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Abstract

In this paper, a numerical scheme for solving singular initial/boundary value problems presented.

By applying the reproducing kernel Hilbert space method (RKHSM) for solving these problems,

this method obtained to approximated solution. Numerical examples are given to demonstrate the

accuracy of the present method. The result obtained by the method and the exact solution are found

to be in good agreement with each other and it is noted that our method is of high significance.

We compare our results with other paper. The comparison of the results with exact ones is made to

confirm the validity and efficiency.
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1 Introduction

In this paper, the RKHSM will be used to investigate the singular initial
value problems. In recent years, a lot of attention has been devoted to the
study of RKHSM to investigate various scientific models. The RKHSM
which accurately computes the series solution is of great interest to ap-
plied sciences. The method provides the solution in a rapidly convergent
series with components that can be elegantly computed. The efficiency
of the method was used by many authors to investigate several scien-
tific applications. Reproducing kernel theory has important applications
in numerical analysis, differential equations, probability and statistics,
learning theory and so on. The reproducing kernels have been success-
fully applied to several linear and nonlinear problems.([1],[2],[3],[4])

Singular perturbed impulsive boundary value problems arise very fre-
quently in the fields of fluid mechanics, fluid dynamics, elasticity, reaction-
diffusion processes, chemical kinetics and other branches of applied math-
ematics, which have become an important area of investigation in recent
years. Also singular boundary value problems for ordinary differential
equations arise in the theory of thermal explosions and in the study of
Electro-hydrodynamics. Such problems also occur in the study of gener-
alized axially symmetric potentials after separation of variables has been
employed.

There is considerable interest on numerical methods on singular bound-
ary value problems. Some methods are discussed for a class of singularly
perturbed singular initial value problems as follows


εu′(x) +

s

b(x)
u(x) = f(x), 0 < x ≤ 1,

u(α) = 0,
(1.1)

where b and f are sufficiently regular given functions in [a, b] and α ∈
{0, 1} and s are constants. The equivalent form of Eq. (1.1) is
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Lu = f(x), 0 ≤ x ≤ 1,

Bu = 0,
(1.2)

where L is a differential operator of the form

Lu(x) = εu′ +
s

b(x)
u, (1.3)

and B is initial condition. There is no loss of generality in considering
only homogeneous conditions in Eq.(1.1) because it is always possible
to reduce nonhomogeneous problems to the treated cases, by means of
suitable transformations. Also, other form of the above equation is εb(x)u′(x) + su(x) = b(x)f(x), 0 < x ≤ 1.

u(α) = 0,
(1.4)

Here, we will use RKHS method for a class of singular initial/boundary
value problem on the assumption that solution is unique. This problem
has been well studied and the results can be found in much of the liter-
ature [5].

However, this problem solved in [5] but we have some reasons as motiva-
tion for publishing this paper that listed below.

Firstly, some formulaes in [5] are false e.g. Gram-Schmidt orthogonaliza-
tion formula and function f in examples.

Secondly, the number of nodes in [5] is very low (N = 28). We solved the
problem with N = 50, N = 100 nodes.

And finally, [5] has no figures to show the behaviour of absolute errors.
We presented the logarithmic graph of absolute error.

The paper is organized as follows. Section 2 is devoted to several defini-
tions and theorems for reproducing kernel spaces and a linear operator
is introduced. Solution representation in Wm[a, b] has been presented. It
provides the main results, the exact and approximate solution of Eq.(1.1)
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are developed for the kind of problems in the reproducing kernel space.
We have proved that the approximate solution converges to the exact so-
lution uniformly. Some numerical experiments are illustrated in Section
3. There are some conclusions in the last section.

2 Preliminaries

For implementation of this method we need some definitions and theo-
rems. For more details and proofs of theorems see [4].

Definition 2.1 The inner product space Wm
2 [a, b] is defined as

Wm
2 [a, b] = {u(x)|u, u′, . . . , u(m−1) are absolutely continuous real valued

functions u, u′, . . . , u(m) ∈ L2[a, b], Bu = 0}
The inner product in Wm

2 [a, b] is given by

(u(.), v(.))Wm
2

=
m−1∑
i=0

ui(a)vi(a) +

b∫
a

u(m)(x)v(m)(x)dx, (2.1)

and the norm ‖u‖Wm
2

is denoted by

‖u‖Wm
2

=
√

(u, u)Wm
2
,

where u, v ∈ Wm
2 [a, b].

Theorem 2.1 The space Wm
2 [a, b] is a reproducing kernel space. That

is, for any u(.) ∈ Wm
2 [a, b] and each fixed x ∈ [a, b], there exists K(x, .) ∈

Wm
2 [a, b], such that (u(.), K(x, .))Wm

2
= u(x).

The reproducing kernel K(x, .) can be denoted by

K(x, y) =


2m∑
i=0

ci(y)xi−1, x ≤ y,

2m∑
i=0

di(y)xi−1, x > y.
(2.2)

Proof. The proof can be found in [4].
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Definition 2.2 (W 1
2 [a, b]). The inner product space W 1

2 [a, b] is defined as

W 1
2 [a, b] = {u(x)|u is absolutely continuous real function, u, u′ ∈ L2[a, b]},

The inner product in W 1
2 [a, b] is given by

(u(.), v(.))W 1
2

= u(a)v(a) +

b∫
a

u(1)(x)v(1)(x)dx, (2.3)

and the norm ‖u‖W 1
2

is denoted by ‖u‖W 1
2

=
√

(u, u)W 1
2
, where u, v ∈

W 1
2 [a, b].

The space W 1
2 [a, b] is a reproducing kernel space and its reproducing ker-

nel function Tx(.) is given by

Tx(y) =

 1 + x, x ≤ y,

1 + y, x > y.
(2.4)

Also, we can simplify to

Tx(y) = 1 +
x+ y − |x− y|

2
. (2.5)

Theorem 2.2 The space W 2
2 [0, 1] is a reproducing kernel Hilbert space.

That is ∀u(y) ∈ W 2
2 [0, 1] and each fixed x, y ∈ [0, 1], there exists Rx(y) ∈

W 2
2 [0, 1] such that < u(y), Rx(y) >= u(x) and Rx(y) is called the repro-

ducing kernel function of space W 2
2 [0, 1]. The reproducing kernel function

Rx(.) is given by

Rx(y) =

 c1 + c2x+ c3x
2 + c4x

3, x ≤ y,

d1 + d2x+ d3x
2 + d4x

3, x > y.
(2.6)

Proof. We computed Rx(y) for two cases of α = 0, 1.
From definition of inner product in W 2

2 [a, b] is given by

(u(x), Ry(x))W 2
2

=
1∑

i=0

u(i)(a)R(i)
y (a) +

b∫
a

u(2)(x)R(2)
y (x)dx. (2.7)
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Through several integrations by parts for (2.7) we have

(u(x), Ry(x))W 2
2

=
1∑

i=0
u(i)(a)[R(i)

y (a)− (−1)1−iR3−i
y (a)]

+
1∑

i=0
(−1)1−iui(b)R3−i

y (b) +
b∫
a
u(x)R(4)

y (x)dx,
(2.8)

and then, R(4)
y (x) = δ(x− y).

Case(I): For α = 0 from reproducing property and relations between
derivatives we obtain following system

1)Rx(a) = 0,

2)R(1)
x (a)−R(2)

x (a) = 0,

3)R(i)
x (b) = 0; i = 2, 3,

4)R(i)
x (y−) = R(i)

x (y+); i = 0, 1, 2,

5)R(3)
x (y+)−R(3)

x (y−) = 1.

(2.9)

By solving above system, coefficients are as

c1(y) = 0, c2(y) = y, c3(y) = 1
2
y, c4(y) = −1

6
,

d1(y) = −1
6
y3, d2(y) = 1

2
y2 + y, d3(y) = 0, d4(y) = 0,

and

Rx(y) =


xy +

1

2
x2y − 1

6
x3, x ≤ y,

xy +
1

2
y2x− 1

6
y3, x > y.

(2.10)

Case(II): For α = 1 from reproducing property and relations between
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derivatives we obtain following system

1)Rx(b) = 0,

2)R(i)
x (a) + (−1)iR(3−i)

x (a) = 0; i = 0, 1,

3)R(2)
x (b) = 0,

4)R(i)
x (y−) = R(i)

x (y+); i = 0, 1, 2,

5)R(3)
x (y+)−R(3)

x (y−) = 1.

(2.11)

By solving above system, coefficients are as

c1(y) = 1
14

(8− 6y − 3y2 + y3), c2(y) = 1
14

(−6 + 8y − 3y2 + y3),

c3(y) = 1
28

(−6 + 8y − 3y2 + y3), c4(y) = 1
84

(−8 + 6y + 3y2 − y3),

d1(y) = 1
42

(24− 18y − 9y2 − 4y3), d2(y) = 1
14

(−6 + 8y + 4y2 + y3),

d3(y) = 1
28

(−6− 6y − 3y2 + y3), d4(y) = 1
84

(6 + 6y + 3y2 − y3).

Remark 2.1 In Problem (1.1) where u ∈ Wm
2 [a, b] and f ∈ W 1

2 [a, b],
it is clear that L : Wm

2 [a, b] → W 1
2 [a, b] is a bounded linear operator.

For any fixed xi ∈ [a, b], Let ϕi(.) = Txi
(.), where Txi

(.) is reproducing
kernel of W 1

2 [a, b]. Further assume that ψi(.) = (L∗ϕi)(.), where L∗ is the
adjoint operator of L.

Theorem 2.3 Let {xi}∞i=1 is dense on [a, b], then {ψi(x)}∞i=1 is the com-
plete system of Wm

2 [a, b] and ψi(x) = LyK(x, y)|y=xi
, where the subscript

y of operator Ly indicates that the operator L applies to functions of y.

Proof. See [4].

Remark 2.2 The orthonormal system {ψi(x)}∞i=1 of Wm
2 [a, b] can be de-
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rived from Gram-Schmidt orthogonalization process of {ψi(x)}∞i=1, as

ψi(x) =
i∑

k=1

βikψk(x), (i = 1, 2, . . .). (2.12)

To orthonormalize the sequence {ψi(x)}∞i=1 in the reproducing kernel space
by Gram-Schmidt process, orthogonal coefficients βik given by

β11 =
1

‖ψ1‖
, βii =

1√
‖ψi‖2 −

i−1∑
k=1

b2
ik

, βij =

−
i−1∑
k=j

bikβkj√
‖ψi‖2 −

i−1∑
k=1

b2
ik

,

(2.13)
where bik = (ψi, ψk).

Theorem 2.4 If {xi}∞i=1 is dense in [a, b] and the solution of problem
(1.1) is unique, then the solution of the problem, can be represented in
Wm

2 [a, b] as follows

u(x) =
∞∑
i=1

i∑
j=1

βikf(xj)ψi(x). (2.14)

Now, the approximate solution can be obtained by taking finitely many
terms in the series representation of u and

uN(x) =
N∑
i=1

i∑
j=1

βikf(xj)ψi(x). (2.15)

Proof. The proof can be found in [4].

3 Numerical examples

In this section, some numerical examples are given to demonstrate the
accuracy of the given method. The examples are computed using Mathe-
matica 10.3. Results obtained by the method are compared with the ex-
act solution of each example and are found to be in good agreement.The
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numerical results are given with xi =
i− 1

n− 1
, i = 1, 2, . . . , N for two

follwing examples.

Example.1. Consider the Initial Value Problem


εu′(x) +

1√
x
u(x) = f(x), 0 < x ≤ 1,

u(0) = 0,
(3.1)

where ε = 10−6, 10−10 and f(x) =
(x+ x2)√

x
+ε(1+2x). The exact solution

of the problem is u(x) = x+ x2.
The absolute errors of approximate solutions of Example.1 in different
nodes for various values of N are reported in Table.1. It can be seen that
there is a good agreement between theory and numerical results and also
we can increase the accuracy by increasing N. Figure 1 is the graph of
Log10|u− uN |.

Table.1. Absolute error for Example.1 with various N and ε = 10−6.

xi N = 25 N = 50 N = 100 [5](N = 28)

0.2 7.11495× 10−12 1.01738× 10−12 5.95238× 10−13 6.77481× 10−08

0.4 1.19460× 10−11 2.31616× 10−12 1.24607× 10−13 2.54592× 10−11

0.6 2.45803× 10−11 3.35709× 10−12 1.93190× 10−13 5.13651× 10−11

0.8 2.82394× 10−11 4.58766× 10−12 2.62641× 10−13 1.36892× 10−07

1.0 2.30920× 10−08 1.15480× 10−08 5.73539× 10−09 2.53664× 10−08
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Figure 1. Graph of Log10|u− uN | for Example1 with m = 2 , ε = 10−6 , N=50(left) and
N = 100,(Right),

Example.2. Consider the Initial Value Problem


εu′(x) +

1

x
u(x) = f(x), 0 < x ≤ 1,

u(1) = 0,
(3.2)

where ε = 10−6, 10−10 and f(x) =
(ex − e)

x
+ ε(ex). The exact solution of

the problem is u(x) = ex−e. The absolute errors of approximate solutions
of Example.2 in different nodes for various values of N are reported in
Table.2. It can be seen that there is a good agreement between theory
and numerical results and also we can increase the accuracy by increasing
N. Figure.2 and Figure.3 are the graph of Log10|u− uN |.

Table.2. Absolute error for Example.2 with various N and ε = 10−6.

xi N = 25 N = 50 N = 100 [5](N = 28)

0.0 2.68941× 10−5 3.46582× 10−06 4.39932× 10−07 1.92676× 10−5

0.2 3.35509× 10−8 7.19425× 10−11 1.45883× 10−13 1.09778× 10−8

0.4 3.19744× 10−6 2.88658× 10−11 1.90736× 10−13 1.88865× 10−6

0.6 4.04121× 10−6 1.46549× 10−12 1.67977× 10−13 1.88907× 10−6

0.8 5.35683× 10−9 7.99361× 10−11 5.99520× 10−14 8.74630× 10−9
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Figure 2. Graph of Log10|u− uN | for Example.2 with m = 2 , ε = 10−6 , N=50(left) and
N = 100(Right),

Figure 3. Magnification of graph Log10|u− uN | for Example.2 with m = 2, ε = 10−6, N=100.

4 Conclusions

In this paper we have presented a numerical scheme based on reproducing
kernel Hilbert space to solve singular initial value problems. The method
has been tested on some illustrative numerical examples. The computa-
tional results are found to be in good agreement with the exact solutions.
In the current work, to demonstrate the accuracy and usefulness of this
method, numerical examples have been presented. As demonstrated by
the computational results, it is very easy to implement the proposed
method for similar problems.
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