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ABSTRACT

The goal of this paper is to calculate an integrating factor, λ-symmetry and a first integral for

ODEs of second order ü = F (x, u, u̇) and for a vector ODEs of second order ¨̂r = f̂ , by the

λ-symmetry method.

1 Introduction
The problem of finding first integrals of ordinary differential equations (ODE) has a long and interesting history
which may be traced to the seminal works of Darboux and Lie in the latter half of the nineteenth century. A first
integral, for an nth-order ODE, is an expression involving the independent variable, the dependent variable and
its derivatives to order n − 1. The techniques involved in finding first integrals of systems of one or more ODEs
generally make use of integrating factors, which are functions multiplying each of the ODEs to yield a first integral.

In 2001, Muriel and Romero introduced λ-symmetry to find general solutions for examples that have trivial Lie
symmetries. They[8] presented techniques to obtain first integral, integrating factor, λ-symmetry of second-order
ODEs ü = F (x, u, u̇) and the relationship between them. In 2006, Muriel, Romero and Olver have expanded the
concept of variational problem and conservation law in the case of symmetries to the case of λ-symmetries of
ODEs. They have presented an adapted formulation of the Nother’s theorem for λ-symmetry of ODEs.

In 2004, Gaeta and Morando expanded this approach to the PDE frame with p independent variables x =
(x1, ..., xp) and q dependent variables u = (u1, ..., uq), in order to do this, the central object is a horizontal one-
form µ = λidx

i on first order jet space (J (1)M,π,M), where µ is a compatible, i.e. Diλj −Djλi = 0, and thus one
speaks of µ-symmetries[4].

The types of symmetry are Lie symmetry[11], hidden symmetry[1], λ-symmetry[5], µ-symmetry[4] and C∞-
symmetry[6]. One of the applications of symmetries is to reduce of order ODEs[5, 6, 7, 8] and PDEs[4, 11]. Also,
λ-symmetry is used to calculate an integrating factor and consequently a first integral for ODEs[7, 8, 9, 10].

In 2005, Chandrasekar, Senthilvelan and Lakshmanan obtained a first integral for nth order ODEs and two
coupled second order equations by the Prelle-Singer method[2, 3]. The PS method is method that requires longer
and more difficult calculations to obtain the first integral compared to the λ-symmetry method. Therefore, it has
been tried to obtain integrating factor and the first integral with simple calculations.

In this article, we introduce a procedure to find an integrating factor, λ-symmetry and first integral for vector
ODEs of second order ¨̂r = f̂ where r̂ = uî + wĵ and f̂ = F1(x, u, w, u̇, ẇ)̂i + F2(x, u, w, u̇, ẇ)ĵ, indeed, we
obtain an integrating factor µ1(x, u, w, u̇, ẇ) of ü = F1(x, u, w, u̇, ẇ), an integrating factor µ2(x, u, w, u̇, ẇ) of ẅ =
F1(x, u, w, u̇, ẇ) and consequently a first integral I(x, u, w, u̇, ẇ) for ¨̂r = f̂ , by the λ-symmetry method, which is a
simpler method compared to the PS method.

∗Corresponding Author’s E-mail: kh.goodarzi@iaub.ac.ir(Kh.Goodarzi) © 2024. All rights reserved. Hosting by IA University of Arak Press



Integrating Factor, First Integral and Λ-Symmetry for Vector Odes of Second Orders Kh.Goodarzi

The outline of this paper, section 2, we calculate an integrating factor and consequently a first integral for nth
order ODEs and in a special cases for second order by λ-symmetry method, in section 3. Section 4, we obtain an
integrating factor, λ-symmetry and first integral for vector ODEs of second order, by the λ-symmetry method.

2 Integrating factor and λ-symmetry for nth-order ODEs
In this section, we obtain some of the main results about λ-symmetry, first integral and integrating factor for
nth-order ordinary differential equation u(n) = F (x, u(n−1)). We present a procedure to find a first integral and
consequently an integrating factor of this differential equation. We denote by M (n) the corresponding jet space
M (n) ⊂ X × U (n), for n ∈ N . Their elements are (x, u(n)) = (x, u, u(1), ..., u(n)), where, for i = 1, ..., n, u(i) denote
the derivative of order i of u with respect to x. An integrating factor of an nth-order ordinary differential equation
(ODE) ∆(x, u(n)) = 0 is a function µ(x, u(n−1)) such that µ∆ = 0 is an exact equation:

µ(x, u(n−1))∆(x, u(n)) = Dx(G(x, u(n−1))), (2.1)

function G(x, u(n−1)) in (2.1) is called a first integral of the equation ∆(x, u(n)) = 0 and Dx(G(x, u(n−1))) = 0 is a
conserved form of the equation ∆(x, u(n)) = 0. Let

u(n) = F (x, u(n−1)), (2.2)

be a nth-order ordinary differential equation, where F is an analytic function of its arguments. Let v = ξ(x, u)∂x+
η(x, u)∂u be a vector field defined on open subset M ⊂ X × U . The λ-prolongation of order n of v, denoted by
v[λ,(n)], is the vector field defined on M (n) by

v[λ,(n)] = ξ(x, u)∂x +
n−1∑
i=0

η[λ,(i)](x, u(i))∂ui ,

where η[λ,(i)](x, u(i)) = (Dx+λ)(η[λ,(i−1)](x, u(i−1)))−Dx(ξ)ui−λξui and η[λ,(0)](x, u) = η(x, u), for i = 1, 2, 3, ..., n.
A vector field v is a λ-symmetry of (2.2) if there exists function λ(x, u(k)) ∈ C∞(M (1)), for k < n, such that

v[λ,(n)](u(n) − F (x, u(n−1))) = 0, when u(n) = F (x, u(n−1))[5].
We denote by A = ∂x + u(1)∂u + u(2)∂u(1) + ...+ F (x, u(n−1))∂u(n−1) the vector field associated with (2.2).
The vector field v = ξ(x, u)∂x + η(x, u)∂u is a λ-symmetry of (2.2) if and only if

[v[λ,(n−1)], A] = λ.v[λ,(n−1)] + τ.A, (2.3)

for some λ ∈ C∞(M (1)), τ = −(A+ λ)(ξ(x, u)) and v[λ,(n−1)] =
∑n−1

i=0 (Dx + λ)i(1)∂ui [5].
Function I(x, u(n−1)) is a first integral of (2.2), such that A(I) = 0 and an integrating factor of (2.2), is any

function µ(x, u(n−1)) such that

µ(x, u(n−1))(u(n) − F (x, u(n−1))) = DxI(x, u
(n−1)).

[7]

3 λ-Symmetry, integrating factor and first integral for second order ODEs
In this section, we obtain some of the main results about λ-symmetry, first integral and integrating factor for
second-order ordinary differential equation as the following

ü = F (x, u, u̇). (3.1)

Let I(x, u, u̇) be a first integral and µ(x, u, u̇) be an integrating factor of (3.1), then µ(x, u, u̇)(ü − F (x, u, u̇)) =
DxI(x, u, u̇), and µ(x, u, u̇) = Iu̇(x, u, u̇)[8].
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When v = ∂u is a λ-symmetry of (3.1) if and only if

(A(λ) + λ2 − Fu − λFu̇)∂u̇ = 0,

where v[λ,(1)] = ∂u + λ∂u̇ and A = ∂x + u̇∂u + F∂u̇ by using (2.3).
A procedure to find a λ-symmetry, an integrating factor µ(x, u, u̇) and consequently a first integral I(x, u, u̇) of

(3.1) is as follows(see[8]):

step1. The vector field v = ∂u is a λ-symmetry of (3.1), if the function λ(x, u, u̇) is any particular solution of
the equation

A(λ) = Fu + λFu̇ − λ2.

step2. If λ(x, u, u̇) is such that v = ∂u is a λ-symmetry of (3.1), then any solution µ(x, u, u̇) of the first-order linear
system {

A(µ) = −µ(Fu̇ − λ),
µu = −λu̇µ− λµu̇.

is an integrating factor of (3.1).
step3. A system of the form 

Ix = µ(λu̇− F ),
Iu = −µλ,
Iu̇ = µ.

is compatible for some functions µ(x, u, u̇) and λ(x, u, u̇) if and only if v = ∂u is a λ-symmetry of (3.1) and µ(x, u, u̇)
an integrating factor of (3.1). In this case I(x, u, u̇) is a first integral of (3.1).

A other method for find a λ-symmetry, an integrating factor µ(x, u, u̇) and a first integral I(x, u, u̇) of (3.1) is
as follows:
step1. The vector field v = ∂u is a λ-symmetry of (3.1), if the function λ(x, u, u̇) is any particular solution of the
equation

A(λ) = Fu + λFu̇ − λ2. (3.2)

step2. If λ(x, u, u̇) is such that v = ∂u is a λ-symmetry of (3.1), then any solution I(x, u, u̇) of the system{
Iu + λIu̇ = 0,
Ix + u̇Iu + FIu̇ = 0.

(3.3)

is a first integral of (3.1)[8].
step3. If I(x, u, u̇) is a first integral of (3.1), then

µ(x, u, u̇) = Iu̇(x, u, u̇), (3.4)

is an integrating factor of (3.1).

Example 3.1 We consider the second-order differential equation of Lienard type nonlinear oscillators of the form

ü+ kuu̇+
k2

9
u3 + au = 0, (3.5)

where F (x, u, u̇) = −(kuu̇+ (k2/9)u3 + au) is an analytic function of its arguments, k and a are arbitrary constants.
Generalizations of this equation are widely used in applications in the content of nonlinear oscillators [3]. We know
that (3.5), that is,

ü = −kuu̇− k2

9
u3 − au = F.
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By (3.2), the vector field v = ∂u is a λ-symmetry of (3.5), if the function λ(x, u, u̇) is any particular solution of the
equation

λx + u̇λu + (−kuu̇− k2

9
u3 − au)λu̇ + λ2 + kλu+ ku̇+

k2

3
u2 + a = 0.

For the sake of simplicity, suppose λ(x, u, u̇) = α(x, u)u̇+ β(x, u), therefore, we obtain the following system:
αu + α2 = 0,
αx + βu + 2αβ + k = 0,

βx − k2

9 αu
3 − aαu+ β2 + kβu+ k2

3 u
2 + a = 0.

A particular solution of the first equation is given by α = 1/u. The second and third equations become βu +
2

u
β + k = 0,

βx − 2k2

9 u2 + β2 + kβu = 0.

A general solution of the first equation is given by β = −ku/3+γ(x)/u2. Since the last equation become γ′/u+γ2/u3+
(1/3)kγ = 0, we can choose γ(x) = 0. in consequence, the vector field v = ∂u is a λ-symmetry for λ = (1/u)u̇− ku/3.
Substituting F (x, u, u̇) = −(kuu̇ + (k2/9)u3 + au) and λ = (1/u)u̇ − ku/3 into system (3.3) and solving them, we
obtain

I(x, u, u̇) = −x− (1/
√
a)Arctan

(
(ku2 + 3u̇)/3

√
au

)
.

By (3.4), µ(x, u, u̇) = −1/
(
au+ (u̇/u+ ku/3)2u

)
, is an integrating factor of (3.5).

4 λ-Symmetry, integrating factor and first integral for vector second-order ODEs
In this section, we present a procedure to find a λ-symmetry, an integrating factor and consequently a first integral
for a vector ODEs of second order of the form ¨̂r = f̂ . We consider a vector ODEs of second order

¨̂r = f̂ , (4.1)

where r̂ = uî+wĵ and f̂ = F1(x, u, w, u̇, ẇ)̂i+F2(x, u, w, u̇, ẇ)ĵ also u and w are arbitrary functions, u̇ denote the
derivative of u with respect to x and ẇ denote the derivative of w with respect to x. Therefore we have coupled
second order ODEs of the form

ü = F1(x, u, w, u̇, ẇ), (4.2)

ẅ = F2(x, u, w, u̇, ẇ), (4.3)

where F1 and F2 are analytic functions of their arguments.
We denote by A = ∂x + u̇∂u + ẇ∂w + F1∂u̇ + F2∂ẇ the vector field associated with a vector ODEs of second

order of (4.1). Function I(x, u, w, u̇, ẇ) is a first integral for (4.1), such that A(I) = 0. An integrating factor of
(4.2), is any function µ1(x, u, w, u̇, ẇ) such that

µ1(x, u, w, u̇, ẇ)(ü− F1(x, u, w, u̇, ẇ)) = DxI(x, u, w, u̇, ẇ)

and an integrating factor of (4.3), is any function µ2(x, u, w, u̇, ẇ) such that

µ2(x, u, w, u̇, ẇ)(ẅ − F2(x, u, w, u̇, ẇ)) = DxI(x, u, w, u̇, ẇ).
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Using (2.3), the vector field v1 = ∂u is a λ1-symmetry of (4.2) if and only if

(A(λ1) + λ2
1 − F1u − λ1F1u̇)∂u̇ − (F2u + λ1F2u̇)∂ẇ = 0, (4.4)

where v
[λ1,(1)]
1 = ∂u + λ1∂u̇ and the vector field v2 = ∂w is a λ2-symmetry of (4.3) if and only if

(A(λ2) + λ2
2 − F2w − λ2F2ẇ)∂ẇ − (F1w + λ2F1ẇ)∂u̇ = 0, (4.5)

where v
[λ2,(1)]
2 = ∂w + λ2∂ẇ.

Theorem 4.1 A system of the form 
Ix = µ1(λ1u̇− F1) + µ2(λ2ẇ − F2),
Iu = −µ1λ1,
Iw = −µ2λ2,
Iu̇ = µ1,
Iẇ = µ2,

(4.6)

is compatibly for some functions λ1(x, u, w, u̇, ẇ),λ2(x, u, w, u̇, ẇ), µ1(x, u,
w, u̇, ẇ) and µ2(x, u, w, u̇, ẇ), if and only if µ1 is an integrating factor and v1 = ∂u is a λ1-symmetry of (4.2) also
µ2 is an integrating factor and v2 = ∂w is a λ2-symmetry of (4.3). In this case I(x, u, w, u̇, ẇ) is a first integral for a
vector ODEs of second order of (4.1).

Proof. Let I(x, u, w, u̇, ẇ) be a first integral for a vector ODEs of second order of (4.1), then µ1 = Iu̇ is an
integrating factor of (4.2) and µ2 = Iẇ is an integrating factor of (4.3). Let v1 = ∂u be a λ1-symmetry of (4.2)
then A(I) = 0 and v[λ1,(1)](I) = 0 also, Let v2 = ∂w be a λ2-symmetry of (11) then A(I) = 0 and v[λ2,(1)](I) = 0,
hence we get

A(I) = 0 ⇒ Ix = −u̇Iu − ẇIw − F1µ1 − F2µ2,

v[λ1,(2)](I) = 0 ⇒ Iu = −λ1Iu̇ = −λ1µ1

v[λ2,(2)](I) = 0 ⇒ Iw = −λ2Iẇ = −λ2µ2.

Therefore we have the system of the form (4.6). We prove that, when (4.6) is compatible, necessarily v1 = ∂u is a
λ1-symmetry and necessarily v2 = ∂w is a λ2-symmetry. The compatibility conditions between the equations (4.6),
provide the following conditions

A(λ1) = F1u + λ1F1u̇ − λ2
1 +

µ2

µ1
(F2u + λ1F2u̇), (4.7)

A(λ2) = F2w + λ2F2ẇ − λ2
2 +

µ1

µ2
(F1w + λ2F1ẇ), (4.8)

A(µ1) = −µ1(F1u̇ − λ1) + µ2F2u̇, (4.9)

A(µ2) = −µ2(F2ẇ − λ2) + µ1F1ẇ, (4.10)

λ1µ1w = −λ1wµ1 + λ2µ2u + λ2uµ2, (4.11)

µ1u = −λ1u̇µ1 − λ1µ1u̇, (4.12)

µ2w = −λ2ẇµ2 − λ2µ2ẇ, (4.13)

µ1w = −λ2u̇µ2 − λ2µ2u̇, (4.14)

µ2u = −λ1ẇµ1 − λ1µ1ẇ, (4.15)

µ1ẇ = µ2u̇. (4.16)
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According to (4.7), we get
(
A(λ1)+λ2

1−F1u−λ1F1u̇

)
µ1−

(
F2u+λ1F2u̇

)
µ2 = 0, since Iu̇ = µ1 ̸= 0 and Iẇ = µ2 ̸= 0,

hence (
A(λ1) + λ2

1 − F1u − λ1F1u̇

)
Iu̇ −

(
F2u + λ1F2u̇

)
Iẇ = 0,

or correspond (
A(λ1) + λ2

1 − F1u − λ1F1u̇

)
∂u̇ −

(
F2u + λ1F2u̇

)
∂ẇ = 0

and by comparing of (4.4), implies that v1 = ∂u is a λ1-symmetry of (4.2) also by using (4.8) and by comparing of
(4.5), implies that v2 = ∂w is a λ2-symmetry of (4.3).

According to (4.9) and (4.10), we get{
λ1 =

A(µ1)
µ1

− µ2

µ1
F2u̇ + F1u̇,

λ2 =
A(µ2)
µ2

− µ1

µ2
F1ẇ + F2ẇ.

(4.17)

In summary, a procedure to find integrating factors µ1, µ2 and consequently a first integral I(x, u, w, u̇, ẇ) for a
vector ODEs of second order of (4.1) is as follows:

step1. Substituting λ1 and λ2 of (4.17) into the system

A(λ1) = F1u + λ1F1u̇ − λ2
1 +

µ2

µ1
(F2u + λ1F2u̇),

A(λ2) = F2w + λ2F2ẇ − λ2
2 +

µ1

µ2
(F1w + λ2F1ẇ),

λ1µ1w = −λ1wµ1 + λ2µ2u + λ2uµ2,
µ1u = −λ1u̇µ1 − λ1µ1u̇,
µ2w = −λ2ẇµ2 − λ2µ2ẇ,
µ1w = −λ2u̇µ2 − λ2µ2u̇,
µ2u = −λ1ẇµ1 − λ1µ1ẇ,
µ1ẇ = µ2u̇.

(4.18)

and solving them, we get, integrating factors µ1 of (4.2) and µ2 of (4.3).
step2. Substituting µ1 and µ2 into the system (4.17), we obtain, the functions λ1 and λ2, therefore the vector

field v1 = ∂u is a λ1-symmetry of (4.2) and the vector field v2 = ∂w is a λ2-symmetry of (4.3).

step3. Substituting the functions µ1, µ2, λ1 and λ2 into the system (4.6) and solving them, we find a first in-
tegral I(x, u, w, u̇, ẇ) for a vector ODEs of second order of (4.1).

Example 4.1 We consider the Kepler problem in the u− w plane, that is,

¨̂r +
r̂

r3
= 0, (4.19)

where r̂ = uî+ wĵ and r = |r̂|. The respective equations of motions are

ü = − u

(u2 + w2)
3
2

= F1(x, u, w, u̇, ẇ), (4.20)

ẅ = − w

(u2 + w2)
3
2

= F2(x, u, w, u̇, ẇ), (4.21)

Substituting λ1 =
A(µ1)
µ1

and λ2 =
A(µ2)
µ2

of (4.17) into the system (4.18) and solving them, we get, µ1 = w and µ2 = u
that are particular solutions of this equations.
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Substituting µ1 = w and µ2 = u into the system (4.17), we obtain, the functions

λ1 =
A(µ1)

µ1
=

ẇ

w
, λ2 =

A(µ2)

µ2
=

u̇

u
.

Therefore the vector field v1 = ∂u is a λ1-symmetry of (4.20) and the vector field v2 = ∂w is a λ2-symmetry of (4.21).
Substituting the functions µ1 = w, µ2 = u, λ1 = ẇ

w and λ2 = u̇
u into the system (4.6) and solving them, we find a

first integral
I(x, u, w, u̇, ẇ) = wu̇− uẇ,

for a class of second order ODEs of (4.19).
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