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Abstract

Let R be a commutative ring and G(R) be a graph with vertices as proper and
non-trivial ideals of R. Two distinct vertices I and J are said to be adjacent
if and only if I + J = R. In this paper we study a graph constructed from
a subgraph G(R)\∆(R) of G(R) which consists of all ideals I of R such that
I 5 J(R), where J(R) denotes the Jacobson radical of R. In this paper we
study about the relation between the number of maximal ideal of R and the
number of partite of graph G(R)\4(R). Also we study on the structure of ring
R by some properties of vertices of subgraph G(R)\4(R). In another section,
it is shown that under some conditions on the G(R), the ring R is Noetherian
or Artinian. Finally we characterize clean rings and then study on diameter
of this constructed graph.
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1 Introduction

Throughout this paper we consider only commutative ring not necessary
unital. We recall some definitions that will be used in the paper. Let G be
a graph and L be a set. A coloring of G by L is a function c : V (G) −→
L with this property: if u, v ∈ V (G) are adjacent, then c(u) and c(v)
are different. The chromatic number of G is the minimum number of
colors which is needed for a proper coloring of G, which is denoted by
χ(G). Recall that a graph is said to be connected if for each pair of
distinct vertices v and w, there is a finite sequence of distinct vertices
v = v1, v2, ...vn = w such that each vivi+1 is an edge. For two vertices u
and v in a graph G, the distance between u and v, is denoted by d(u, v),
is the length of the shortest path between u and v, if such a path exists;
otherwise we define d(u, v) =∞. The diameter of a graph G is defined

diam(G) = sup{d(u, v)|u, v ∈ V (G)}.

The diameter is 0 if the graph consist of a single vertex and a connected
graph with more than one vertex has diameter 1 if and only if it is
complete. A k-partite graph is one whose vertex set can be partitioned
into k subsets such that no edge has no both ends in any one subsets.
A complete k-partite graph is one in which each vertex is joined to every
vertex that is not in the same subset. The complete bipartite graph with
part sizes m and n is denoted by Km,n.The clique of the graph is its
maximal complete subgraph. We denote the size of the largest clique of
G by ω(G). Obviously for every graph G, χ(G) ≥ ω(G).

In [2], Beck considered Γ(R) as a graph with vertices as elements of R,
where two different vertices a and b are adjacent if and only if ab = 0.
He showed that χ(Γ(R)) = ω(Γ(R)) for certain class of rings.

In [6], Sharama and Bhatwadekar defined another graph on R, Γ(R),
with vertex set V (Γ(R)) and edge set E(Γ(R)) as follows:

V (Γ(R)) = {a | a ∈ R},

E(Γ(R)) = {ab |Ra+Rb = R}.
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They showed that χ(Γ(R)) < ∞ if and only if R is a finite ring. In this
case χ(Γ(R)) = ω(Γ(R)) = t+l, where t and l are the number of maximal
ideals of R and the number of units of R, respectively.

Maimani et al. in [4] study further the graph defined by Sharama and
Bhatwadekar. They study on connectivity and diameter of this graph. In
addition, they completely characterize the diameter of comaximal graph
of commutative rings. In [5] comaximal ideal graph was proposed on R,
where R be a commutative ring not necessary unital. Comaximal ideal
graph G(R) with vertex set V (G(R)) and edge set E(G(R)) as follows:

V (G(R)) = {I | I 6= {0}, I C R},

E(G(R)) = {IJ | I + J = R}.

A ring R is quasi local if it has a unique maximal ideal. A quasi local
ring R with unique maximal m is denoted by (R,m). Obviously R is
quasi local ring if and only if E(G(R)) = ∅. In the graph G(R), the
induced subgraph Max(R) is complete. In this case we have ω(G(R)) =
|Max(R)|. Moreover m ∈ V (G(R)) is a maximal ideal of R not contained
in nonezero ideals of R. So m is adjacent with all vertices of G(R) and in
this case J(R) = {0}. The notation we use is mostly standard and taken
from standard graph theory textbooks, such as [3], [8] and [7].

2 Main Results

Throughout this sectionR is a commutative ring not necessary unital. Let
G1(R) = 〈Max(R)〉, G2(R) = G(R)\G1(R) and ∆(R) = 〈{I|I�R, I ⊆
J(R)}〉 be subgraphs of G(R), where J(R) is Jacobson radical of R.

Lemma 1 The following statements are hold:
i. G1(R) is a complete graph.
ii. I ∈ ∆(R) if and only if degG(R)I = 0.

Proof. (i) For each m,m′ ∈Max(R), it is clear that m + m′ = R. Then
all of the maximal ideals are adjacent.
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(ii) If I ∈ ∆(R) then for any J ∈ V (G(R)) there exists a maximal ideal
m such that J ⊆ m.Therefore I + J ⊆ m ⊂ R and there are no vertices
that adjacent to I. So degG(R)I = 0.

Conversely suppose that degG(R)I = 0. If I 5 J(R), then there exists
m ∈Max(R) such that I * m. So, I + m = R, and it is contradiction.

We know that each vertex of ∆(R) is an isolated vertex of G(R). Thus the
main part of the graph G(R) is the subgraph G(R)\∆(R). For this reason
the main aim of this paper is to study the structure of this subgraph.

Theorem 2 the following statement are equivalent:
i. G(R)\∆(R) is a complete bipartite graph.
ii. |Max(R)| = 2

Proof. (i ⇒ ii) If |Max(R)| = 1, obviously the graph G(R)\∆(R) is a
single vertex and it isn’t bipartite graph. Now assume that |Max(R)| ≥
3. Let m1, m2 and m3 be maximal ideals of R. one can see that the
graph G(R)\∆(R) is contained odd cycle m1 − m2 − m3 − m1 and it’s
contradiction.

(ii ⇒ i) If |Max(R)| = 2 and m1 and m2 be maximal ideals of R. Then
we consider the following sets of ideals:

A = {I| I ⊆ m1, I * m2},

B = {J | J ⊆ m2, J * m1}.
It is easy to see that:

V
(
G(R)\∆(R)

)
= {m1 ,m2} ∪ A ∪B.

We partition the vertices of G(R)\∆(R) in two parts. Put the vertices of
A and m1 in first part and the vertices of B and m2 in another part of the
G(R)\∆(R). Now we can prove that G(R)\∆(R) is complete bipartite
graph. Obviously the is no edges between the vertices of the first part
and also between the vertices of second partite and it is easily to seen
that m1 + m2 = R. Also for each I ∈ A, I + m2 = R and for each
J ∈ B, J + m1 = R. Now it’s enough to show that for each I ∈ A and
J ∈ B, I + J = R. If I + J 6= R, then there is an ideal maximal m,
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such that I +J ⊆ m. Without losing generality, we assume that m = m1,
I + J ⊆ m1. Then J ⊆ m2 and it is contradiction.

Theorem 3 Let n > 1, If the graph G(R)\∆(R) is a complete n−partite
graph then n ≤ 2.

Proof. Assume the contrary n > 2. Let m1,m2,m3 ∈ Max(R). If m1 ∩
m2 * J(R), then m1 ∩ m2 and m1 are in the same partite and similarly
for m1 ∩ m2 and m2. Therefore m1 ∩ m2 ⊆ J(R). Since m1 ∩ m2 ⊆ m3,
m1 ⊆ m3 or m2 ⊆ m3 and by maximality m1 = m3 or m2 = m3. This is a
contradiction and so n ≤ 2.

Theorem 4 Let R be a ring with identity and |Max(R)| ≥ 2. If there
exists a vertex m of G(R)\∆(R) which is adjacent to every other vertex
then the following statements are hold:
i. m is a maximal ideal of R.
ii. |Max(R)| = 2.
iii. R ∼= S×F , where F is a field. If J(R) = 0 then S is a field, otherwise
S is a quasi local ring.

Proof. Since (i) is clear, we just prove (ii) and (iii).
(ii) Suppose m is the vertex of G(R)\∆(R) which is adjacent to every
other vertex. Then by (i) m is the maximal ideal of R. Assume m′ is
another maximal ideal of R. It is easy to see that J(R) ⊆ mm′. There
are two cases:
Case 1. If J(R) ⊂ mm′ and mm′ ⊂ m, then mm′ and m are adjacent, a
contradiction. If mm′ = m then m = mm′ ⊆ m′ and m = m′ or m ⊂ m′,
lead again to a contradiction.
Case 2. J(R) = mm′. If m′′ is another maximal ideal of R then J(R) =
mm′ ⊆ m′′. By maximality of m′′, m ⊆ m′′ or m′ ⊆ m′′ and this is
contradiction.
(iii) Suppose Max(R) = {m,m′} such that m is adjacent to every I
which I * J(R). Let a ∈ m \ J(R), then Ra ⊆ m, Ra * J(R). By above
argument m + Ra = R, contradiction. So m = Ra. By this process we
obtain m = Ra = Ra2 = ... . There exists r ∈ R such that a = ra2. It
easy to see that b = ra is idempotent and b = ra ∈ J(R). Thus for each
s ∈ R \m, the equality Rs+ Rb = R are hold, so (1− b)sR = (1− b)R.
Let φ : sR −→ (1− b)sR defined by φ(sr) = (1− b)sr. It is clearly that φ
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is an epimorphism and Kerφ = bR∩ sR. Therefore sR
bR∩sR

∼= (1− b)sR =
(1− b)R. On the other hand sR

bR∩sR
∼= bR+sR

bR
= R

bR
. Hence (1− b)R ∼= R

bR
.

Since m = bR is a maximal ideal then (1− b)R is a field. For each b ∈ R,
bR+(1−b)R = R . Since b is an idempotent element bR∩(1−b)R = {0}
and this implies R ∼= bR × (1 − b)R, set F = (1 − b)R and S = bR. It
is clear that Max(S) = {J(R)}. If J(R) 6= 0 then S with operations of
ring R is quasi local ring. If J(R) = 0 then S = bR is not contained any
nonzero ideal. In this case identity of S is 1S = b.1R, for each br ∈ S,
(br).1S = (br).(b.1R) = b2r = br. Therefore S is a commutative ring with
identity and {0} is maximal ideal of S, so S is a field.

Corollary 5 Let R be a ring. Then G(R) ∼= Kn if and only if n = 2 and
R ∼= F1 × F2, where F1 and F2 are fields. �

Recall that r(0) = ∩{P | P is prime ideal of R}. In this section we look
at the conditions on the G(R) to show R is Noetherian or Artinian.

Theorem 6 Let R be a ring. Assume that J(R) is finitely generated
and each maximal ideals of R as vertices of G(R) have finite degree and
|Max(R)| ≥ 2. Hence R is Noetherian. Moreover if Spec(R) = Max(R),
then R is Artinian too.

proof. Suppose that I1 ⊆ I2 ⊆ ...In ⊆ ... is an ascending chain of ideals
of R. Since J(R) is finitely generated, there exists k ∈ N such that
In * J(R) for each n ≥ k. Therefore, there exists m ∈ Max(R) such
that In * m for each n ≥ k. Hence m + In = R for each n ≥ k. This is
contradiction, because degG(R)m <∞.

Since R is Notherian and each prime ideal of R is maximal then by
[7](Theorem 8.38), R is Artinian too.

In the ring Z, the degree of all maximal ideals as vertices of G(Z) is
infinite, but Z is Noetherian ring. Hence the converse of above theorem
is not true.

Recall that in this type of comaximal graph the clique number of G(R)
is equal to |Max(R)|.
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Theorem 7 The following statements are hold:
i. Let R be an Artinian ring then ω(G(R)) < ∞ and 〈Spec(R)〉 is a
complete subgraph.
ii. Let R be an infinite integral domain such that |U(R)| < ∞. Then
G(R) doesn’t have isolated vertex and ω(G(R)) =∞.

Proof. (i) Since R is Artinian, then the number of maxima ideals is
finite. Let m1, m2, ...,mk be maximal ideals of R. Since for each non-
maximal ideal I of R, such that I * J(R), there exist, 1 ≤ i ≤ k, such
that I ⊆ mi. Then the subgraph of G(R), induced by maximal ideals
of R as vertices of G(R) is maximal complete subgraph of G(R). Hence
ω(G(R)) < ∞. Also in Artinian ring, , each prime ideal is maximal,
Spec(R) = Max(R), then 〈Spec(R)〉 = 〈Max(R)〉 is complete subgraph.

(ii) Let I be single vertex of G(R), it is easy to see that I ⊆ J(R). Let
a ∈ I, for each r ∈ R, 1− ra is unit. Since R is infinite integral domain,
if r1 6= r2, then 1 − r1a 6= 1 − r2a. Hence the number of unital vertex i
infinite and this is contradiction.

Now assume that ω(G(R)) = k < ∞. Let m1, m2, ...,mk be maximal
ideal of R and for each 1 ≤ i ≤ k, 0 6= ai ∈ mi. Then 0 6= a = a1a2...ak ∈
J(R) = ∩mi. Hence for each r ∈ R, 1− ra is unit and by similar way in
(i), there is contradiction.

A ring is said to be clean if all of its elements can be written as the sum
of a unit and an idempotent [1]. For example, a quasi local ring is clean.
The following theorem characterize clean rings.

Theorem 8 For the ring R, the following are equivalent:
i. R is a finite product of quasi local rings.
ii. R is clean and ω(G(R)) <∞.

Proof. (i =⇒ ii) Suppose R = R1× ...×Rn where each Ri, 1 ≤ i ≤ n, is
quasi local ring with unique maximal ideal mi. Obviously every maximal
ideal has the form ni = R1 × ... × Ri−1 × mi × Ri+1 × ... × Rn. Thus
|Max(R)| = n. On the other hand each ideal of R is formed as I1×...×In,
where Ii E Ri for 1 ≤ i ≤ n, then ω(G(R)) <∞. Every finite product of
clean ring is clean, Since every quasi local ring is clean then R is clean.
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(ii =⇒ i) At first we show that a number of idempotent elements is
finite. Assume the contrary. So the set of idempotent elements is infinite.
Suppose that e1, e2, ..., en, ... are different idempotent elements. Define
e′1, e

′
2, ..., e

′
n, ... as follows:

e′1 = e1, e
′
2 = 1− e′1e2, e′3 = 1− e′1e′2e3, ..., e′n = 1− e′1...e′n−1en, ...

It is easy to see that e′1, e
′
2, ..., e

′
n, ... are idempotent. Every ideals in the

form I ′i = Re′i are adjacent in G(R) and this is contradiction.

In this section we completely characterize the diameter of G(R)\∆(R).
The following result show that G(R)\∆(R) is connected and its diameter
is not greater than 3.

Theorem 9 Let R be a ring with |Max(R)| ≥ 2. Then G(R)\∆(R) is
connected and diam(G(R)\∆(R)) ≤ 3

Proof. It is easy to see G(R)\∆(R) is connected. Suppose I and J are
two arbitrary vertices of G(R)\∆(R). We consider two cases:

Case 1. There exists m ∈ Max(R) such that I, J ⊆ m. It is clear that
I and J are not adjacent. Since I, J * J(R) then there exists m1,m2 ∈
Max(R) such that I * m1 and J * m2. If m1 = m2, we have the path
I − m1 − J and if m1 6= m2, there exists the path I − m1 − m2 − J .
Therefore d(I, J) ≤ 3

Case 2. I and J are not contained in the same maximal ideal. There
exists different maximal ideals as m1 and m2 such that I ⊆ m1, J ⊆ m2,
I * m2 and J * m1. In this case we have the path I − m1 − m2 − J ,
hence d(I, J) ≤ 3. �
In the next theorem we characterize the ringR with diam(G(R)\∆(R)) =
1, according to the structure of S and F in Theorem 2.4.

Theorem 10 diam(G(R)\∆(R)) = 1 if and only if R ∼= S × F .

Proof. (=⇒) If diam(G(R)\∆(R)) = 1 then |Max(R)| ≥ 2. Suppose m
is a maximal ideal of R, then m is adjacent to every other vertices of
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G(R)\∆(R), by Theorem 2.4 the proof is completed.

(⇐=) If S be a field thenMax(R) = {S×{0}, {0}×F}. Hence diam(G(R)\∆(R)) =
1 . Similarly if S be a quasi local ring with unique maximal ideal m then
Max(R) = {m × {0},m × F}, thus diam(G(R)\∆(R)) = 1. �
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