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In this paper we introduce a new nonlinear algorithm for approximating fixed points of dou-

ble midpoint rule on a nonempty, closed and convex subset of real Hilbert spaces. Under

some specific assumption imposed on the control parameters, we prove a strong convergence

theorem. In this manner, we provide some numerical examples to illustrate our main result

and to display the efficiency of the proposed algorithm.

1 Introduction.
There are several methods to face, from a theoretical aspect, to numerous problems which arise from real-world
environment. Due to their possible applications, throughout the last years, the fixed point theory becomes the
most interesting branch in mathematics. It is well-known that several mathematical and real-word problems are
naturally formulated as a fixed point problem, that is, a problem for finding a point x in a domain of an appropriate
mapping T such that

Tx = x

Awide rang of problems of applied sciences and engineering are usually formulated as functional equations. such
equations can be written in the form of fixed point equations. Yao et. al [22] proved that the sequence {xn}
generated by

1

h
(xn+1 − xn) = f(

xn+1 + xn
2

),

here h > 0 is a stepsize converges to the exact solution of an initial value problem for ODE’s of the type

x́(t) = f(x(t)), x(t0) = x0.
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Numerical reckoning of nonlinear operators is very fascinating research problem of nonlinear analysis. How-
ever, it is not a easy task to find the fixed points of some operators. To overcome this kind of problem so many
iteration procedures has been evolved over the time. This fact motivated various authors have introduced numer-
ous iterative scheme which have been utilized widely to approximate the fixed points of operators. Convergence
analysis for iterative algorithms using the asymptotically nonexpansive and midpoint rule have been introduced
by many authors[3, 6, 10, 13, 14, 17, 18, 19, 23] and the references therein.
In 2014, alghamdi et. al [1] presented a recursion sequence for a nonexpansive mapping T on Hilbert space as
follow:

xn+1 = (1− αn)xn + αnT (
xn+1 + xn

2
). (1.1)

They proved the weak convergence of (1.1) under certain condition on {αn}.
Still, in Hilbert space, Xu et. al [20] used contractions to recognize the implicit procedure:

xn+1 = αnf(xn) + (1− αn)T (
xn+1 + xn

2
). (1.2)

They proved that a strong convergence for the sequence {xn} which solves a variational inequality. In 2015, Yao
et.al [22] introduced

xn+1 = αnf(xn) + bnxn + cn)T (
xn+1 + xn

2
), (1.3)

which gives a faster approximation compared with (1.2).
More precisely, in 2017, Luo et. al [15] extended the work of Xu [21] to uniformly smooth Banach spaces. He et. al
[7] considered the generalized viscosity implicit midpoint rule of asymptotically nonexpansivemapping inHilbert
space defined by

xn+1 = αnf(xn) + (1− αn)T
n(βnxn + (1− βn)xn+1). (1.4)

They showed that the iterative (1.4) converges strongly to a fixed point of T : H → H .
In 2019, Pan et. al [16] introduced the following iteration on Banach space by:

xn+1 = αnxn + βnf(xn) + γnT
n(tnxn + (1− tn)xn+1). (1.5)

They proved that under suitable conditions their process converges strongly to a fixed point of asymptotically
nonexpansive mapping.
The class of asymptotically nonexpansive mapping was introduced as a generalization of the class of nonexpan-
sive mapping in 1974 by Kirk [8]. In recent years many authors have made their contributions for the class of
mappings toward the existence of fixed points and asymptotic behavior of {Tnx} [8, 9, 11, 12].
Motivated by the above studies, we introduce a generalized doublemidpoint rule algorithm (GDMRA) for approx-
imating fixed point of a asymptotically nonexpansive mapping where the sequence {xn} is generate iteratively by
x0 ∈ C and

xn+1 = αnf(
xn+1 + xn

2
) + (1− αn)T

n(
xn+1 + xn

2
). (1.6)
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for each n ∈ N and {αn} is a sequence in (0, 1).
The purpose of this paper is to prove the convergence a newly defined iteration process (1.6) for asymptotically
nonexpansive mapping. We also provide some numerical examples to show the genuineness of our study with the
help ofMatlab R2018a software and we show the convergence algorithm by tables and figures.

2 preliminaries.
Throughout this paper, letH is a real Hilbert space with inner product ⟨., .⟩ and ∥.∥ is a norm induced by ⟨., .⟩. Let
C be a nonempty, closed and convex subset ofH and T be a self-mapping ofH . We denote by F (T ) the set of fixed
points of T , that is, F (T ) = {z ∈ H : Tz = z}. Recall that a mapping T : C → T is said to :

1. ρ−contraction if there exists ρ ∈ [0, 1) such that ∥Tx− Ty∥ ≤ ρ∥x− y∥,

2. Asymptotically nonexpansive mapping if there exists a sequence {kn} ⊂ [1,+∞), limn→∞kn = 1 such that
∥Tnx− Tny∥ ≤ kn∥x− y∥.

The nearest point projection fromH onto C, PC , is defined by

PC(x) := argminz∈C∥x− z∥2, x ∈ H.

Namely, PC(x) is the only point in C that minimizes the objective ∥x− z∥ over z ∈ C.

Remark 2.1. Note that PC is characterized as follows:

PCx ∈ C and ⟨x− PCx, z − x− PCx⟩ ≤ 0 for all z ∈ C.

The following lemmas play an important role in our paper.

Lemma2.1. ([2]). LetH be a realHilbert space,C be a nonempty closed and convex subset ofH , andT : C → C

be a asymptotically nonexpansive mapping with F (T ) ̸= ∅. If {xn} is a sequence in C such that(i): {xn}weakly
converges to x and(ii): (I − T )xn converges strongly to 0, then x = Tx.

Lemma 2.2. ([5])LetH be a real Hilbert space. x, y ∈ H and t ∈ [0, 1]. Then

∥tx+ (1− t)y∥2 ≤ t∥x∥2 + (1− t)∥y∥2 − t(1− t)∥x− y∥2

It is easy to prove that the following lemma holds:

Lemma 2.3. LetH be a real Hilbert space.Then for all u, x, y ∈ H the following inequality holds

∥x− u∥2 ≤ ∥y − u∥2 + 2⟨x− y, x− u⟩

Lemma 2.4. ([20])Let an be a sequence of nonnegative real numbers satisfying

an+1 ≤ (1− γn)an + δn

where {γn} is a sequence in (0, 1) and {δn} is a sequence in R such that
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•
∑∞

n=1 γn = ∞

• limsupn→∞
δn
γn

= 0 or
∑∞

n=1 δn < ∞.

Then limn→∞an = 0.

3 A Generalized Iterative Algorithm.
Let C be a nonempty closed convex subset a Hilbert space H , T : C → C be a asymptotically nonexpansive
mapping with F (T ) ̸= ∅ and f : C → C be a contraction mapping with the contractive constant ρ ∈ [0, 1). The
generalized double midpoint rule (GDMR) generates a sequence xn via the following algorithm:

Algorithm 3.1. {
x0 ∈ C,

xn+1 = αnf(
xn+1+xn

2 ) + (1− αn)T
n(xn+1+xn

2 ),
(3.1)

where the parameters αn and kn satisfies the following conditions:

(C1) : Limn→∞αn = 0,

(C2) :
∑∞

n=1 αn = ∞,

(C3) : Limn→∞
k2n−1
αn

= 0,

(C4) : Limn→∞∥Tnxn − xn∥ = 0.

The next remark plays a key role in the proof of our results in subsequence sections.

Remark 3.1. By condition (C3), for any given positive number 0 < ε < 1 − α, there exists a sufficient large
positive integer n0, such that for any n ≥ n0, we have

k2n − 1 ≤ 2εαn and kn − 1 ≤ kn + 1

2
(kn − 1) ≤ k2n − 1

2
≤ εαn,

also, we have

1− (1−αn)k2n+3ραn

2 = 1−(k2n−1)+αn(k2n−3ρ)
2 ≥ 1−2εαn+αn(1−3ρ)

2 = 1+(1−3ρ−2ε)αn

2

In this section, we will establish the strong convergence theorems of the (GDMR) under some specific assump-
tions.

Lemma 3.1. Let T : C → C with F (T ) ̸= ∅ be defined on a nonempty closed subset C of a Hilbert space, H . If
the iteration process {xn} is defined by algorithm 3.1, then {xn} is bounded.
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proof: For any η ∈ F (T ), we have

∥xn+1 − η∥ = ∥αnf(
xn+1+xn

2 ) + (1− αn)T
n(xn+1+xn

2 )− η∥

≤ αn∥αnf(
xn+1+xn

2 )− f(η)∥+ αn∥f(η)− η∥+ (1− αn)∥Tn(xn+1+xn

2 )− Tn(η)∥

≤ αnρ∥xn+1+xn

2 − η∥+ αn∥f(η)− η∥+ (1− αn)kn∥xn+1+xn

2 )− η∥

≤ αnρ
2 ∥xn − η∥+ αnρ

2 ∥xn+1 − ρ∥+ αn∥f(η)− η∥+ (1−αn)kn
2 ∥xn − η∥+ (1−αn)kn

2 ∥xn+1 − η∥

= αnρ+(1−αn)kn
2 ∥xn − η∥+ αn∥f(η)− η∥+ αnρ+(1−αn)kn

2 ∥xn+1 − η∥

which gives

(1− αnρ+(1−αn)kn
2 )∥xn+1 − η∥ ≤ αn∥f(η)− η∥+ αnρ+(1−αn)kn

2 ∥xn − η∥.

As kn − 1 ≤ εαn, we can get

2− αn(ρ− kn)− kn = 1− αn(ρ− kn)− (kn − 1)

≥ 1− αn(ρ− kn)− εαn = 1 + αn(kn − ε− ρ)

≥ 1 + αn(1− ε− ρ)

Also,
αn(ρ− kn) + kn ≤ αn(ρ− kn) + εαn + 1

= 1 + αn(ε+ ρ− kn)

≤ 1− αn(1− ρ− ε).

Thus, we have
∥xn+1 − η∥ ≤ 2αn

2−αn(ρ−kn)−kn
∥f(η)− η∥+ αn(ρ−kn)+kn

2−αn(ρ−kn)−kn
∥xn − η∥

≤ 2αn
1+αn(1−ε−ρ)∥f(η)− η∥+ αn(ρ−kn)+kn

1+αn(1−ε−ρ)∥xn − η∥

≤ 2αn
1+αn(1−ε−ρ)∥f(η)− η∥+ 1−αn(1−ε−ρ)

1+αn(1−ε−ρ)∥xn − η∥

≤ 2(1−ε−ρ)αn

1+αn(1−ε−ρ){
1

1−ε−ρ}∥f(η)− η∥+ {1− 2αn(1−ε−ρ)
1+αn(1−ε−ρ)}∥xn − η∥.

By induction, we readily obtain

∥xn − η∥ ≤ max{∥x0 − η∥, 1

1− ε− ρ
∥f(η)− η∥}.

which shows that the sequence generated by (3.1) is bounded. Therefore, {f(xn+1+xn

2 )} and {Tn(xn+1+xn

2 )} are
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bounded.

Lemma 3.2. Let C, T and {xn} be described as in lemma 3.1. Then the iterative process {xn} is asymptotically
regular, that is, Limn→∞∥xn+1 − xn∥ = 0.

Proof:For each n ∈ N , we obtain

∥xn+1 − xn∥ ≤ ∥xn+1 − Tnxn∥+ ∥Tnxn − xn∥

= ∥αnf(
xn+1+xn

2 ) + (1− αn)T
n(xn+1+xn

2 )− Tnxn∥+ ∥Tnxn − xn∥

≤ (1− αn)∥Tn(xn+1+xn

2 )− Tnxn∥+ αn∥f(xn+1+xn

2 )− Tnxn∥+ ∥Tnxn − xn∥

≤ (1−αn)kn
2 ∥xn+1 − xn∥+ αn∥f(xn+1+xn

2 )− Tnxn∥+ ∥Tnxn − xn∥

≤ (1−αn)kn
2 ∥xn+1 − xn∥+ αnM+ ∥Tnxn − xn∥

where M := Supn∈N{∥f(xn+1+xn

2 )− Tn(xn+1+xn

2 )∥}.

Since kn ⊂ [1,+∞) and kn − 1 ≤ εαn, then we have

∥xn+1 − xn∥ ≤ 2αn
1+(1−ε)αn

M+ 1
1+(1−ε)αn

∥Tnxn − xn∥.

By using conditions (C1), (C2), we have Limn→∞∥xn+1 − xn∥ = 0.

Lemma 3.3. Let C, T and {xn} be described as in lemma 3.1. Then Limn→∞∥xn − Txn∥ = 0.

Proof: We have

∥xn − Tn−1xn∥ = |αn−1f(
xn+xn−1

2 ) + (1− αn−1)T
n−1(xn+xn−1

2 )− Tn−1xn∥

≤ αn−1∥f(xn+xn−1

2 )− Tn−1xn∥+ (1− αn−1)T
n−1(xn+xn−1

2 )− Tn−1xn∥

≤ αn−1∥f(xn+xn−1

2 )− Tn−1xn∥+ (1− αn−1)kn−1∥xn+xn−1

2 − xn∥

≤ αn−1∥f(xn+xn−1

2 )− Tn−1xn∥+ (1−αn−1)kn−1

2 ∥xn−1 − xn∥,

The conditions (C1) and Lemma 3.2 implies that Limn→∞∥xn − Tn−1xn∥ = 0. Therefore,

∥xn − Txn∥ ≤ ∥xn − Tnxn∥+ ∥Tnxn − Txn∥

≤ ∥xn − Tnxn∥+ k1∥xn − Tn−1xn∥ → 0.
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Lemma 3.4. Let C, T and {xn} be described as in lemma 3.1. Then the sequence {xn} converges weakly to an
element of F (T ) and limsup⟨ζ − f(ζ), ζ − xn⟩ ≤ 0, where ζ ∈ F (T ) is the unique fixed point of the contraction
PF (T ), that is ζ = PF (T )f(ζ).

Proof: First of all, we will show that ωweak(xn) ⊂ F (T ) where

ωweak(xn) = {x ∈ H : there exist a subsequence of xn converges weakly to x}.

Suppose that x ∈ ωweak(xn). Then, there exist a subsequence {xni} of {xn} such that xni ⇀ x. using lemma 2.1,
we have ∥(I−T )xni∥ = ∥xni −Txni∥ → 0,which implies that {(I−T )xni} converges strongly to 0. Consequently,
Tx = x and so x ∈ F (T ). Then , we get ωweak(xn) ⊂ F (T ).

Now, we prove that limsup⟨ζ − f(ζ), ζ − xn⟩ ≤ 0. Since {xn} is bounded, there exists a subsequence {xnj} such
that xnj ⇀ ζ for some ζ ∈ H and

Limsup⟨ζ − f(ζ), ζ − xn⟩ = limj→∞⟨ζ − f(ζ), ζ − xnj ⟩.

Since ωweak(xn) ⊂ F (T ), we get ζ ∈ F (T ).From remark 2.1, we obtain

limsup⟨ζ − f(ζ), ζ − xn⟩ = limj→∞⟨ζ − f(ζ), ζ − xnj ⟩ = ⟨ζ − f(ζ), ζ − ζ⟩ ≤ 0.

Afterward, in the next section we prove a strong convergence theorem.

4 Convergence of Algorithm.
We begin this section by proving a strong convergence theorem for a asymptotically nonexpansive mapping.

Theorem 4.1. Let C, T and {xn} be described as in lemma 3.1. Then the sequence {xn} converges strongly to a
fixed point of T .

proof: Suppose that ζ ∈ F (T ) and then ζ is also the unique fixed point of the contraction mapping PF (T )of .
For each n ∈ N , we compute
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∥xn+1 − ζ∥2 = ∥αn(f(
xn+1+xn

2 )− ζ) + (1− αn)(T
n(xn+1+xn

2 )− ζ)∥2

≤ ∥(1− αn)(T
n(xn+1+xn

2 )− ζ)∥2 + 2αn⟨f(xn+1+xn

2 )− ζ, xn+1 − ζ⟩

≤ (1− αn)
2∥Tn(xn+1+xn

2 )− ζ)∥2 + 2αn⟨f(xn+1+xn

2 )− ζ, xn+1 − ζ⟩

≤ (1− αn)
2∥Tn(xn+1+xn

2 )− ζ)∥2 + 2αn⟨f(xn+1+xn

2 )− f(ζ), xn+1 − ζ⟩

+2αn⟨f(ζ)− ζ, xn+1 − ζ⟩

≤ (1− αn)
2k2n∥

xn+1+xn

2 − ζ∥2 + 2αnρ∥xn+1+xn

2 − ζ∥2∥xn+1 − xn∥

+2αn⟨f(ζ)− ζ, xn+1 − ζ⟩

≤ (1−αn)k2n
2 ∥xn+1 − ζ∥2 + (1−αn)k2n

2 ∥xn − ζ∥2 − (1−αn)k2n
4 ∥xn − xn+1∥2

+2αnρ(
∥xn−ζ∥∥xn+1−ζ∥

2 + ∥xn+1−ζ∥2
2 ) + 2αn⟨f(ζ)− ζ, xn+1 − ζ⟩

= (1−αn)k2n
2 ∥xn+1 − ζ∥2 + (1−αn)k2n

2 ∥xn − ζ∥2 − (1−αn)k2n
4 ∥xn − xn+1∥2

+αnρ∥xn − ζ∥∥xn+1 − ζ∥+ αρ∥xn+1 − ζ∥2 + 2αn⟨f(ζ)− ζ, xn+1 − ζ⟩

≤ (1−αn)k2n
2 ∥xn+1 − ζ∥2 + (1−αn)k2n

2 ∥xn − ζ∥2 + αnρ
2 ∥xn − ζ∥2 + αnρ

2 ∥xn+1 − ζ∥2

+αnρ∥xn+1 − ζ∥2 + 2αn⟨f(ζ)− ζ, xn+1 − ζ⟩

= (1−αn)k2n+3ραn

2 ∥xn+1 − ζ∥2 + (1−αn)k2n+αnρ
2 ∥xn − ζ∥2 + 2αn⟨f(ζ)− ζ, xn+1 − ζ⟩

Then, it follows that

[1− (1−αn)k2n+3ραn

2 ]∥xn+1 − ζ∥2 ≤ (1−αn)k2n+αnρ
2 ∥xn − ζ∥2 + 2αn⟨f(ζ)− ζ, xn+1 − ζ⟩

that is ∥xn+1 − ζ∥2 ≤ (1−αn)k2n+αnρ
2−(1−αn)k2n−3ραn

∥xn − ζ∥2 + 2αn
2−(1−αn)k2n−3ραn

⟨f(ζ)− ζ, xn+1 − ζ⟩,

It follows from remark 3.1, that
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∥xn+1 − ζ∥2 ≤ 1+(k2n−1)−αn(k2n−ρ)
2−(1−αn)k2n−3ραn

∥xn − ζ∥2 + 2αn
2−(1−αn)k2n−3ραn

⟨f(ζ)− ζ, xn+1 − ζ⟩

≤ 1+2εαn−αn(1−ρ)
1+αn(1−3ρ−2ε) ∥xn − ζ∥2 + 2αn

1+αn(1−3ρ−2ε)⟨f(ζ)− ζ, xn+1 − ζ⟩

≤ 1−αn(1−ρ−2ε)
1+αn(1−3ρ−2ε)∥xn − ζ∥2 + 2αn

1+αn(1−3ρ−2ε)⟨f(ζ)− ζ, xn+1 − ζ⟩.

= (1− 2αn(1−2ρ−2ε)
1+αn(1−3ρ−2ε))∥xn − ζ∥2 + 2αn

1+αn(1−3ρ−2ε)⟨f(ζ)− ζ, xn+1 − ζ⟩.

Now, take γn = 2αn(1−2ρ−2ε)
1+αn(1−3ρ−2ε) and δn = 2αn

1+αn(1−3ρ−2ε)⟨f(ζ) − ζ, xn+1 − ζ⟩. The conditions (C1), (C2) and lemma
3.1 implies that

limsup
δn
γn

= limsup
1

1− 2ρ− 2ε
⟨f(ζ)− ζ, xn+1 − ζ⟩ ≤ 0.

lemma 2.4 implies that xn → ζ.

5 Numerical Examples.
In this section we provide some numerical examples to show the genuineness of algorithm 3.1. With the help of
MATLAB R2018a, we show the convergence by tables and figures. The computing environment wasWindows 8.1
run on an Intel Core i7-4790 (3.6 GHz, 4 cores) and 16 GB of memory space.

Example 5.1. Let C = [1, 10] be a subset of real Hilbert space R with the usual inner product and define the
mapping T, f : C → C as follows

T (x) =
3
√

x2 + 4, f(x) =
1

2
cos(cosx),

for all x ∈ C. Further, f is contraction mapping with constant ρ = 1
2 and T is a asymptotically nonexpansive

mapping with kn = 1. The function g(x) = 3
√
x2 + 4− x for any x ∈ C = [1, 10] is decreasing. In fact, we have

´g(x) =
1

3
(2x)(

1
3
√
(x2 + 4)2

) ≤ 1,

then, ´g(x) ≤ 0.
Let x, y ∈ C = [1, 10]with x ≤ y, then we obtain

3
√
y2 + 4− y ≤ 3

√
x2 + 4− x

3
√
y2 + 4− 3

√
x2 + 4 ≤ y − x

| 3
√

y2 + 4− 3
√
x2 + 4| ≤ |y − x|

| 3
√

y2 + 4− 3
√
x2 + 4| ≤ |x− y|

|T (x)− T (y)| ≤ |x− y|.

It is easy to observe that F(T ) = {2}. We can choose αn = 1
n which satisfies the conditions (C1) − (C4) in
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algorithm 3.1. With the help of MATLAB R2018a, we show the convergence by table and figure.

Iterate x1 = 1 x1 = 5 x1 = 10

x2 0.142857142857143 0.714285714285714 0.124997760122152

x3 0.873995661837622 0.939983750444318 0.872310213289880

x4 1.236484416136780 1.245624445375212 1.186138164552595

x5 1.428973610675769 1.430398457897879 1.365276575402056

x6 1.544884181586953 1.545120708328902 1.480704759551207

x7 1.621731338223615 1.621772107096926 1.560984260262761

x8 1.676333575769409 1.676340780057918 1.619924844666935

x9 1.717128841818699 1.717130137628625 1.664986103804991

x10 1.748773355270465 1.748773591450231 1.700532318356288

x11 1.774040144430866 1.774040187923104 1.729279303793315

x12 1.794683299811890 1.794683307887089 1.753002487038575

x13 1.811866932807423 1.811866934316869 1.772910228093960

x14 1.826394224855754 1.826394225139493 1.789852915711087

x15 1.838837378088730 1.838837378142320 1.804446121619310

x16 1.849615144992518 1.849615145002681 1.817146284404758

· · · · · · · · · · · ·
· · · · · · · · · · · ·
x96 1.976554614105112 1.9765546143567112 1.976554614105112

x97 1.976796402196547 1.976796402196547 1.976796402196547

x98 1.977033254105798 1.977033254105798 1.977033254105798

x99 1.977033254105798 1.977033254105798 1.977033254105798

x100 1.977492741929410 1.977492741929410 1.977492741929410

Figure 1: The graph and table of {xn} with different initial value .
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Example 5.2. Let f : C → C be a contraction mapping defined by f(x) = x − 1 + 1
ex for all x ∈ C. The C, T

and αn be described as in example 5.1. Figure 1 shows that our iteration reaches fixed point at the 35th step.

Iterate x1 = 3 x1 = 5 x1 = 10

x2 1.240056477975282 3.035978205657063 8.000246789153852

x3 1.120585128352988 1.836868264895283 4.317597686883846

x4 1.355010885207149 1.562694821784070 2.472752464969403

x5 1.540856061768960 1.595554719680772 1.863115949711970

x6 1.657665616022218 1.671553239001246 1.741723030659494

x7 1.730476676834236 1.733914969299496 1.751426104001809

x8 1.778175093274885 1.779008446773090 1.783260555044720

x9 1.811383620670047 1.811581954777809 1.812594366476930

x10 1.835785725863641 1.835832200041403 1.836069454084732

x11 1.854499703777869 1.854510450354877 1.854565313616684

x12 1.869330934476699 1.869333391459781 1.869345934874736

x13 1.881388597297889 1.881389153571834 1.881391993470375

x14 1.891391927950045 1.891392052828745 1.891392690361614

x15 1.899828885716883 1.899828913543565 1.899829055604828

x16 1.907042982024361 1.907042988184493 1.907043019633308

· · · · · · · · · · · ·
· · · · · · · · · · · ·
x96 1.986347367976860 1.986347367976860 1.986347367976860

x97 1.986489594012439 1.986489594012439 1.986489594012439

x98 1.986628887104372 1.986628887104372 1.977033254105798

x99 1.986765337056956 1.986765337056956 1.986765337056956

x100 1.986899030044945 1.986899030044945 1.986899030044945

Figure 2: The graph and table of {xn} with different initial value .
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Example 5.3. LetR be the real line with usual norm ∥.∥ andC = [−1, 1]. Define the map T : C → C as follows:

Tx =

{
−2sinx

2 , x ∈ [0, 1]

2sinx
2 , x ∈ [−1, 0)

For any x, y ∈ [0, 1] or x, y ∈ [−1, 0), we have

∥Tx− Ty∥ = 2|sinx
2 − siny

2 | ≤ |x− y|.

Also, if x ∈ [0, 1] and y ∈ [−1, 0) or x ∈ [−1, 0) and y ∈ [0, 1], then we have

∥Tx− Ty∥ = 2|sinx
2 + siny

2 | = 4|sinx+y
4 cosx−y

4 | ≤ |x+ y| ≤ |x− y|

This implies that T is a asymptotically nonexpansivemappingwith kn = 1. It is easy to observe that F(T ) = {0}.
We can choose f(x) = 1

4x as a contraction mapping with constant ρ = 1
4 and αn = 1

n which satisfies the condi-
tions (C1)− (C4) in algorithm 3.1.

Iterate x1 = 0.2 x1 = −.03

x2 0.028571428571429 −0.042857142857143

x3 0.000065572997730 −0.003070901681365

x4 0.000001661017372 −0.000153089380610

x5 0.000000030478528 −0.000006013282726

x6 0.000000000419005 −0.000000198666311

x7 0.000000000004394 −0.000000005745093

x8 0.000000000000035 −0.000000000149348

x9 0.000000000000000 −0.000000000003557

x10 0.000000000000000 −0.000000000000079

x11 0.000000000000000 −0.000000000000002

x12 0.000000000000000 0.0000000000000000
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Figure 3: The graph and table of {xn} with different initial value .
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