v,) of unstable solutions to (P,,) such that v, — v in
Li.(92) as pi, — A1 /a for some function v.

loc

We first claim that (v,) cannot be bounded in E. Otherwise, let
w € F be such that, up to a subsequence,

v, — w weakly in £ and v, — w strongly in L*(2).
Therefore,
A*v,+cv, — A’w+cw in D'(Q)  and  f(v,) — f(w) in L*(Q),

which implies that A%w +cw = 21 f(w) in Q. It follows that w € E
and solves (Py, /o). From Lemma 4.1, we deduce that

A\
m (c, alw> <0. (4.9)
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Relation (4.9) shows that w # uy, /, which contradicts the fact that
(Py,/a) has a unique solution. Now, since A?v, +cv, = p, f(vy,), the
unboundedness of (v,,) in F implies that this sequence is unbounded
in L?(), too. To see this, let

Uy = kyw,, where k, >0, Jwy|2=1 and &k, — occ.

Then
A*w, + cw, = %f(vn) — 0 in L} .(9).

So, we have convergence also in the sense of distributions and (w;,)
is seen to be bounded in E with standard arguments. We obtain

A*w+cw=0 and |wl|,=1.
The desired contradiction is obtained since w € F.
Proof of (b). As before, it is enough to prove the L?(Q2) boundless
of vy near \* and to use the uniqueness property of u*. Assume that

|vp|l2 = 0o as p, — A*, where v, is a solution to (F,,). We write
again v, = [, w,. Then,

Aw, + cw, = % (vp). (4.10)

The fact that the right-hand side of (4.10) is bounded in L?*(2)
implies that (w,) is bounded in E. Let (w,) be such that (up to a
subsequence)

w, — w weakly in £ and w, — w strongly in L*(Q).
A computation already done shows that
A*w+cw = Naw, w>0 and|wl,=1,

which forces A* to be A;/a. This contradiction concludes the proof.
O
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