

Mathematics Scientific Journal Vol. 6, No. 2, S. N. 13, (2011), 1-6

On The Perimeter of an Ellipse

M. Ansari a,1

^a Department of Mathematics, Islamic Azad University, Gachsaran-Branch, Gachsaran, Iran. Received 1 August 2010; Accepted 13 September 2010

Abstract

Let E be the ellipse with major and minor radii a and b respectively, and P be its perimeter, then

$$P = \lim_{n \to \infty} 4 \tan \frac{\pi}{n} (a+b+2\sum_{k=2}^{2^{m-2}} \sqrt{a^2 \cos^2 \frac{(2k-2)\pi}{n} + b^2 \sin^2 \frac{(2k-2)\pi}{n}})$$

where $n = 2^m$. So without considering the limit, it gives a reasonable approximation for P, it means that we can choose n large enough such that the amount of error be less than any given small number. On the other hand, the formula satisfies both limit status $b \to a$ and $b \to 0$ which give respectively $P = 2\pi a$ and P = 4a.

 ${\it Keywords}:$ Ellipse, Perimeter, Surrounding polygon.

1 introduction

Let E be the ellipse with cartesian equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. If P(E) refers to the perimeter of E, then we have

$$P(E) = 4 \int_0^a \sqrt{1 + (\frac{dy}{dx})^2} \, dx$$

¹ansari.moh@gmail.com

Unfortunately this integral dose not have an analytic solution, and so there are many approximations f(a, b) for P(E), for example *Ramanujan* II, and *Cantrell* which are as follows (one can find many such approximations in [1])

$$R(a,b) = \pi(a+b)\left(1 + \frac{3h}{10 + \sqrt{4 - 3h}}\right), \quad C(a,b) = 4(a+b) - 2(4-\pi)\frac{ab}{H_p}$$

where

$$h = \frac{(a-b)^2}{(a+b)^2}$$
, $H_p = (\frac{a^p + b^p}{2})^{\frac{1}{p}}$

in this article we present an approximation based on some surrounding polygons which are the images of surrounding regular polygons of a circle C under a transformation S which maps C onto E. If P_n be the perimeter of a surrounding n - gon of E, we will see that $P_n \to P(E)$ as $n \to \infty$, hence $|P_n - P(E)| \to 0$. Meanwhile if we put $\epsilon = |f(a, b) - P(E)|$, there exist a natural number n_{ϵ} such that $|P_{n_{\epsilon}} - P(E)| < \epsilon$.

Maybe the oldest approximation be $f(a,b) = \pi(a+b)$ which is the average of $2\pi a$ and $2\pi b$, on the other hand the renowned lower bound for P(E) is $2\pi\sqrt{ab}$. Clearly we can use *surrounded* polygons instead of surrounding polygons, and then we will obtain an approximation Q_n such that $Q_n \to P(E)$ as $n \to \infty$ and we have $Q_n < P(E) < P_n$, hence for each n, Q_n and P_n are ,respectively, lower and upper bounds for P(E).

2 surrounding polygon approximation

Consider the circle C with radius b, and its surrounding polygons. We will compute the coordinates of the corners using some trigonometry, if $A(x_1, y_1)$ and $B(x_2, y_2)$ be two adjacent corners, then $S(A)(\frac{a}{b}x_1, y_1)$ and $S(B)(\frac{a}{b}x_2, y_2)$ are two adjacent corners of a surrounding polygon of the ellipse E = S(C), where $S : \mathbb{R}^2 \to \mathbb{R}^2$ is a map defined by $S(x, y) = (\frac{a}{b}x, y)$.

Lemma 2.1. The image of the circle C under the map S described above, is the ellipse E, moreover if AB is a tangent segment to C at the point T, then S(A)S(B) is a tangent segment to E at the point S(T).

Proof. The equation of C is $x^2 + y^2 = b^2$, we have to show that the point $S(A)(\frac{a}{b}x, y)$ satisfies the equation of E, to this end we have $\frac{(\frac{a}{b}x)^2}{a^2} + \frac{y^2}{b^2} = \frac{x^2}{b^2} + \frac{y^2}{b^2} = \frac{1}{b^2}(x^2 + y^2) = \frac{b^2}{b^2} = 1$. If $A(x_1, y_1)$, $B(x_2, y_2)$ and $T(\alpha, \beta)$ then we know that $y'(\alpha) = \frac{y_2 - y_1}{x_2 - x_1}$, we have to show that $Y'(\frac{a}{b}\alpha) = \frac{y_2 - y_1}{\frac{a}{b}(x_2 - x_1)}$, but this is true since $Y(\frac{a}{b}\alpha) = y(\alpha)$, therefore $\frac{a}{b}Y'(\frac{a}{b}\alpha) = y'(\alpha)$. Here y and Y are extracted from the equations of C and E, respectively.

Now consider the surrounding regular *n*-gon of *C*. For simplicity we consider the first quarter of *C*, we also assume that *C* is centered at origin. We start with the surrounding square and we make an octagon by drawing four tangent lines passing through the points which are the intersections of *C* and the segments connecting the center of *C* to the corners of the square. Each tangent line intersects two adjacent edges of the square and makes two adjacent corners of the surrounding regular octagon of *C* (Fig.1). We will continue this procedure to make any surrounding regular *n*-gon of *C* such that $n = 2^m$. Put N(0, b), M(b, 0) and Let $A_1, A_2, ..., A_p$ where $p = 2^{m-2}$, be the corners of the surrounding regular *n*-gon of *C* relevant to its first quarter. The following lemma will help us not only to find P_n , but also to compute the coordinates of A_k , $1 \le k \le p$.

Lemma 2.2. If $A_k(x_k, y_k)$ and $A_{k+1}(x_{k+1}, y_{k+1})$ be two adjacent corners of the

surrounding regular n-gon of C, then for $1 \le k \le p-1$ we have

$$x_{k+1} = x_k + 2b \tan \frac{\pi}{n} \cos \frac{2k\pi}{n}$$
, $y_{k+1} = y_k - 2b \tan \frac{\pi}{n} \sin \frac{2k\pi}{n}$

Proof. For $1 \le k \le p-1$, A_{k+1} is obtained by rotating the point A_1 by $\frac{2k\pi}{n}$ clockwise, hence

$$\begin{pmatrix} x_{k+1} \\ y_{k+1} \end{pmatrix} = \begin{pmatrix} \cos\frac{2k\pi}{n} & \sin\frac{2k\pi}{n} \\ -\sin\frac{2k\pi}{n} & \cos\frac{2k\pi}{n} \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}$$

 \mathbf{so}

$$x_{k+1} = x_1 \cos \frac{2k\pi}{n} + y_1 \sin \frac{2k\pi}{n}$$
, $y_{k+1} = -x_1 \sin \frac{2k\pi}{n} + y_1 \cos \frac{2k\pi}{n}$

The similar equations can be written for x_k and y_k , then we compute $x_{k+1} - x_k$, and $y_{k+1} - y_k$, finally by using some trigonometry and keeping in mind that $x_1 = b \tan \frac{\pi}{n}$, $y_1 = b$ are the coordinates of A_1 , the proof will be completed. \Box

Now $S(A_k),\; 1\leq k\leq p$, are the corners of a surrounding n-gon of E and we have

$$S(N)(0,b)$$
, $S(M)(\frac{a}{b}b,0) = (a,0)$, and $S(A_k)(\frac{a}{b}x_k, y_k)$ $1 \le k \le p$

Note that we express the length of the segment AB again by AB, meanwhile it is easy to verify that if AB is a horizontal segment, then $S(A)S(B) = (\frac{a}{b})AB$ and for a vertical segment AB, S(A)S(B) = AB, therefore we have

$$S(N)S(A_1) = \frac{a}{b}b\tan\frac{\pi}{n} = a\tan\frac{\pi}{n}, \quad S(A_p)S(M) = b\tan\frac{\pi}{n}$$
$$S(A_k)S(A_{k+1}) = \sqrt{\left(\frac{a}{b}(x_{k+1} - x_k)\right)^2 + (y_{k+1} - y_k)^2} = \sqrt{\left(2a\tan\frac{\pi}{n}\cos\frac{2k\pi}{n}\right)^2 + (2b\tan\frac{\pi}{n}\sin\frac{2k\pi}{n})^2} = 2\tan\frac{\pi}{n}\sqrt{a^2\cos^2\frac{2k\pi}{n} + b^2\sin^2\frac{2k\pi}{n}}$$

so, the perimeter of the surrounding n-gon of E is

$$\begin{split} P_n &= 4(S(N)S(A_1) + S(A_{2^{m-2}})S(M) + \sum_{k=1}^{2^{m-2}-1} S(A_k)S(A_{k+1})) = \\ &\quad 4(S(N)S(A_1) + S(A_{2^{m-2}})S(M) + \sum_{k=2}^{2^{m-2}} S(A_{k-1})S(A_k)) = \\ &\quad 4(a\tan\frac{\pi}{n} + b\tan\frac{\pi}{n} + 2\tan\frac{\pi}{n}\sum_{k=2}^{2^{m-2}} \sqrt{a^2\cos^2\frac{(2k-2)\pi}{n} + b^2\sin^2\frac{(2k-2)\pi}{n}} \) = \\ &\quad 4\tan\frac{\pi}{n}(a+b+2\sum_{k=2}^{2^{m-2}} \sqrt{a^2\cos^2\frac{(2k-2)\pi}{n} + b^2\sin^2\frac{(2k-2)\pi}{n}} \) \end{split}$$

Theorem 2.3. If $P = \lim_{n \to \infty} P_n$, then *i*. P = P(E), the perimeter of E *ii*. $\lim_{b\to a} P = 2\pi a$ *iii*. $\lim_{b\to 0} P = 4a$

Proof. i. First of all, note that for a fixed pair (a,b), P_n is decreasing (proof by triangle inequality; see Fig.2 to compare P_4 and P_8) and bounded below ($P_n \ge P(E)$), therefore it is convergent. Now we have

$$\lim_{n \to \infty} P_n = \lim_{n \to \infty} 4(a+b) \tan \frac{\pi}{n} +$$

$$\lim_{n \to \infty} 8 \tan \frac{\pi}{n} \sum_{k=2}^{\frac{n}{4}} \sqrt{a^2 \cos^2 \frac{(2k-2)\pi}{n} + b^2 \sin^2 \frac{(2k-2)\pi}{n}} =$$

$$4 \lim_{n \to \infty} \frac{2\pi}{n} (\sum_{k=1}^{\frac{n}{4}} \sqrt{a^2 \cos^2 \frac{(2k-2)\pi}{n} + b^2 \sin^2 \frac{(2k-2)\pi}{n}} - a) =$$

$$4 \lim_{n \to \infty} \frac{\pi}{2} \sum_{k=1}^{\frac{n}{4}} \sqrt{a^2 \cos^2 \frac{(k-1)\pi}{2} + b^2 \sin^2 \frac{(k-1)\pi}{2}} =$$

$$4 \int_0^{\frac{\pi}{2}} \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} d\theta =$$

$$4 \int_0^a \sqrt{1 + \frac{b^2 x^2}{a^2 (a^2 - x^2)}} dx = 4 \int_0^a \sqrt{1 + (\frac{dy}{dx})^2} dx = P(E)$$

Here we have used the change of variable $x = a \sin \theta$

ii. Consider P_n and P as functions of b, defined on [0, a], clearly P_n is continuous since it is a finite sum of continuous functions. To prove the continuity of P, we refer the reader to [2, theorem 2.27] with $g(x) = \frac{a}{\sqrt{a^2 - x^2}}$. Now we have

- 1. [0, a] is compact,
- 2. $P_n \to P$, pointwise on [0, a],
- 3. $P_n(b) \ge P_{n+1}(b)$ for all $b \in [0, a]$, n = 1, 2, 3, ...

(Note that by an abuse of language, P_{n+1} may be considered as P_{2n} , in other words we can formally define $P_{n+i} = P_n$ for $1 \le i \le n-1$). Hence, we conclude that $P_n \to P$ uniformly on [0, a], [3, theorem 7.13], so we are allowed to write

$$\lim_{b \to a} P = \lim_{b \to a} \lim_{n \to \infty} P_n(b) = \lim_{n \to \infty} \lim_{b \to a} P_n(b) = \lim_{n \to \infty} 4 \tan \frac{\pi}{n} (2^{m-1}a) =$$

M. Ansari

$$\lim_{n \to \infty} 4 \tan \frac{\pi}{n} (\frac{n}{2}a) = 2\pi a$$

$$iii. \lim_{h \to 0} P = \lim_{h \to 0} \lim_{n \to \infty} P_n(b) = \lim_{n \to \infty} 4 \tan \frac{\pi}{n} (a + 2\sum_{k=2}^{\frac{n}{4}} a \cos \frac{2(k-1)\pi}{n}) = \lim_{n \to \infty} 4 \tan \frac{\pi}{n} (-a + 2\sum_{k=1}^{\frac{n}{4}} a \cos \frac{2(k-1)\pi}{n}) = \lim_{n \to \infty} (-4a \tan \frac{\pi}{n}) + \lim_{n \to \infty} 8 \tan \frac{\pi}{n} \sum_{k=1}^{\frac{n}{4}} a \cos \frac{2(k-1)\pi}{n} = \lim_{n \to \infty} 8\frac{\pi}{n} \sum_{k=1}^{\frac{n}{4}} a \cos \frac{2(k-1)\pi}{n} = \lim_{n \to \infty} 4a(\frac{\pi}{\frac{2}{n}} \sum_{k=1}^{\frac{n}{4}} \cos \frac{(k-1)\frac{\pi}{2}}{\frac{n}{4}} = 4a \int_{0}^{\frac{\pi}{2}} \cos x dx = 4a$$

Note that we have used the fact that $\lim_{n\to\infty} \frac{\tan \frac{\pi}{n}}{\frac{\pi}{n}} = 1.$

We can call P_n an *infinite-type* approximation because it has a limit process, so we may call a formula without limit process, a *finite-type* approximation. Since $P_n \to P(E)$, for any given $\epsilon > 0$ there exist a natural number N such that if n > N, then $|P_n - P| < \epsilon$, in other words choosing n large enough one may obtain a good approximation to evaluate the perimeter of E. Let f(a, b) be any finite-type approximation for P(E), there is a number n such that $|P_n - P| < |f(a, b) - P| = \epsilon$.

References

- [1] Gerard P. Michon, www.numericana.com/answer/ellipse.htm
- [2] Gerald B. Folland, *Real Analysis, Modern Techniques And Their Applications*, John Wiley And Sons, Second Edition.
- [3] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, Third Edition
- [4] George B. Thomas, Ross L. Finney Calculus And Analytic Geometry, Addison-Wesley, Ninth Edition.