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Abstract

In this paper the family of elliptic curves over Q given by the equation Ep :
Y 2 = (X − p)3 + X3 + (X + p)3 where p is a prime number, is studied. It
is shown that the maximal rank of the elliptic curves is at most 3 and some
conditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 or
rank(Ep(Q)) ≥ 2 are given.
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1 Introduction

Let E be an elliptic curve over Q and E(Q) be the Mordell-Weil group of
E over Q which is a finitely generated abelian group. The rank of E(Q) as
a Z-module is called the rank of E over Q. There is no algorithm which
can compute the rank of any given elliptic curve so far. So it seems
necessary to consider certain families of elliptic curves and to investigate
their ranks (see [3,5,8,9]).

In this paper we consider the family of elliptic curves over Q given by
the equation

Ep : Y 2 = (X − p)3 +X3 + (X + p)3,

where p is a prime number, and show that the maximal rank of the
elliptic curves is at most 3. Moreover some conditions under which we
have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 or rank(Ep(Q)) ≥ 2 are given.

2 Conclusions and Suggestions

In this section the following theorem and propositions will be proved.

Theorem 1 We have

(1) If p = 2, 3 or p ≡ 7 (mod 24), then rank(Ep(Q)) = 0.
(2) If p ≡ 5, 13, 17 (mod 24), then rank(Ep(Q)) ≤ 1.
(3) If p ≡ 1 (mod 24) & (2

p
)4 = 1, then rank(Ep(Q)) ≤ 3.

(4) In the other cases, rank(Ep(Q)) ≤ 2.

Proposition 2 Let p ≡ 17 (mod 24) and (2
p
)4 = 1. If there are integers

a, b such that 3p = a4 + 2b4, then rank(Ep(Q)) = 1.

Proposition 3 Let p ≡ 1 (mod 24) and (2
p
)4 = 1. If there are integers

a, b, c, and d such that p = a4+18b4 and 3p = c4+2d4, then rank(Ep(Q)) ≥
2.
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Some primes which satisfy the conditions in Proposition 2 and Propo-
sition 3 will be given and It will be shown that in the family there are
elliptic curves with rank 0,1,2 and 3.

For proving the theorem we have to deal with the Selmer groups of Ep

corresponding to certain 2-isogenies. Let E/Q be an elliptic curve over Q
with a torsion point of order 2. We use 2-descent via 2-isogeny method
to compute the rank of E over Q which is based on computing of the
Selmer groups corresponding to certain 2-isogeny of E (see [2,6,7]).

Let
E : y2 = x3 + ax2 + bx , a, b ∈ Z,

be an elliptic curve and

E : Y 2 = X3 + aX2 + bX,

where a = −2a and b = a2 − 4b, be its 2-isogeny curve. Let

Ψ : E → E

(x, y) 7−→ (
y2

x2
,
y(b− x2)

x2
)

be 2-isogeny of degree 2 and

Ψ : E → E

(X, Y ) 7−→ (
Y 2

4X2
,
Y (b−X2)

8X2
)

be dual isogeny of Ψ. Let

Cb1 : b1w
2 = b21 + b1az

2 + bz4,

and
Cb1

: b1w
2 = b

2

1 − 2b1az
2 + bz4,

where b1|b and b1|b, be the homogeneous spaces for E/Q and E/Q, re-
spectively. The Selmer groups corresponding to the 2-isogneies Ψ and Ψ
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of these curves are

S[Ψ] = {1.Q∗2, b.Q∗2} ∪ {b1.Q∗2 : b1|b and Cb1(Qp) 6= φ for all p ∈ S},

where S := {∞} ∪ {p : p is a prime and p|2bb}.
And

S[Ψ] = {1.Q∗2, b.Q∗2} ∪ {b1.Q∗2 : b1|b and Cb1
(Qp) 6= φ for all p ∈ S}.

Now consider the elliptic curve Ep. With the change of variables x = 3X
and y = 3Y the equation of Ep becomes

Ep : y2 = x3 + 18p2x,

and the following propositions give us the structure of the Selmer groups.

Proposition 4 Using the notations introduced above, we have

(1) If p ≡ 11, 19 (mod 24) or [p ≡ 1 (mod 24) & (2
p
)4 = 1], then Sp[Ψ] ∼=

( Z
2Z)3.

(2) If p = 2, 3 or p ≡ 7 (mod 24), then Sp[Ψ] ∼= Z
2Z .

(3) In the other cases, Sp[Ψ] ∼= ( Z
2Z)2.

Proposition 5 We have

(1) If p ≡ 23 (mod 24) or [p ≡ 1 (mod 24) & (2
p
)4 = 1], then Sp[Ψ] ∼=

( Z
2Z)2.

(2) In the other cases, Sp[Ψ] ∼= Z
2Z .

We prove Proposition 4 and one can prove Proposition 5 by the same
method.

By the definition it is clear that

{1.Q∗2, 2.Q∗2} ⊆ Sp[Ψ].
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So it is sufficient to check solvability of the equations

Cb1 : w2 = b1 +
18p2

b1
z4,

for b1 = −1,±3,±p,±3p over Ql where l ∈ {∞, 2, 3, p}. If b1 < 0 it is
clear that Cb1(Q∞) = φ and then b1.Q∗2 /∈ Sp[Ψ]. For any b1 > 0 we have
Cb1(Q∞) 6= φ. Let p 6= 2, 3, we consider the equation

w2 = 3 + 6p2z4, (2.1)

corresponding to b1 = 3. The solution (z, w) = (1, 1) for the congruence
w2 ≡ 3 + 6p2z4 (mod 8) can be lifted to a solution for the equation (2.1)
in Q2 by using Hensel’s lemma, and then C3(Q2) 6= φ. By considering the
equation (2.1) modulo 3 we have w2 ≡ 0 (mod 3), say w = 3W , so it can
be written as 3W 2 = 1 + 2p2z4, and again the solution (z,W ) = (1, 1)
for the congruence 3W 2 ≡ 1 + 2p2z4 (mod 3) lifts to a solution for the
equation 3W 2 = 1+2p2z4 in Q3 which implies C3(Q3) 6= φ. Now consider
the equation (2.1) over Qp.

(1) Let (3
p
) = 1, then there is w0 ∈ Z such that w2

0 ≡ 3 (mod p). The

solution (z, w) = (1, w0) for the congruence w2 ≡ 3 + 6p2z4 (mod p)
lifts to a solution for the equation (2.1) in Qp.

(2) Let (3
p
) = −1 & (2

p
) = −1, then (6

p
) = 1 and there is w0 ∈ Z such

that w2
0 ≡ 6 (mod p). Let j be a positive integer number, then the

solution (z, w) = (1, w0) for the congruence w2 ≡ 3p2+4j + 6z4 (mod
p) lifts to a solution such as (z, w) = (α, β) for the equation w2 =
3p2+4j + 6z4 in Qp. So (z, w) = (p−(1+j)α, p−(1+2j)β) is a solution for
the equation (2.1) in Qp.

(3) Let (3
p
) = −1 & (2

p
) = 1, in this case one can show that there is no

solution for the equation (2.1) in Qp since 3 and 6 are non-square
mod p.

Therefore
p ≡ 7, 17 (mod 24)⇔ 3.Q∗2 /∈ Sp[Ψ].

Now we deal with the case b1 = p. The corresponding equation is
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w2 = p+ 18pz4. (2.2)

Suppose that Cp(Q2) 6= φ. Since v2(w
2) is even and v2(18pz4) is odd,

then necessarily z, w ∈ Z2, and therefore we deduce p ≡ 1, 3 (mod 8).
Conversely, let p ≡ 1, 3 (mod 8). In the case p ≡ 1 (mod 8) the solution
(z, w) = (2, 1) and in the case p ≡ 3 (mod 8) the solution (z, w) = (1, 1)
for the congruence w2 ≡ p+2pz4 (mod 8) lift to solutions for the equation
(2.2) in Q2, respectively.

When p ≡ 1 (mod 3) the solution (z, w) = (1, 1) for the equation (2.2)
mod 3 lifts to a solution for it in Q3. Now let p ≡ 2 (mod 3) and j be a
positive integer number, the solution (z, w) = (1, 1) for the congruence
w2 ≡ 32+4jp+ 2pz4 (mod 3) lifts to a solution such as (z, w) = (α, β) for
the equation w2 = 32+4jp + 2pz4 in Q3. So (z, w) = (3−(1+j)α, 3−(1+2j)β)
is a solution for the equation (2.2) in Q3, therefore Cp(Q3) 6= φ.

Let p ≡ 3 (mod 8), then there is z0 ∈ Z such that 1 + 18z40 ≡ 0 (mod p)
since for any integer x, one of x and −x is a quadratic residue and
the other one is a non-residue. So the solution (z,W ) = (z0, 1) for the
congruence pW 2 ≡ 1 + 18z4 (mod p) lifts to a solution for the equation
pW 2 = 1 + 18z4 in Qp and then Cp(Qp) 6= φ. Now let p ≡ 1 (mod 8)
and Cp(Qp) 6= φ. Suppose that (z, w) is a solution for the equation (2.2)
in Qp. Let vp(w) = k and vp(z) = j, it is clear that j must be zero
and k > 0. So considering equation (2.2) mod p implies that (−18

p
)4 = 1

where (
p
)4 is the rational quartic residue symbol mod p. Conversely, if

(−18
p

)4 = 1 then Cp(Qp) 6= φ. Therefore p.Q∗2 ∈ Sp[Ψ] if and only if

[p ≡ 11, 19 (mod 24)]

or

[p ≡ 1 (mod 24) & (
2

p
)4 = 1] or [p ≡ 17 (mod 24) & (

2

p
)4 = −1].

In the case b1 = 3p, the corresponding equation is

w2 = 3p+ 6pz4. (2.3)
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By the same methods as in the case b1 = p one can show that

[p ≡ 11, 19 (mod 24)] or [p ≡ 1, 17 (mod 24) & (
2

p
)4 = 1]⇔ 3p.Q∗2 ∈ Sp[Ψ].

Finally for p = 2, 3 we have

S2[Ψ] = S3[Ψ] = {1.Q∗2, 2.Q∗2},

which completes the proof of Proposition 4. 2

Corollary 6 We have

(1) If p ≡ 11, 19 (mod 24) or [p ≡ 1 (mod 24) & (2
p
)4 = 1], then Sp[Ψ] =

{b1.Q∗2 : b1 = 1, 2, 3, 6, p, 2p, 3p, 6p}.
(2) If [p ≡ 5, 13, 23 (mod 24)] or [p ≡ 1 (mod 24) & (2

p
)4 = −1], then

Sp[Ψ] = {b1.Q∗2 : b1 = 1, 2, 3, 6}.
(3) If p ≡ 17 (mod 24) & (2

p
)4 = 1, then Sp[Ψ] = {b1.Q∗2 : b1 =

1, 2, 3p, 6p}.
(4) If p ≡ 17 (mod 24) & (2

p
)4 = −1, then Sp[Ψ] = {b1.Q∗2 : b1 =

1, 2, p, 2p}.
(5) In the other cases, Sp[Ψ] = {1.Q∗2, 2.Q∗2}.

And

Sp[Ψ] =


{b1.Q∗2 : b1 = 1,−2, p,−2p} , p ≡ 1 (mod 24) & (2

p
)4 = 1;

{b1.Q∗2 : b1 = 1,−2,−p, 2p} , p ≡ 23 (mod 24);

{1.Q∗2,−2.Q∗2}, otherwise.

Note that the first result in Corollary 6 is clear because of the proof of
Proposition 4, and one can obtain the second part with the same method.

Now we have the structures of the Selmer groups and we can prove The-
orem 1. Consider the following map
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αp : Ep(Q)→ Sp[Ψ]

O 7−→ 1.Q∗2

(0, 0) 7→ 2.Q∗2

(x, y) 7→ x.Q∗2 for x 6= 0.

The following sequence is exact

0→ Ep(Q)/Ψ(Ep(Q))→ Sp[Ψ]→Xp[Ψ]→ 0

whereXp[Ψ] is the cokernel of the left hand side injection which is called
Tate-Shafarevich group of Ep. For the rank of Ep and Ep one obtains the
following formula

rank(Ep(Q)) = dimF2(Sp[Ψ])+dimF2(Sp[Ψ])−dimF2(Xp[Ψ])−dimF2(Xp[Ψ])−2.

Now one can easily complete the proof of Theorem 1. 2

For proving Proposition 2 and Proposition 3 we use the same method as
in [4], for more details see [1] or [7].

Proof of Proposition 2. Since p ≡ 17 (mod 24) and (2
p
)4 = 1 by

Corollary 6 we have Sp[Ψ] = {1.Q∗2, 2.Q∗2, 3p.Q∗2, 6p.Q∗2} and Sp[Ψ] =
{1.Q∗2,−2.Q∗2}. Consider the equation 3pS4 + 6pT 4 = U2, (S, T, U) =
(a, b, 3p) is a solution for it such that a, b ≥ 1 and gcd(a, 6p) = 1.
Because a is odd and if gcd(a, 6p) = d, then d will be odd. Now note
that 6p = 2a4 + 4b4 so d|4b4 and then d|b4 therefore we deduce d|p.
Suppose d = p, this implies that d|a and d|b, i.e., there are integers a1
and b1 such that a = pa1 and b = pb1, so we have 3p = p4(a41 + 2b41)
which is a contradiction. Thus d = 1 and then 3p.Q∗2 ∈ Imαp. Therefore
Imαp = {1.Q∗2, 2.Q∗2, 3p.Q∗2, 6p.Q∗2} and Imαp = {1.Q∗2,−2.Q∗2},
and then rank(Ep(Q)) = 1. 2

Note that p = 1217, 1601, 5297, 9521 are some primes which satisfy the
conditions in Proposition 2.
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Proof of Proposition 3. By Corollary 6 we have

Sp[Ψ] = {1.Q∗2, 2.Q∗2, 3.Q∗2, 6.Q∗2, p.Q∗2, 2p.Q∗2, 3p.Q∗2, 6p.Q∗2}

and Sp[Ψ] = {1.Q∗2,−2.Q∗2, p.Q∗2,−2p.Q∗2}, and Proposition 2 im-
plies that {1.Q∗2, 2.Q∗2, 3p.Q∗2, 6p.Q∗2} ⊆ Imαp. On the other hand
(S, T, U) = (a, b, p) is a solution for the equation pS4 + 18pT 4 = U2

which implies that p.Q∗2 ∈ Imαp, so #Imαp = #Sp[Ψ] = 8 and then
rank(Ep(Q)) ≥ 2. Note that gcd(a, 18p) = 1, since if gcd(a, 18p) = d1,
then d1|p because a is odd and 3 - a. Suppose d1 = p, this concludes that
d1|a and d1|b which give us a contradiction. 2

p = 19249 is a prime which satisfies the conditions in Proposition 3. By
using the results one can see that rank(E7(Q)) = 0, rank(E5(Q)) = 1,
rank(E11(Q)) = 2 and rank(E19249(Q)) = 3.
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