

Theory of Approximation and Applications

Vol. 11, No.1, (2017), 13-37

Bifurcation Problem for Biharmonic Asymptotically Linear Elliptic Equations

Makkia Dammak ^{a,*}, Majdi El Ghord ^b

^a University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis

09 doctor Zouhair Essafi Street 1006 Tunis, Tunisia

^b University of Tunis El Manar, Faculty of Sciences of Tunis, Campus
Universities 2092 Tunis, Tunisia

Received 22 February 2015; accepted 19 July 2015

Abstract

In this paper, we investigate the existence of positive solutions for the elliptic equation $\Delta^2 u + c(x)u = \lambda f(u)$ on a bounded smooth domain Ω of \mathbb{R}^n , $n \geq 2$, with Navier boundary conditions. We show that there exists an extremal parameter $\lambda^* > 0$ such that for $\lambda < \lambda^*$, the above problem has a regular solution but for $\lambda > \lambda^*$, the problem has no solution even in the week sense. We also show that $\lambda^* = \frac{\lambda_1}{a}$ if $\lim_{t \to \infty} f(t) - at = l \geq 0$ and for $\lambda < \lambda^*$, the solution is unique but for l < 0 and $\frac{\lambda_1}{a} < \lambda < \lambda^*$, the problem has two branches of solutions, where λ_1 is the first eigenvalue associated to the problem.

Key words: asymptotically linear, extremal solution, stable minimal solution, regularity.

2010 AMS Mathematics Subject Classification: 35B65, 35B45, 35J60.

^{*} Corresponding author's E-mail:makkia.dammak@gmail.com(J. Dammak)

1 Introduction and statement of main results

Consider the problem

$$(P_{\lambda})$$

$$\begin{cases} \Delta^{2} u + c u = \lambda f(u) \text{ in } \Omega \\ u = \Delta u = 0 \text{ on } \partial\Omega, \end{cases}$$

where Δ^2 is the biharmonic operator, Ω is a smooth bounded domain in \mathbb{R}^n , $n \geq 2$, $\lambda > 0$ and c = c(x) a positive continuous function in $\overline{\Omega}$ and the conditions imposed on f are as follows:

 H_1 : is a function defined in $[0, \infty)$ H_2 : f is C^1 , positive, nondecreasing and convex (1.1)

and

$$H_3: \lim_{t \to \infty} \frac{f(t)}{t} = a \in (0, +\infty). \tag{1.2}$$

By a solution of (P_{λ}) we mean a function $u \in C^4(\overline{\Omega})$ satisfying (P_{λ}) . In the sequel we are interested only in nonnegative solutions and for which we have considered only $\lambda > 0$. From maximum principle, if u is a nonnegative solution then u(x) > 0 for a.e.

Problems of the form (P_{λ}) occur in a variety of situations. They generate equations that arise in models of combustion [7,8], thermal explosions [7], nonlinear heat generation [11], and the gravitational equilibrium of polytropic stars [5,10]. In particular, the Helmholtz problem occur in the study of electromagnetic radiation, seismology, acoustics [2,6,15]...

For c = 0, Abid et al. have studied in [1], the following problem

$$\begin{cases} \Delta^2 u = \lambda f(u) \text{ in } \Omega \\ u = \Delta u = 0 \text{ on } \partial\Omega. \end{cases}$$
 (1.3)

Before that, in 1996 Radulescu and Minorescu have considered the

following harmonic problem

$$\begin{cases}
-\Delta u = \lambda f(u) \text{ in } \Omega \\
u = 0 \text{ on } \partial\Omega,
\end{cases}$$
(1.4)

and proved in [13], that there exists $0 < \lambda^* < \infty$, a critical value of the parameter λ , such that (1.4) has a minimal, positive, classical solution u_{λ} for $0 < \lambda < \lambda^*$ and does not have solutions for $\lambda > \lambda^*$. The value of a was crucial in the study of (1.4) and of the behavior of u_{λ} when λ approaches λ^* . In the case when $a = +\infty$, it is proved in [4] that a minimal weak solution u^* exists for $\lambda = \lambda^*$. In [12], Martel proves that in this case u^* is the unique weak solution of (E_{λ^*}) . Recently, Sanchon in [14] generalizes these results for the p-Laplacian.

In this paper, we study the existence of the critical bifurcation parameter λ^* , the regularity of the eventual solutions and the existence of extremal solution, this means solution for (P_{λ^*}) . We give a new proof to show that every weak solution is a classical one. We begin by introducing the following definition.

Definition 1.1 A weak solution of (P_{λ}) is a function $u \in L^{1}(\Omega), u \geq 0$ such that $f(u) \in L^{1}(\Omega)$ and

$$\int_{\Omega} u\Delta^{2}\zeta + \int_{\Omega} cu\zeta = \lambda \int_{\Omega} f(u)\zeta \tag{1.5}$$

for all $\zeta \in C^4(\overline{\Omega})$ with $\Delta \zeta = \zeta = 0$ on $\partial \Omega$.

We say that u is a weak super-solution of (P_{λ}) if " = " is replaced by " \geq " for all $\zeta \in C^4(\overline{\Omega})$, $\zeta \geq 0$ and $\Delta \zeta = \zeta = 0$ on $\partial \Omega$.

Remark 1.1 If u is a weak solution of (P_{λ}) and $u \in L^{\infty}(\Omega)$, we say that u is regular solution. By elliptic regularity, we know that regular solutions are smooth and solve (P_{λ}) in the classical sense.

Throughout the paper, we denote $\|.\|_p$ the $L^p(\Omega)$ -norm for $1 \leq p \leq \infty$ and $\|.\|$ the H^2 -norm given by

$$||u||^2 = \int_{\Omega} |\Delta u|^2.$$

For regular solutions, we introduce a notion of stability.

Definition 1.2 A regular solution u of (P_{λ}) is said to be stable if the first eigenvalue $\eta_1(c, \lambda, u)$ of the linearized operator $L_{c,\lambda,u} = -\Delta + c - \lambda f'(u)$ given by

$$\eta_1(c,\lambda,u) := \inf_{\varphi \in H^2(\Omega) \cap H^1_0(\Omega) \setminus \{0\}} \frac{\int_{\Omega} |\Delta \varphi|^2 + \int_{\Omega} c\varphi^2 - \lambda \int_{\Omega} f'(u)\varphi^2}{\|\varphi\|_2^2},$$

is positive in $H_0^1(\Omega)$. In other words,

$$\lambda \int_{\Omega} f'(u)\varphi^2 \leqslant \int_{\Omega} |\Delta\varphi|^2 + \int_{\Omega} c\varphi^2 \qquad \text{for any} \quad \varphi \in H^2(\Omega) \cap H^1_0(\Omega).$$
(1.6)

If $\eta_1(c, \lambda, u) < 0$, the solution u is said to be unstable.

We denote by λ_1 the first eigenvalue of $L = \Delta^2 + c$ in Ω with Navier boundary condition and φ_1 a positive normalized eigenfunction associated, that is, such that

$$\begin{cases}
\Delta^{2}\varphi_{1} + c\varphi_{1} = \lambda_{1}\varphi_{1} \text{ in } \Omega \\
\varphi_{1} > 0 & \text{in } \Omega \\
\varphi_{1} = \Delta\varphi_{1} = 0 & \text{on } \partial\Omega \\
\|\varphi_{1}\|_{2} = 1
\end{cases} (1.7)$$

Next, we let

 $\Lambda := \{\lambda > 0 \text{ such that } (P_{\lambda}) \text{ admits a solution} \} \text{ and } \lambda^* := \sup \Lambda \leq +\infty.$

We denote

$$r_0 := \inf_{t>0} \frac{f(t)}{t}. \tag{1.8}$$

Our first main statement asserts the existence of the critical value λ^* .

Theorem 1.1 Let f a positive function satisfying (1.1) and (1.2). Then there exists a critical value $\lambda^* \in (0, \infty)$ such that the following properties hold true.

- (i) For any $\lambda \in (0, \lambda^*)$, problem (P_{λ}) has a minimal solution u_{λ} , which is the unique stable solution of (P_{λ}) and the mapping $\lambda \mapsto u_{\lambda}$ is increasing.
- (ii) For any $\lambda \in (0, \frac{\lambda_1}{a})$, u_{λ} is the unique solution of problem (P_{λ}) .
- (iii) If problem (P_{λ^*}) has a solution u, then

$$u = u^* = \lim_{\lambda \to \lambda^*} u_\lambda,$$

and $\eta_1(c, \lambda^*, u^*) = 0$.

(iv) For $\lambda > \lambda^*$, the problem (P_{λ}) has no weak solution.

For the next results, let

$$l := \lim_{t \to \infty} \left(f(t) - at \right). \tag{1.9}$$

We distinguish two different situations strongly depending on the sign of l.

Theorem 1.2 Assume that $l \geq 0$. The following results hold.

- (i) $\lambda^* = \frac{\lambda_1}{a}$.
- (ii) Problem (P_{λ^*}) has no solution.
- (iii) $\lim_{\lambda \to \lambda^*} u_{\lambda} = \infty$ uniformly on compact subsets of Ω .

Theorem 1.3 Assume that l < 0 and the function c is nonnegative. Then we have.

- (i) The critical value λ^* belongs to $(\frac{\lambda_1}{a}, \frac{\lambda_1}{r_0})$.
- (ii) (P_{λ^*}) has a unique solution u^* .
- (iii) The problem (P_{λ}) has an unstable solution v_{λ} for any $\lambda \in (\frac{\lambda_1}{a}, \lambda^*)$ and the sequence $(v_{\lambda})_{\lambda}$ satisfies
 - $\stackrel{\frown}{(a)} \lim_{\lambda \to \frac{\lambda_1}{a}} v_{\lambda} = \infty \ \ uniformly \ on \ compact \ subsets \ of \ \Omega,$
 - (b) $\lim_{\lambda \to \lambda^*} u_{\lambda} = u^*$ uniformly in Ω .

2 Proof of Theorem 1.1

In the proof of this Theorem we shall make use of the following auxiliary results.

Lemma 2.1 Given $g \in L^1(\Omega)$, there exists an unique $v \in L^1(\Omega)$ which is a weak solution of

$$\begin{cases} \Delta^2 v + c v = g \text{ in } \Omega \\ v = \Delta v = 0 \text{ on } \partial\Omega, \end{cases}$$
 (2.1)

in the sense that

$$\int_{\Omega} v \Delta^2 \zeta + \int_{\Omega} c \ v \zeta = \int_{\Omega} g \zeta \tag{2.2}$$

for all $\zeta \in C^4(\overline{\Omega})$ with $\Delta \zeta = \zeta = 0$ on $\partial \Omega$.

Moreover, there exists a constant c_0 independents of g such that

$$||v||_1 \leqslant c_0 ||g||_1.$$

In addition, if $g \ge 0$ a.e in Ω , then $v \ge 0$ a.e in Ω .

Proof. For the uniqueness, let v_1 and v_2 be two solutions of (2.1). Then $v = v_1 - v_2$ satisfies

$$\int_{\Omega} v(\Delta^2 \zeta + c\zeta) = 0$$

for all $\zeta \in C^4(\overline{\Omega})$ with $\Delta \zeta = \zeta = 0$. Given $\varphi \in \mathcal{D}(\Omega)$, there exist a ζ solution of

$$\begin{cases} \Delta^2 \zeta + c \zeta = \varphi \text{ in } \Omega \\ \zeta = \Delta \zeta = 0 \text{ on } \partial \Omega, \end{cases}$$

it follows that

$$\int_{\Omega} v\varphi = 0.$$

Since φ is arbitrary, we deduce that v = 0.

for the existence, since $f = f^+ - f^-$, we can assume that $f \ge 0$. Let $f_n(x) = \min\{f(x), n\}$, then the family $(f_n)_n$ converge to f in $L^1(\Omega)$.

Now let v_n the solution of

$$\begin{cases} \Delta^2 v_n + c v_n = f_n \text{ in } \Omega \\ v_n = \Delta v_n = 0 \text{ on } \partial\Omega. \end{cases}$$
 (2.3)

The sequence $(v_n)_n$ is monotone nondecreasing. On the other hand, we have

$$\int_{\Omega} (v_k - v_l) = \int_{\Omega} (f_k - f_l) \zeta_0,$$

where ζ_0 is defined by

$$\begin{cases} \Delta^2 \zeta_0 + c\zeta_0 = 1 \text{ in } \Omega \\ \zeta_0 = \Delta \zeta_0 = 0 \text{ on } \partial \Omega. \end{cases}$$
 (2.4)

So

$$\int_{\Omega} |v_k - v_l| \leqslant c_0 \int_{\Omega} |f_k - f_l| dx,$$

and $(v_n)_n$ is a Cauchy sequence in $L^1(\Omega)$. Passing to the limit in (2.3), after multiplication by ζ , we have that $v = \lim v_n$ is a weak solution of equation (2.1). If we take $\zeta = \zeta_0$ in (2.2), we obtain

$$||v||_1 = \int_{\Omega} v = \int_{\Omega} f\zeta_0 \leqslant c_0 ||f||_1.$$

Lemma 2.2 If (P_{λ}) has a weak super solution \overline{u} , then there exists a weak solution u of (P_{λ}) such that $0 \leq u \leq \overline{u}$ and u does not depend on \overline{u} .

Proof. We use a standard monotone iteration argument and maximum principle for the operator $-\Delta + c$. Let $u_0 = 0$ and u_{n+1} the solution of

$$\begin{cases} \Delta^2 u_{n+1} + c u_{n+1} = \lambda f(u_n) \text{ in } \Omega, \\ \Delta u_{n+1} = u_{n+1} = 0 & \text{on } \partial\Omega, \end{cases}$$

which exists by Lemma 1. We prove that $0 = u_0 \leqslant u_1 \leqslant ... \leqslant u_n \leqslant ... \leqslant \overline{u}$ and $(u_n)_n$ converge to $u \in L^1(\Omega)$ which is a weak solution of (P_{λ}) . Moreover u is independent of \overline{u} by construction.

The existence of the critical value λ^* is a consequence of the following auxiliary result.

Lemma 2.3 Problem (P_{λ}) has no solution for any $\lambda > \lambda_1/r_0$, but has at least one solution provided λ is positive and small enough.

Proof. To show that (P_{λ}) has a solution, we use the Lemma 2. To this aim, let $\zeta_0 \in C^4(\overline{\Omega})$ given by (2.4). The choice of ζ_0 implies that ζ_0 is a super solution of (P_{λ}) for $\lambda \leq 1/f(\|\zeta_0\|_{\infty})$. By lemma 2, there exist a weak solution u of (P_{λ}) such that $0 \leq u \leq \zeta_0$. Because $\zeta_0 \in C^4(\overline{\Omega})$, $u \in L^{\infty}(\Omega)$ (u is a regular solution) and then $u \in C^4(\overline{\Omega})$. It follows that problem (P_{λ}) has a solution for $\lambda \leq 1/f(\|\zeta_0\|_{\infty})$.

Assume now that u is a solution of (P_{λ}) for some $\lambda > 0$. Using φ_1 given by (1.7) as a test function, we get

$$\int_{\Omega} u\Delta^2 \varphi_1 + \int_{\Omega} cu\varphi_1 = \lambda \int_{\Omega} f(u)\varphi_1$$

This yields

$$(\lambda_1 - \lambda r_0) \int_{\Omega} \varphi_1 u \ge 0.$$

Since $\varphi_1 > 0$ and u > 0, we conclude that the parameter λ should belong to $(0, \lambda_1/r_0)$.

This completes our proof.

Lemma 2.4 Assume that the problem (P_{λ}) has a solution for some $\lambda \in (0, \lambda^*)$. Then there exists a minimal solution denoted by u_{λ} for the problem (P_{λ}) . Moreover, for any $\lambda' \in (0, \lambda)$, the problem $(P_{\lambda'})$ has a solution.

Proof. Fix $\lambda \in (0, \lambda^*)$ and let u be a solution of (P_{λ}) . As above, we use the Lemma 2 to obtain a solution of (P_{λ}) , u_{λ} which is independent of u used as super solution (as mentioned in the proof of Lemma 2).

Since u_{λ} is independent of the choice of u, then it is a minimal solution.

Now, if u is a solution of (P_{λ}) , then u is a super solution of the problem $(P_{\lambda'})$ for any λ' in $(0,\lambda)$ and Lemma 2 completes the proof. \square

Proof of Theorem 1 (i)

First, we claim that u_{λ} is stable. Indeed, arguing by contradiction, we deduce that the first eigenvalue

 $\eta_1 = \eta_1(c, \lambda, u_\lambda)$ is non positive. Then, there exists an eigenfunction

$$\psi \in C^4(\overline{\Omega})$$
 and $\Delta \psi = \psi = 0$ on $\partial \Omega$,

such that

$$\Delta^2 \psi + c \psi - \lambda f'(u_\lambda) \psi = \eta_1 \psi$$
 in Ω and $\psi > 0$ in Ω .

Consider $u^{\varepsilon} := u_{\lambda} - \varepsilon \psi$. Hence

$$\Delta^2 u^{\varepsilon} + c u^{\varepsilon} - \lambda f(u^{\varepsilon}) = -\eta_1 \varepsilon \psi + \lambda \left[f(u_{\lambda}) - f(u_{\lambda} - \varepsilon \psi) - \varepsilon f'(u_{\lambda}) \psi \right] = \varepsilon \psi (-\eta_1 + o_{\varepsilon}(1)).$$

Since $\eta_1 \leq 0$ for $\varepsilon > 0$ small enough, we have

$$\Delta^2 u^{\varepsilon} + c u^{\varepsilon} - \lambda f(u^{\varepsilon}) \ge 0$$
 in Ω .

Then, for $\varepsilon > 0$ small enough, we use the strong maximum principle (Hopf's Lemma) to deduce that $u^{\varepsilon} \geq 0$. u^{ε} is a super solution of (P_{λ}) , so by Lemma 2 we obtain a solution u such that $u \leq u^{\varepsilon}$ and since $u^{\varepsilon} < u_{\lambda}$, then we contradict the minimality of u_{λ} .

Now, we show that (P_{λ}) has at most one stable solution. Assume the existence of another stable solution $v \neq u_{\lambda}$ of problem (P_{λ}) . Let $\varphi := v - u_{\lambda}$, then by maximum principle $\varphi > 0$ and from (1.6) taking φ as a test function, we have

$$\lambda \int_{\Omega} f'(v) \varphi^2 \leq \int_{\Omega} \left| \Delta \varphi \right|^2 + \int_{\Omega} c \varphi^2 = \int_{\Omega} \varphi \Delta^2 \varphi + \int_{\Omega} c \varphi^2 = \lambda \int_{\Omega} \left[f(v) - f(u_{\lambda}) \right] \varphi.$$

Therefore

$$\int_{\Omega} \left[f(v) - f(u_{\lambda}) - f'(v)(v - u_{\lambda}) \right] \varphi \ge 0.$$

Thanks to the convexity of f, the term in the brackets is non positive, hence

$$f(v) - f(u_{\lambda}) - f'(v)(v - u_{\lambda}) = 0$$
 in Ω ,

which implies that f is affine over $[u_{\lambda}, v]$ in Ω . So, there exists two real numbers \bar{a} and b such that

$$f(x) = \bar{a}x + b$$
 in $[0, \max_{\Omega} v]$.

Finally, since u_{λ} and v are two solutions to $\Delta^2 w + cw = \bar{a}w + b$, we obtain that

$$0 = \int_{\Omega} (u_{\lambda} \Delta v - v \Delta u_{\lambda}) = b \int_{\Omega} (v - u_{\lambda}) = b \int_{\Omega} \varphi.$$

This is impossible since b = f(0) > 0 and φ is positive in Ω . Finally, by Lemma 4 and the definition of u_{λ} , we have that the function $\lambda \to u_{\lambda}$ is an increasing mapping.

Proof of Theorem 1 (ii)

In this stage, we need the following results.

Proposition 2.1 Let $\Omega \subset \mathbb{R}^n$ a smooth bounded open subset of \mathbb{R}^n , $n \geq 2$. Assume that f is a function satisfying (1.1) and (1.2). If (P_{λ}) has a weak solution u, then u is a regular solution and hence a classical solution.

Proof. By convexity of f, we have $a = \sup_{t \ge 0} f'(t)$ and

$$f(t) \leqslant at + f(0) \text{ for all } t \ge 0. \tag{2.5}$$

Let u a weak solution of (P_{λ}) , $f(u) \in L^{1}(\Omega)$. By elliptic regularity, $u \in L^{p}(\Omega)$, for all $p \geq 1$ such that

$$p < \frac{n}{n-4}$$
 $(p \le \infty \text{ if } n = 2, 3 \text{ and } p < \infty \text{ if } n = 4)$ (2.6)

Again by (2.5), $f(u) \in L^p$ for all p satisfying (2.6) so $u \in W^{4,r}(\Omega)$ for all $r \ge 1$ such that

$$r < \frac{n}{n-8}$$
 $(r \le \infty \text{ if } n = 2, 3, 4, 5, 6, 7 \text{ and } r < \infty \text{ if } n = 8)$ (2.7)

By iteration and after $k(n) = \left[\frac{n}{4}\right] + 1$ operations, the solution u belongs to $L^{\infty}(\Omega)$.

By elliptic regularity and standard bootstrap argument, $u \in C^4(\overline{\Omega})$.

Proposition 2.2 Let $\Omega \subset \mathbb{R}^n$ a smooth bounded open subset of \mathbb{R}^n , $n \geq 2$. Assume that $f(t) = f_0(t) = at + b$, where a, b > 0. Then

(i)
$$\lambda^* = \frac{\lambda_1}{a}$$

(ii) The problem (P_{λ}) has no weak solution for $\lambda = \lambda^*$

Proof. Let $0 < \lambda < \frac{\lambda_1}{a}$, the problem (P_{λ}) , given by

$$\begin{cases} \Delta^{2}u + (c - \lambda a)u = \lambda b & \text{in } \Omega \\ \Delta u = u = 0 & \text{on } \partial\Omega \end{cases}$$
 (2.8)

has a unique solution in $C^4(\overline{\Omega})$.

Since $\lambda a < \lambda_1$, by Maximum principle u > 0. Now let $\lambda = \frac{\lambda_1}{a}$. If the problem (2.8) has a solution u, then by multiplication (2.8) by φ_1 a positive function associated to λ_1 and introduced by (1.7) and integration by parts, it follows that $\int_{\Omega} \varphi_1 = 0$ which is impossible since $\varphi_1 > 0$ in Ω . So for $f_0(t) = at + b$, a and b > 0, we have $\lambda^* = \frac{\lambda_1}{a}$ and the equation (P_{λ^*}) has no solution.

For the proof of Theorem 1 (ii), let $\lambda \in (0, \frac{\lambda_1}{a})$, b = f(0) and w a solution for the problem (2.8) when

 $f_0(t) = at + b$. Since we have for the function f in Theorem 1, $f(w) \le aw + f(0)$, then w is a super-solution of (P_{λ}) and hence by Lemma 2 and Proposition 1, the equation (P_{λ}) has a solution.

For the uniqueness, let u a solution of (P_{λ}) for a reel $\lambda \in (0, \frac{\lambda_1}{a})$. We denote $\lambda_1(L)$ the first eigenvalue of an operator L, that is $\lambda_1(\Delta^2 + c) = \lambda_1$.

Because $a = \sup_{t \ge 0} f'(t)$, we have $\Delta^2 + c - \lambda f'(u) \ge \Delta^2 + c - \lambda a$ and so

$$\lambda_1(\Delta^2 + c - \lambda f'(u)) \ge \lambda_1(\Delta^2 + c - \lambda a)$$

that is

$$\eta_1(c,\lambda,u) \ge \lambda_1 - \lambda a > 0.$$

The solution u is stable then, by Theorem 1 (i), we obtain $u = u_{\lambda}$.

Proof of Theorem 1 (iii)

Suppose that (P_{λ}) has a solution u. then, for every $\lambda \in (0, \lambda^*)$, we have $u_{\lambda} \leq u$ and so $u^* = \lim_{\lambda \to \lambda^*} u_{\lambda}$ is well defined in $L^1(\Omega)$ and furthermore u^* is a weak then classical solution for (P_{λ^*}) .

Since $0 \le u^* \le u$, u^* is a minimal solution and also satisfies (1.6) for $\lambda = \lambda^*$ so $\eta_1(c, \lambda^*, u^*) \ge 0$.

Now, consider the nonlinear operator

$$\begin{split} G: (0,+\infty) \times C^{4,\alpha}(\bar{\Omega}) \cap E &\longrightarrow C^{0,\alpha}(\bar{\Omega}) \\ (\lambda,u) &\longmapsto \Delta^2 u + cu - \lambda f(u), \end{split}$$

where $\alpha \in (0,1)$ and E the function space defined by

$$E := \{ u \in H^4(\Omega) / \Delta u = u = 0 \text{ on } \partial \Omega \}$$
 (2.9)

Assuming that the first eigenvalue $\eta_1(c, \lambda^*, u^*)$ is positive. By the implicit function theorem applied to the operator G, it follows that problem (P_{λ}) has a solution for λ in a neighborhood of λ^* . But this contradicts the definition of λ^* so $\eta_1(c, \lambda^*, u^*) = 0$.

Furthermore, u^* is a the unique solution for (P_{λ^*}) and we can proceed as in the proof of Theorem 1.1(ii).

Proof of Theorem 1 (iv)

If the problem (P_{λ}) has a weak solution u for $\lambda > \lambda^*$, then by Proposition 2, u is a classical solution for (P_{λ}) and this contradicts the definition of λ^* .

Proof of Theorem 1.2

In the proof of Theorem 1.2, we shall use the following auxiliary result which is a reformulation of Theorem due to Hörmander [9] and maximum principle.

Lemma 3.1 Let Ω be an open bounded subset of \mathbb{R}^n , $n \geq 2$ with smooth boundary. Let (u_n) be a sequence of nonnegative functions defined on Ω and satisfying $\Delta^2 u_n + cu_n \geq 0$ for a positive continues function c. Then the following alternative holds.

 $\lim_{n\to\infty} u_n = \infty \text{ uniformly on compact subsets of } \Omega,$

or

(ii) (u_n) contains a subsequence which converges in $L^1_{loc}(\Omega)$ to some function u.

We first prove the following result.

Proposition 3.1 Let f be a positive function satisfying (1.1) and (1.2). Then the following assertions are equivalent.

Proof.

(i) \Rightarrow (ii). By contradiction. Assume that (P_{λ^*}) has a solution u. By (ii) of Theorem 1.1, $u = u^* = \lim_{\lambda \to \lambda^*} u_{\lambda}$ and $\eta_1(c, \lambda^*, u^*) = 0$. Thus there exists $\psi \in C^4(\overline{\Omega})$ satisfying

$$\begin{cases} \Delta^{2}\psi + c\psi - \lambda^{*}f'(u^{*})\psi = 0 & \text{in } \Omega \\ \psi > 0 & \text{in } \Omega \end{cases}$$

$$\Delta\psi = \psi = 0 \text{ on } \partial\Omega.$$
(3.1)

Using φ_1 given by (1.7) as a test function, we obtain

$$\int_{\Omega} (\lambda_1 - \lambda^* f'(u^*)) \varphi_1 \psi = 0 \tag{3.2}$$

Since $\varphi_1 > 0$, $\psi > 0$, $\lambda^* = \frac{\lambda_1}{a}$, and $a = \sup_{t>0} f'(t)$, we have $\lambda_1 - \lambda^* f'(u^*) \ge 0$.

Then equality (3.2) gives $f'(u^*) = a$ in Ω .

This implies that f(t) = at + b in $[0, max_{\Omega}u^*]$ for some scalar b > 0 and this impossible by Proposition 2.2. Hence (P_{λ^*}) has no solution.

(ii)⇒(iii). By contradiction, suppose that (iii) doesn't hold. By Lemma 3.1 and up to subsequence,

 u_{λ} converges locally in $L^{1}(\Omega)$ to the function u^{*} as $\lambda \to \lambda^{*}$.

Claim: u_{λ} is bounded in $L^{2}(\Omega)$.

Indeed, if not, we may assume that

$$u_{\lambda} = k_{\lambda} w_{\lambda}$$

with

$$\int_{\Omega} w_{\lambda}^{2} dx = 1 \quad \text{and} \quad \lim_{\lambda \to \lambda^{*}} k_{\lambda} = \infty$$
 (3.3)

We have

$$\frac{\lambda}{k_{\lambda}} f(u_{\lambda}) \to 0$$
 in $L^1_{loc}(\Omega)$ as $\lambda \to \lambda^*$.

and then

$$\Delta^2 w_{\lambda} + c w_{\lambda} \to 0$$
 in $L^1_{loc}(\Omega)$. (3.4)

We have

$$\int_{\Omega} |\Delta w_{\lambda}|^{2} = \int_{\Omega} \Delta^{2} w_{\lambda} w_{\lambda}$$

$$= \int_{\Omega} (\frac{\lambda f(u_{\lambda})}{k_{\lambda}} - cw_{\lambda}) w_{\lambda},$$

then

$$\int_{\Omega} |\Delta w_{\lambda}|^{2} \leqslant \int_{\Omega} \frac{\lambda f(u_{\lambda})}{k_{\lambda}} w_{\lambda}$$

$$\leqslant \lambda^{*} \int_{\Omega} a w_{\lambda}^{2} + \frac{f(0)}{k_{\lambda}} w_{\lambda}$$

$$\leqslant a\lambda^{*} + c_{0} \int_{\Omega} w_{\lambda}$$

$$\leqslant a\lambda^{*} + c_{0} \sqrt{|\Omega|},$$

for some $c_0 > 0$ independent of λ .

Then (w_{λ}) is bounded in $H^4(\Omega)$ and up to a subsequence, we obtain

$$w_{\lambda} \rightharpoonup w$$
 weakly in $H^{4}(\Omega)$ and $w_{\lambda} \to w$ strongly in $L^{2}(\Omega)$ as $\lambda \to \lambda^{*}$. (3.5)

Moreover, by the trace Theorem

$$\Delta w_{\lambda} = w_{\lambda} = 0$$
 on $\partial \Omega$

It follows by (3.5), that w = 0 in Ω and this contradicts (3.3).

This complete the proof of the claim.

Thus u_{λ} is bounded in $L^{2}(\Omega)$ and with the same argument above, u_{λ} is bounded in $H^{4}(\Omega)$ and up to a subsequence, we have

$$u_{\lambda} \rightharpoonup u^*$$
 weakly in $H^4(\Omega)$ and $u_{\lambda} \to u^*$ in $L^2(\Omega)$ as $\lambda \to \lambda^*$

and

$$\begin{cases} \Delta^2 u^* + cu^* = \lambda^* f(u^*) & \text{in } \Omega \\ \Delta u^* = u^* = 0 & \text{on } \partial\Omega \end{cases}$$

and this impossible by the hypothesis (ii).

It's obvious that (iii)⇒(ii) and hence (ii)⇔(iii).

(iii) \Rightarrow (i). If (iii) occurs, that (ii) also is true and we have $\lim_{\lambda \to \lambda^*} ||u_{\lambda}||_2 = \infty$. Let

$$u_{\lambda} = k_{\lambda} w_{\lambda} \quad \text{with} \quad ||w_{\lambda}||_2 = 1.$$
 (3.6)

Up to subsequence, we obtain

$$w_{\lambda} \rightharpoonup w$$
 weakly in $H^4(\Omega)$ and

$$w_{\lambda} \to w$$
 in $L^2(\Omega)$ as $\lambda \to \lambda^*$. (3.7)

We have also

$$\frac{\lambda}{k_{\lambda}} f(u_{\lambda}) \to \lambda^* aw$$
 as $\lambda \to \lambda^*$ (3.8)

and

$$-\Delta w_{\lambda} + cw_{\lambda} \to -\Delta w + cw$$
 in $L^{2}(\Omega)$

and then

$$\begin{cases}
-\Delta w + cw = a\lambda^* w & \text{in } \Omega \\
w = 0 & \text{on } \partial\Omega
\end{cases}$$
(3.9)

Taking φ_1 as a test function in (3.9), we obtain

$$\lambda_1 \int_{\Omega} w \varphi_1 = \int_{\Omega} w(-\Delta \varphi_1 + c \varphi_1)) = \int_{\Omega} a \lambda^* w \varphi_1$$

Since $\varphi_1 > 0$ and w > 0 in Ω , we have $\lambda^* = \frac{\lambda_1}{a}$ and this complete the proof of Proposition 3.1.

To finish the proof of Theorem 1.2, we need only to show that $(P_{\frac{\lambda_1}{a}})$ has no solution. Assume that u is a solution of $(P_{\frac{\lambda_1}{a}})$. Since

$$l := \lim_{t \to \infty} \left(f(t) - at \right) \ge 0$$
 and $a = \sup_{t \ge 0} f'(t)$,

we have $l \in (0, \infty)$ and $f(t) - at \ge 0$ and

$$\Delta^2 u + cu = \frac{\lambda_1}{a} f(u) \quad \text{in} \quad \Omega. \tag{3.10}$$

Taking φ_1 as a test function in (3.10), we get f(u) = a u in Ω , which contradicts f(0) > 0. This concludes the proof of Theorem 1.2. \square

4 Proof of Theorem 1.3

(i) We have shown that

$$\frac{\lambda_1}{a} \leqslant \lambda^* \leqslant \frac{\lambda_1}{r_0}$$

Suppose that $\lambda^* = \frac{\lambda_1}{a}$. By Proposition 3.1, we have

 $\lim_{\lambda \to \lambda^*} u_{\lambda} = \infty$ uniformly on compact subsets of Ω .

Let u_{λ} be the minimal solution of (P_{λ}) for $\frac{\lambda_1}{a} < \lambda < \lambda^*$. Then, multiplying (P_{λ}) by φ_1 and integrating by parts, we obtain

$$\int_{\Omega} \varphi_1 \left(\lambda_1 \, u_{\lambda} - \lambda \, f(u_{\lambda}) \right) = \int_{\Omega} \varphi_1 \left((\lambda_1 - a\lambda) u_{\lambda} - \lambda (f(u_{\lambda}) - au_{\lambda}) \right) = 0 \tag{4.1}$$

and then

$$\lambda \int_{\Omega} \varphi_1 \Big(f(u_{\lambda}) - au_{\lambda} \Big) \ge 0 \tag{4.2}$$

Passing to the limit in the inequality (4.2) as λ tends to λ^* , we find

$$0 \leqslant l\lambda^* \int_{\Omega} \varphi_1 < 0,$$

which is impossible and then $\lambda^* \neq \frac{\lambda_1}{a}$.

If $\lambda^* = \frac{\lambda_1}{r_0}$, let u be a solution of problem (P_{λ^*}) which exists by Proposition 3.1. Multiplying (P_{λ^*}) by φ_1 and integrating by parts, we obtain

$$\lambda_1 \int_{\Omega} u\varphi_1 = \frac{\lambda_1}{r_0} \int_{\Omega} f(u)\varphi_1$$

that is

$$\int_{\Omega} (f(u) - r_0 u) \varphi_1 = 0$$

then $f(u) = r_0 u$ in Ω , and this contradicts the fact that f(0) > 0.

(ii) Since $\lambda^* > \frac{\lambda_1}{a}$, the existence of a solution to (P_{λ^*}) is assured by Proposition 3.1 and the uniqueness is given by Theorem 1.1.

(iii) In this stage, we will use the mountain pass Theorem of Ambrosetti and Rabinowitz.

Theorem 4.1 [3] Let E be a real Banach space and $J \in C^1(E, \mathbb{R})$. Assume that J satisfies the Palais-Smale condition and the following geometric assumptions.

(1) There exist positive constants R and ρ such that

$$J(u) \ge J(u_0) + \rho$$
, for all $u \in E$ with $||u - u_0|| = R$.

(2) there exists $v_0 \in E$ such that $||v_0 - u_0|| > R$ and $J(v_0) \leq J(u_0)$. Then the functional J possesses at least a critical point. The critical value is characterized by

$$\alpha := \inf_{g \in \Gamma} \max_{u \in g([0,1])} J(u),$$

where

$$\Gamma := \left\{ g \in C([0,1], E) \mid g(0) = u_0, \ g(1) = v_0 \right\}$$

and satisfies

$$\alpha \geq J(u_0) + \rho.$$

Let

$$J: E \longrightarrow \mathbb{R}$$
$$u \longmapsto \frac{1}{2} \int_{\Omega} |\Delta u|^2 + \frac{1}{2} \int_{\Omega} cu^2 - \int_{\Omega} F(u),$$

where E is the function space defined by (2.9) and

$$F(t) = \lambda \int_0^t f(s)ds$$
, for all $t \ge 0$.

We take u_0 as the stable solution u_{λ} for each $\lambda \in (\frac{\lambda_1}{a}, \lambda^*)$.

The energy functional J belongs to $C^1(E,\mathbb{R})$ and

$$\langle J'(u), v \rangle = \int_{\Omega} \Delta u \cdot \Delta v + \int_{\Omega} cuv - \lambda \int_{\Omega} f(u)v,$$

for all $u, v \in E$.

Since $\eta_1(c, \lambda, u_{\lambda}) \geq 0$, the function u_{λ} is a local minimum for J. In order to transform it into a local strict minimum, consider the perturbed functional J_{ε} defined by

$$J_{\varepsilon}: E \longrightarrow \mathbb{R}$$

$$u \longmapsto J(u) + \frac{\varepsilon}{2} \int_{\Omega} |\Delta(u - u_{\lambda})|^{2} + \frac{\varepsilon}{2} \int_{\Omega} c|u - u_{\lambda}|^{2}, \tag{4.3}$$

for all $\varepsilon \in [0, \varepsilon_0]$, where

$$\varepsilon_0 := \frac{3}{4} \, \frac{\lambda a - \lambda_1}{\lambda_1}.$$

We observe that J_{ε} is also in $C^{1}(E,\mathbb{R})$ and

$$\langle J_{\varepsilon}'(u), v \rangle = \int_{\Omega} \Delta u \Delta v + \int_{\Omega} c u v - \lambda \int_{\Omega} f(u) v + \varepsilon \int_{\Omega} \Delta (u - u_{\lambda}) \Delta v + \varepsilon \int_{\Omega} c (u - u_{\lambda}) dv + \varepsilon \int_{\Omega$$

for all $u, v \in E$. Using the same arguments of Mironescu and Rădulescu in [13, Lemma 9], we show that J_{ε} satisfies the Palais-Smale condition and so we have the next lemma.

Lemma 4.1 Let $(u_n) \subset E$ be a Palais-Smale sequence, that is,

$$\sup_{n\in\mathbb{N}} |J_{\varepsilon}(u_n)| < +\infty, \tag{4.4}$$

$$||J'_{\varepsilon}(u_n)||_{E^*} \to 0 \text{ as } n \to \infty.$$
 (4.5)

Then (u_n) is relatively compact in E.

Now, we need only to check that the two geometric assumptions are fulfilled. First, since u_{λ} is a local minimum of J, there exists

R>0 such that for all $u\in E$ satisfying $||u-u_{\lambda}||=R,$ we have $J(u)\geq J(u_{\lambda})$. Then

$$J_{\varepsilon}(u) \geq J_{\varepsilon}(u_{\lambda}) + \frac{\varepsilon}{2} \int_{\Omega} |\Delta(u - u_{\lambda})|^2.$$

Since $u - u_{\lambda}$ is not harmonic, we can choose

$$\rho := \frac{\varepsilon R^2}{4} > 0$$

and u_{λ} becomes a strict local minimal for J_{ε} , which proves (1). Also, we have

$$J_{\varepsilon}(t\varphi_1) = \frac{\lambda_1}{2}t^2 + \frac{\varepsilon}{2}\lambda_1 t^2 - \varepsilon \lambda_1 t \int_{\Omega} \varphi_1 u_{\lambda} + \frac{\varepsilon}{2}\lambda \int_{\Omega} f(u_{\lambda})u_{\lambda} - \int_{\Omega} F(t\varphi_1), \ \forall t > 0.$$

$$(4.6)$$

Recall that $\lim_{t \to +\infty} (f(t) - at)$ is finite, then there exists $\beta \in \mathbb{R}$ such that

$$f(t) \ge a t + \beta, \forall t > 0.$$

Hence

$$F(t) \ge \frac{a\lambda}{2}t^2 + \beta\lambda t, \forall t > 0.$$

This yields

$$\frac{J_{\varepsilon}(t\varphi_1)}{t^2} \leqslant \left(\frac{\lambda_1}{2} + \frac{\varepsilon\lambda_1}{2} - \frac{a\lambda}{2}\right) + \frac{\varepsilon}{2t^2} \int_{\Omega} f(u_{\lambda})u_{\lambda},$$

which implies that

$$\limsup_{t \to +\infty} \frac{1}{t^2} J_{\varepsilon}(t\varphi_1) \leqslant \left(\frac{\lambda_1}{2} + \frac{\varepsilon_0 \lambda_1}{2} - \frac{a \lambda}{2}\right) < 0, \ \forall \, \varepsilon \in [0, \ \varepsilon_0].$$

Therefore

$$\lim_{t \to +\infty} J_{\varepsilon}(t\varphi_1) = -\infty$$

and so, $\forall \varepsilon \in [0, \varepsilon_0]$, there exists $v_0 \in E$ such that

$$J_{\varepsilon}(v_0) \leqslant J_{\varepsilon}(u_{\lambda})$$

and (2) is proved. Finally, let v_{ε} (respectively. c_{ε}) be the critical point (respectively. critical value) of J_{ε} .

Remark 4.1 The fact that J_{ε} increases with ε implies that for all $\varepsilon \in [0, \varepsilon_0]$, $c_{\varepsilon} \in [c_0, c_{\varepsilon_0}[$. Then, c_{ε} is uniformly bounded. Thus, for all $\varepsilon \in [0, \varepsilon_0]$, the critical point v_{ε} satisfies $||v_{\varepsilon} - u_{\lambda}|| \geq R$.

Recall that for any $\varepsilon \in [0, \varepsilon_0]$, the function v_{ε} belongs to E and satisfies

$$\Delta^2 v_{\varepsilon} + c v_{\varepsilon} = \frac{\lambda}{1 + \varepsilon} f(v_{\varepsilon}) + \frac{\lambda \varepsilon}{1 + \varepsilon} f(u_{\lambda}) \text{ in } \Omega, \tag{4.7}$$

and

$$J_{\varepsilon}(v_{\varepsilon}) = c_{\varepsilon}. \tag{4.8}$$

By Lemma 3.1, Remark 2, (4.7) and (4.8), there exists $v \in E$ such that

$$v_{\varepsilon} \to v \text{ in } E, \text{ as } \varepsilon \to 0,$$

satisfying

$$\Delta^2 v + cv = \lambda f(v)$$
 in Ω .

From Remark 4.1, we see that $v \neq u_{\lambda}$.

Proof of (a). By contradiction, suppose that (a) doesn't hold. By Lemma 3.1 there is a sequence of positives scalars (μ_n) and a sequence (v_n) of unstable solutions to (P_{μ_n}) such that $v_n \to v$ in $L^1_{loc}(\Omega)$ as $\mu_n \to \lambda_1/a$ for some function v.

We first claim that (v_n) cannot be bounded in E. Otherwise, let $w \in E$ be such that, up to a subsequence,

$$v_n \rightharpoonup w$$
 weakly in E and $v_n \rightarrow w$ strongly in $L^2(\Omega)$.

Therefore,

$$\Delta^2 v_n + cv_n \to \Delta^2 w + cw \text{ in } \mathcal{D}'(\Omega)$$
 and $f(v_n) \to f(w) \text{ in } L^2(\Omega)$,

which implies that $\Delta^2 w + cw = \frac{\lambda_1}{a} f(w)$ in Ω . It follows that $w \in E$ and solves $(P_{\lambda_1/a})$. From Lemma 4.1, we deduce that

$$\eta_1\left(c, \frac{\lambda_1}{a}, w\right) \leqslant 0.$$
(4.9)

Relation (4.9) shows that $w \neq u_{\lambda_1/a}$ which contradicts the fact that $(P_{\lambda_1/a})$ has a unique solution. Now, since $\Delta^2 v_n + cv_n = \mu_n f(v_n)$, the unboundedness of (v_n) in E implies that this sequence is unbounded in $L^2(\Omega)$, too. To see this, let

$$v_n = k_n w_n$$
, where $k_n > 0$, $||w_n||_2 = 1$ and $k_n \to \infty$.

Then

$$\Delta^2 w_n + cw_n = \frac{\mu_n}{k_n} f(v_n) \to 0$$
 in $L^1_{loc}(\Omega)$.

So, we have convergence also in the sense of distributions and (w_n) is seen to be bounded in E with standard arguments. We obtain

$$\Delta^2 w + cw = 0$$
 and $||w||_2 = 1$.

The desired contradiction is obtained since $w \in E$.

Proof of (b). As before, it is enough to prove the $L^2(\Omega)$ boundless of v_{λ} near λ^* and to use the uniqueness property of u^* . Assume that $||v_n||_2 \to \infty$ as $\mu_n \to \lambda^*$, where v_n is a solution to (P_{μ_n}) . We write again $v_n = l_n w_n$. Then,

$$\Delta^2 w_n + cw_n = \frac{\mu_n}{l_n} f(v_n). \tag{4.10}$$

The fact that the right-hand side of (4.10) is bounded in $L^2(\Omega)$ implies that (w_n) is bounded in E. Let (w_n) be such that (up to a subsequence)

$$w_n \rightharpoonup w$$
 weakly in E and $w_n \rightarrow w$ strongly in $L^2(\Omega)$.

A computation already done shows that

$$\Delta^2 w + cw = \lambda^* aw, \quad w \ge 0 \quad \text{ and } \|w\|_2 = 1,$$

which forces λ^* to be λ_1/a . This contradiction concludes the proof. \Box

References

- [1] I. Abid, M. Jleli and N. Trabelsi, Weak solutions of quasilinear biarmonic problems with positive increasing and convex nonlinearities, Analysis and Applications 6 (2008), 213-227.
- [2] H. Alzubaidi, X. Antoine and C. Chniti, Formulation and accuracy of On-Surface Radiation Conditions for acoustic multiple scattering problems, Applied Mathematics and Computation (Elsevier) Volume 277 (2016), 82-100.
- [3] A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381.
- [4] H. Brezis, T. Cazenave, Y. Martel, and A. Ramiandrisoa, Blow up for $u_t \Delta u = g(u)$ revisited, Adv. Diff. Eq. 1 (1996), 73-90.
- [5] S. Chandrasekar, An introduction to the Theory of Stellar Structures , Dover, New York 1957.
- [6] C. Chniti, S. Alhazmi, S. H. Altum and M. Toujani, Improved DtN and NtD maps for OSRCs techniques: derivation and numerical validation, Applied Numerical Mathematics (Elsevier) Volume 101, March 2016, 53-70.
- [7] D.A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics, New York: Plenum Press 1069.
- [8] I.M. Gelfand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Translations Heidelberg, 1(2) **29** (1963), 295-381.
- [9] L. Hörmander, The Analysis of Linear Differential Operators I, Springer-Verlag, Berlin 1983.
- [10] D.D. Joseph and T.S. Lundgren, Quasilinear Dirichlet driven by positive sources, Arch. Rachinal Mech. Anal. 49 (1973), 241-269.
- [11] D.D. Joseph and E.M. Sparrow, Nonlinear diffusion induced by nonlinear sources, Quar. J. Appl. Math. 28 (1970), 327-342.
- [12] Y. Martel, Uniqueness of weak solution for nonlinear elliptic problems, Houston J. Math. 23 (1997), 161-168.

- [13] P. Mironescu and V. Rădulescu, The study of a bifurcation problem associated to an asymtotically linear function, Nonlinear Anal. 26 (1996), 857-875.
- [14] M. Sanchón, Boundedness of the extremal solution of some p-Laplacian problems, Nonlinear Anal. 67 (2007), 281-294.
- [15] B. Thierry, X. Antoine, C. Chniti and H. Alzubaidi, Computing multiple scattering problems by disks using the nu-diff Matlab toolbox, Computer Physics Communications (Elsevier) 192 (2015), 348-362.