Mathematics Scientific Journal Vol. 6, No. 2, S. N. 13, (2011), 1-6

On The Perimeter of an Ellipse

M. Ansari ${ }^{a, 1}$
${ }^{a}$ Department of Mathematics, Islamic Azad University, Gachsaran-Branch, Gachsaran, Iran. Received 1 August 2010; Accepted 13 September 2010

Abstract

Let E be the ellipse with major and minor radii a and b respectively, and P be its perimeter, then $$
P=\lim _{n \rightarrow \infty} 4 \tan \frac{\pi}{n}\left(a+b+2 \sum_{k=2}^{2^{m-2}} \sqrt{a^{2} \cos ^{2} \frac{(2 k-2) \pi}{n}+b^{2} \sin ^{2} \frac{(2 k-2) \pi}{n}}\right),
$$ where $n=2^{m}$. So without considering the limit, it gives a reasonable approximation for P, it means that we can choose n large enough such that the amount of error be less than any given small number. On the other hand, the formula satisfies both limit status $b \rightarrow a$ and $b \rightarrow 0$ which give respectively $P=2 \pi a$ and $P=4 a$.

Keywords: Ellipse, Perimeter, Surrounding polygon.

1 introduction

Let E be the ellipse with cartesian equation $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$. If $P(E)$ refers to the perimeter of E, then we have

$$
P(E)=4 \int_{0}^{a} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

[^0]Unfortunately this integral dose not have an analytic solution, and so there are many approximations $f(a, b)$ for $P(E)$, for example Ramanujan II, and Cantrell which are as follows (one can find many such approximations in [1])

$$
R(a, b)=\pi(a+b)\left(1+\frac{3 h}{10+\sqrt{4-3 h}}\right), \quad C(a, b)=4(a+b)-2(4-\pi) \frac{a b}{H_{p}}
$$

where

$$
h=\frac{(a-b)^{2}}{(a+b)^{2}}, \quad H_{p}=\left(\frac{a^{p}+b^{p}}{2}\right)^{\frac{1}{p}}
$$

in this article we present an approximation based on some surrounding polygons which are the images of surrounding regular polygons of a circle C under a transformation S which maps C onto E. If P_{n} be the perimeter of a surrounding $n-g o n$ of E, we will see that $P_{n} \rightarrow P(E)$ as $n \rightarrow \infty$, hence $\left|P_{n}-P(E)\right| \rightarrow 0$. Meanwhile if we put $\epsilon=|f(a, b)-P(E)|$, there exist a natural number n_{ϵ} such that $\left|P_{n_{\epsilon}}-P(E)\right|<\epsilon$.

Maybe the oldest approximation be $f(a, b)=\pi(a+b)$ which is the average of $2 \pi a$ and $2 \pi b$, on the other hand the renowned lower bound for $P(E)$ is $2 \pi \sqrt{a b}$. Clearly we can use surrounded polygons instead of surrounding polygons, and then we will obtain an approximation Q_{n} such that $Q_{n} \rightarrow P(E)$ as $n \rightarrow \infty$ and we have $Q_{n}<P(E)<P_{n}$, hence for each n, Q_{n} and P_{n} are , respectively, lower and upper bounds for $P(E)$.

2 surrounding polygon approximation

Consider the circle C with radius b, and its surrounding polygons. We will compute the coordinates of the corners using some trigonometry, if $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$ be two adjacent corners, then $S(A)\left(\frac{a}{b} x_{1}, y_{1}\right)$ and $S(B)\left(\frac{a}{b} x_{2}, y_{2}\right)$ are two adjacent corners of a surrounding polygon of the ellipse $E=S(C)$, where $S: R^{2} \rightarrow R^{2}$ is a map defined by $S(x, y)=\left(\frac{a}{b} x, y\right)$.

Lemma 2.1. The image of the circle C under the map S described above, is the ellipse E, moreover if $A B$ is a tangent segment to C at the point T, then $S(A) S(B)$ is a tangent segment to E at the point $S(T)$.

Proof. The equation of C is $x^{2}+y^{2}=b^{2}$, we have to show that the point $S(A)\left(\frac{a}{b} x, y\right)$ satisfies the equation of E, to this end we have $\frac{\left(\frac{a}{b} x\right)^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{x^{2}}{b^{2}}+\frac{y^{2}}{b^{2}}=\frac{1}{b^{2}}\left(x^{2}+y^{2}\right)=$ $\frac{b^{2}}{b^{2}}=1$. If $A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)$ and $T(\alpha, \beta)$ then we know that $y^{\prime}(\alpha)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$, we have to show that $Y^{\prime}\left(\frac{a}{b} \alpha\right)=\frac{y_{2}-y_{1}}{\frac{a}{b}\left(x_{2}-x_{1}\right)}$, but this is true since $Y\left(\frac{a}{b} \alpha\right)=y(\alpha)$, therefore $\frac{a}{b} Y^{\prime}\left(\frac{a}{b} \alpha\right)=y^{\prime}(\alpha)$. Here y and Y are extracted from the equations of C and E, respectively.

Now consider the surrounding regular n-gon of C. For simplicity we consider the first quarter of C, we also assume that C is centered at origin. We start with the surrounding square and we make an octagon by drawing four tangent lines passing through the points which are the intersections of C and the segments connecting the center of C to the corners of the square. Each tangent line intersects two adjacent edges of the square and makes two adjacent corners of the surrounding regular octagon of C (Fig.1). We will continue this procedure to make any surrounding regular n-gon of C such that $n=2^{m}$. Put $N(0, b), M(b, 0)$ and Let $A_{1}, A_{2}, \ldots, A_{p}$ where $p=2^{m-2}$, be the corners of the surrounding regular n-gon of C relevant to its first quarter. The following lemma will help us not only to find P_{n}, but also to compute the coordinates of $A_{k}, 1 \leq k \leq p$.

Lemma 2.2. If $A_{k}\left(x_{k}, y_{k}\right)$ and $A_{k+1}\left(x_{k+1}, y_{k+1}\right)$ be two adjacent corners of the
surrounding regular n-gon of C, then for $1 \leq k \leq p-1$ we have

$$
x_{k+1}=x_{k}+2 b \tan \frac{\pi}{n} \cos \frac{2 k \pi}{n}, \quad y_{k+1}=y_{k}-2 b \tan \frac{\pi}{n} \sin \frac{2 k \pi}{n}
$$

Proof. For $1 \leq k \leq p-1, A_{k+1}$ is obtained by rotating the point A_{1} by $\frac{2 k \pi}{n}$ clockwise, hence

$$
\binom{x_{k+1}}{y_{k+1}}=\left(\begin{array}{cc}
\cos \frac{2 k \pi}{n} & \sin \frac{2 k \pi}{n} \\
-\sin \frac{2 k k}{n} & \cos \frac{2 k \pi}{n}
\end{array}\right)\binom{x_{1}}{y_{1}}
$$

so

$$
x_{k+1}=x_{1} \cos \frac{2 k \pi}{n}+y_{1} \sin \frac{2 k \pi}{n}, y_{k+1}=-x_{1} \sin \frac{2 k \pi}{n}+y_{1} \cos \frac{2 k \pi}{n}
$$

The similar equations can be written for x_{k} and y_{k}, then we compute $x_{k+1}-x_{k}$, and $y_{k+1}-y_{k}$, finally by using some trigonometry and keeping in mind that $x_{1}=$ $b \tan \frac{\pi}{n}, y_{1}=b$ are the coordinates of A_{1}, the proof will be completed.

Now $S\left(A_{k}\right), 1 \leq k \leq p$, are the corners of a surrounding n-gon of E and we have

$$
S(N)(0, b), S(M)\left(\frac{a}{b} b, 0\right)=(a, 0), \text { and } S\left(A_{k}\right)\left(\frac{a}{b} x_{k}, y_{k}\right) \quad 1 \leq k \leq p
$$

Note that we express the length of the segment $A B$ again by $A B$, meanwhile it is easy to verify that if $A B$ is a horizontal segment, then $S(A) S(B)=\left(\frac{a}{b}\right) A B$ and for a vertical segment $A B, S(A) S(B)=A B$, therefore we have

$$
\begin{gathered}
S(N) S\left(A_{1}\right)=\frac{a}{b} b \tan \frac{\pi}{n}=a \tan \frac{\pi}{n}, \quad S\left(A_{p}\right) S(M)=b \tan \frac{\pi}{n} \\
S\left(A_{k}\right) S\left(A_{k+1}\right)=\sqrt{\left(\frac{a}{b}\left(x_{k+1}-x_{k}\right)\right)^{2}+\left(y_{k+1}-y_{k}\right)^{2}}= \\
\sqrt{\left(2 a \tan \frac{\pi}{n} \cos \frac{2 k \pi}{n}\right)^{2}+\left(2 b \tan \frac{\pi}{n} \sin \frac{2 k \pi}{n}\right)^{2}}=2 \tan \frac{\pi}{n} \sqrt{a^{2} \cos ^{2} \frac{2 k \pi}{n}+b^{2} \sin ^{2} \frac{2 k \pi}{n}}
\end{gathered}
$$

so, the perimeter of the surrounding n-gon of E is

$$
\begin{gathered}
P_{n}=4\left(S(N) S\left(A_{1}\right)+S\left(A_{2^{m-2}}\right) S(M)+\sum_{k=1}^{2^{m-2}-1} S\left(A_{k}\right) S\left(A_{k+1}\right)\right)= \\
4\left(S(N) S\left(A_{1}\right)+S\left(A_{2^{m-2}}\right) S(M)+\sum_{k=2}^{2^{m-2}} S\left(A_{k-1}\right) S\left(A_{k}\right)\right)= \\
4\left(a \tan \frac{\pi}{n}+b \tan \frac{\pi}{n}+2 \tan \frac{\pi}{n} \sum_{k=2}^{2^{m-2}} \sqrt{a^{2} \cos ^{2} \frac{(2 k-2) \pi}{n}+b^{2} \sin ^{2} \frac{(2 k-2) \pi}{n}}\right)= \\
4 \tan \frac{\pi}{n}\left(a+b+2 \sum_{k=2}^{2^{m-2}} \sqrt{a^{2} \cos ^{2} \frac{(2 k-2) \pi}{n}+b^{2} \sin ^{2} \frac{(2 k-2) \pi}{n}}\right)
\end{gathered}
$$

Theorem 2.3. If $P=\lim _{n \rightarrow \infty} P_{n}$, then
i. $\quad P=P(E)$, the perimeter of E
ii. $\lim _{b \rightarrow a} P=2 \pi a$
iii. $\lim _{b \rightarrow 0} P=4 a$

Proof. i. First of all, note that for a fixed pair (a,b), P_{n} is decreasing (proof by triangle inequality; see Fig. 2 to compare P_{4} and P_{8}) and bounded bellow ($P_{n} \geq$ $P(E)$), therefore it is convergent. Now we have

$$
\begin{gathered}
\lim _{n \rightarrow \infty} P_{n}=\lim _{n \rightarrow \infty} 4(a+b) \tan \frac{\pi}{n}+ \\
\lim _{n \rightarrow \infty} 8 \tan \frac{\pi}{n} \sum_{k=2}^{\frac{n}{4}} \sqrt{a^{2} \cos ^{2} \frac{(2 k-2) \pi}{n}+b^{2} \sin ^{2} \frac{(2 k-2) \pi}{n}}= \\
4 \lim _{n \rightarrow \infty} \frac{2 \pi}{n}\left(\sum_{k=1}^{\frac{n}{4}} \sqrt{a^{2} \cos ^{2} \frac{(2 k-2) \pi}{n}+b^{2} \sin ^{2} \frac{(2 k-2) \pi}{n}}-a\right)= \\
4 \lim _{n \rightarrow \infty} \frac{\frac{\pi}{2}}{\frac{\pi}{4}} \sum_{k=1}^{\frac{n}{4}} \sqrt{a^{2} \cos ^{2} \frac{(k-1) \frac{\pi}{2}}{\frac{n}{4}}+b^{2} \sin ^{2} \frac{(k-1) \frac{\pi}{2}}{\frac{n}{4}}}= \\
4 \int_{0}^{\frac{\pi}{2}} \sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta} d \theta= \\
4 \sqrt{1+\frac{b^{2} x^{2}}{a^{2}\left(a^{2}-x^{2}\right)}} d x=4 \int_{0}^{a} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=P(E)
\end{gathered}
$$

Here we have used the change of variable $x=a \sin \theta$
ii. Consider P_{n} and P as functions of b, defined on $[0, a]$, clearly P_{n} is continuous since it is a finite sum of continuous functions. To prove the continuity of P, we refer the reader to [2, theorem 2.27] with $g(x)=\frac{a}{\sqrt{a^{2}-x^{2}}}$. Now we have

1. $[0, a]$ is compact,
2. $P_{n} \rightarrow P$, pointwise on $[0, a]$,
3. $P_{n}(b) \geq P_{n+1}(b)$ for all $b \in[0, a], n=1,2,3, \ldots$.
(Note that by an abuse of language, P_{n+1} may be considered as $P_{2 n}$, in other words we can formally define $P_{n+i}=P_{n}$ for $1 \leq i \leq n-1$). Hence, we conclude that $P_{n} \rightarrow P$ uniformly on $[0, a]$, $[3$, theorem 7.13$]$, so we are allowed to write

$$
\lim _{b \rightarrow a} P=\lim _{b \rightarrow a} \lim _{n \rightarrow \infty} P_{n}(b)=\lim _{n \rightarrow \infty} \lim _{b \rightarrow a} P_{n}(b)=\lim _{n \rightarrow \infty} 4 \tan \frac{\pi}{n}\left(2^{m-1} a\right)=
$$

$$
\lim _{n \rightarrow \infty} 4 \tan \frac{\pi}{n}\left(\frac{n}{2} a\right)=2 \pi a
$$

$$
\text { iii. } \lim _{b \rightarrow 0} P=\lim _{b \rightarrow 0} \lim _{n \rightarrow \infty} P_{n}(b)=\lim _{n \rightarrow \infty} 4 \tan \frac{\pi}{n}\left(a+2 \sum_{k=2}^{\frac{n}{4}} a \cos \frac{2(k-1) \pi}{n}\right)=, ~ \lim _{n \rightarrow \infty} 4 \tan \frac{\pi}{n}\left(-a+2 \sum_{k=1}^{\frac{n}{4}} a \cos \frac{2(k-1) \pi}{n}\right)=\lim _{n \rightarrow \infty}\left(-4 a \tan \frac{\pi}{n}\right)+\quad . \quad \begin{aligned}
& \lim _{n \rightarrow \infty} 8 \tan \frac{\pi}{n} \sum_{k=1}^{\frac{n}{4}} a \cos \frac{2(k-1) \pi}{n}=\lim _{n \rightarrow \infty} 8 \frac{\pi}{n} \sum_{k=1}^{\frac{n}{4}} a \cos \frac{2(k-1) \pi}{n}= \\
& \lim _{n \rightarrow \infty} 4 a\left(\frac{\frac{\pi}{2}}{\frac{n}{4}} \sum_{k=1}^{\frac{n}{4}} \cos \frac{(k-1) \frac{\pi}{2}}{\frac{n}{4}}=4 a \int_{o}^{\frac{\pi}{2}} \cos x d x=4 a\right.
\end{aligned}
$$

Note that we have used the fact that $\lim _{n \rightarrow \infty} \frac{\tan \frac{\pi}{n}}{\frac{\pi}{n}}=1$.

We can call P_{n} an infinite-type approximation because it has a limit process, so we may call a formula without limit process, a finite-type approximation. Since $P_{n} \rightarrow P(E)$, for any given $\epsilon>0$ there exist a natural number N such that if $n>$ N, then $\left|P_{n}-P\right|<\epsilon$, in other words choosing n large enough one may obtain a good approximation to evaluate the perimeter of E. Let $f(a, b)$ be any finite-type approximation for $P(E)$, there is a number n such that $\left|P_{n}-P\right|<|f(a, b)-P|=\epsilon$.

References

[1] Gerard P. Michon, www.numericana.com/answer/ellipse.htm
[2] Gerald B. Folland, Real Analysis, Modern Techniques And Their Applications, John Wiley And Sons, Second Edition.
[3] W. Rudin, Principles of Mathematical Analysis, McGraw-Hill, Third Edition
[4] George B. Thomas, Ross L. Finney Calculus And Analytic Geometry, AddisonWesley, Ninth Edition.

[^0]: ${ }^{1}$ ansari.moh@gmail.com

