

Hyper Wiener Index and Connectivity Index of a Fuzzy Graph

Irfan Nazeer*^a* , Ismat Beg*b,[∗]* , Tabasam, Rashid*^a*

^aUniversity of Management and Technology, Lahore-54770, Pakistan. b lahore School of Economics, Lahore 53200, Pakistan.

1 Introduction

The idea of Fuzzy graphs (*F Gs*) was introduced by Rosenfeld [12] after the landmark work of Zadeh's [16]. The idea of *F Gs* was separately studied by Yeh and Bang [15]. The relevant literature of graphs and *F Gs* can be seen in [6, 10, 13].

Bhutani and Rosenfeld [2, 3] gave an idea of strong arcs and fuzzy end nodes. Mathew and Sunitha [9] classified arcs of a *FG* as an α *− strong*, β *− strong* and δ − edge.

In [14] Wiener index (*W I*) was first investigated by Harold Wiener when he was studying about the boiling point of paraffin. It is a topological index and important from an application point of view.

Mathew and Jicy [7] introduced different concepts for weighted graphs like Connectivity index (*CI*) and *W I*. Binu et al. [4] further investigated *CI* of *F Gs*. *HW I* of graph operations discussed by Khalifeh and Ashrafi [8]. It is the distance-dependent graph invariants. *HW I* is used for the structure descriptor of organic compounds. It is the generalization of *W I* introduced by Randic [11]. Construction of this paper is as follows: Section 1 contains some basic notations and terminologies of *F Gs* which are required to understand the *HW I* of *F Gs*. Definition of *HW I* of *F G* and its subgraph with an example is in section 2. A relationship between *HW I* and *CI* of *F G* is obtained in section 3. Section 4 describes *HW I* of edge deleted fuzzy subgraphs (*F Ss*).

Below we give some basic definitions from $[4, 5]$.

Let *M* be a set. A pair $G = (\kappa, \omega)$ is a FG, where κ and ω are fuzzy subsets of M and $M \times M$ respectively such that $\omega(l,m) \leq \kappa(l) \wedge \kappa(m)$. The underlying graph of $G = (\kappa, \omega)$ is expressed by $G^* = (\kappa^*, \omega^*)$, where $\kappa^* = \{v \in M | \kappa(v) > 0\}$ and $\omega^* = \{(u, v) \in M \times M | \omega(u, v) > 0\}$. Here minimum is represented by \wedge . We denote an element (l, m) of ω called an edge of *G* by *lm*. Vertices of *G* are represented by κ .

A graph H is called a FS of G if $\rho(l) = \kappa(l) \forall l \in \rho$ and $\tau(lm) = \omega(lm) \forall lm \in \tau$. A path P of length t in a graph G is a sequence of distinct nodes $p_0, p_1, p_2, ..., p_t$, where $\omega(p_{i-1}p_i) > 0$ for $i = 1, 2, ..., t$. If $\omega(xy) = \wedge \{\omega(xy) | \omega(xy) > 0\}$ then this type of edge is weakest edge and the membership value of the weakest edge is called the strength of the path *P*. A FG is connected if strength of connectedness $(u,v)>0$ for all $u,v\in\kappa^*$. A connected $FG,G=(\kappa,\omega)$ is said to be a fuzzy tree (*FT*) if it has a spanning fuzzy subgraph $E = (\rho, \tau)$ which is a tree, where $\forall \, lm$ not in E , \exists a path from *l* to *m* in *E*, whose strength is $> \omega(lm)$.

The strength of connectedness between two nodes *l* and *m* is the greatest of strengths of all paths between *l* and *m*. It is denoted by $CONN_G(l,m)$. *P* is said to be strongest $l - m$ path if the strength of path $P = CONN_G(l,m)$. An edge lm of FG is said to be α – strong if $\omega(lm) > CONN_{G-lm}(l,m)$. An edge lm of FG is said to be β – strong if $\omega(lm) = CONN_{G-lm}(l,m)$. An edge lm of FG is said to be $\delta - edge$ if $\omega(lm) < CONN_{G-lm}(l,m)$. An $\alpha - strong$ or *β − strong* edge is said to be strong edge. If all edges of a path *P* are strong then this type of path is said to be strong path. A $FG,$ G is said to be complete if \forall l,m \in $\kappa^*,$ $\omega(lm)$ $=$ $\kappa(l)$ \wedge $\kappa(m).$ A geodesic in a $FG,$ G is a strong path *P* from *l* to *m* if there is no shorter strong path from *l* to *m*. The sum of membership values of all arcs in the shortest path is called weight of a geodesic. In a graph *G* a geodesic is a path of minimum length. A graph *G* is said to be *r − regular* if all of its vertices have degree *r*.

Proposition 1.1. $\left[4\right]A$ complete FG , G does not contains δ – edges.

Proposition 1.2. [4] If $H = (\rho, \tau)$ is a FS of G, then $CONN_H(l,m) \leq CONN_G(l,m)$ for any two $l,m \in \rho^*.$

Connectivity is the most important notion in *F Gs*. We check stability of a *F G* by finding the strength of connectedness between each pair of its vertices.

Definition 1.1. *[4] Consider G be a F G. The formula to calculate CI*(*G*) *is given by*

 $CI(G) = \sum_{l,m \in \kappa^*} \kappa(l) \kappa(m) \text{CONN}_G(l,m)$ *where* $CONN_G(l, m)$ *shows connectedness strength of l and m*.

Definition 1.2. *[7] Consider G be a graph. The distance* $d(l, m)$ *between two vertices* $l, m \in V(G)$ *is the minimum number of edges in a path between l and m in G.*

Example 1.1. Consider G be FG with $\kappa^* = \{l, m, n\}$ such that $\kappa^*(l) = \kappa^*(m) = \kappa^*(n) = 1$ and having all strong *edges.* $\omega(lm) = 0.3$, $\omega(ln) = 0.3$ and $\omega(mn) = 0.3$. The membership values of edges are called weights of edges. *There are two paths between l and m which are*

1. $l - m = 0.3$

2. $l - n - m = 0.3 + 0.3 = 0.6$

Here, l −*m is the shortest path and the minimum sum of weights of shortest path between l and m is* $d_s(l,m)$ *=* $min\{0.3, 0.6\} = 0.3$

2 Hyper Wiener index of fuzzy graph.

Now, in this section we are going to introduce *HW I* for *F Gs*. *HW I* is a generalization of *W I*. To calculate *HW I* of any FG we need to compute the $d_s(l,m)$ and $d_s^2(l,m)$ between every pair of vertices of FG . The formal definition of *HWI* of a *FG* is given below.

Definition 2.1. *Let* $G = (\kappa, \omega)$ *be a FG. To calculate HWI of FG the formula is as follows* $HWI(G) = \frac{1}{2} \sum_{l,m \in \kappa^*} [\kappa(l) \kappa(m) d_s(l,m) + \kappa(l) \kappa(m) d_s^2(l,m)]$

where $d_s(l, m)$ *is the minimum sum of weights of shortest path from <i>l* to *m. Also,* $\kappa(l)$ *and* $\kappa(m)$ *are the membership values of the vertices.*

Example 2.1. Consider G be a FG given in Figure 1 having all strong edges and $\kappa^* = \{e, f, g\}$; and $\kappa^*(e) =$ $\kappa^*(f) = \kappa^*(g) = 1$, $\omega(e f) = 0.5$, $\omega(eg) = 0.4$ and $\omega(fg) = 0.4$. The HWI of G is 0.935.

The *HWI* of a *FS*, $H = (\rho, \tau)$ of $G = (\kappa, \omega)$ need not be less than or equal to $HWI(G)$. It can be seen in next example

Example 2.2. Consider H be a FS of G given in Figure 2 and $\rho^* = \{e, f, g\}$; and $\rho^*(e) = \rho^*(f) = \rho^*(g) = 1$, $\tau(ef) = 0.5, \tau(eg) = 0$ *and* $\tau(fg) = 0.4$ *. The HWI* of *H* is $1.51 > HWI(G) = 0.935$ *.*

Theorem 2.1. Let $G = (\kappa, \omega)$ and $G' = (\kappa', \omega')$ be isomorphic FGs, then $HWI(G) = HWI(G')$.

Proof. Let $G = (\kappa, \omega)$ and $G' = (\kappa', \omega')$ be two isomorphic FGs. Then \exists a bijective map t from κ^* to κ'^* such that for any $u \in \kappa^*$ and for any $yz \in \omega^*$, $\kappa(u) = \kappa'(t(u))$ and $\omega(yz) = \omega'(t(y)t(z))$. For $y, z \in \kappa^*$, let $P_{y,z}$ be the path which serves $d_s(y, z) + d_s^2(y, z)$. Corresponding to each edge $pq \in P_{y, z}$, there corresponds an edge $t(p)t(q)$ in *G'* such that $\omega(pq) = \omega'(t(p)t(q))$. Therefore, we can directly say that corresponding to the path $P_{y,z} \in G$, \exists a path $P'_{t(x),t(y)}\in G'$ such that the sum and sum of squares of membership values of arcs of P' is weakest among all geodesics from $t(p)$ to $t(q)$. Therefore, $d_s(y, z) + d_s^2(y, z) = d_s(t(y), t(z)) + d_s^2(t(y), t(z))$. Hence $HWI(G) = \frac{1}{2} \sum_{y,z \in \kappa^*} [\kappa(y) \kappa(z) d_s(y,z) + \kappa(y) \kappa(z) d_s^2(y,z)]$ $=\frac{1}{2}\sum_{t(y),t(z)\in \kappa'^{*}}[\kappa' t(y)\kappa' t(z)d_{s}(t(y),t(z)) + \kappa' t(y)\kappa' t(z)d_{s}^{2}(t(y),t(z))$

 $= HWI(G')$

\Box

3 Hyper Wiener index and connectivity index of a fuzzy graph.

In this section a connection between *HWI* and *CI* is provided. In some FGs , the $HWI(G) < CI(G)$ while in some FGs , the $HWI(G) > CI(G)$ but $HWI(G)$ cannot be equal to $CI(G)$. It can be seen in coming examples.

Proposition 3.1. Let G be a complete r-regular FG with $|\kappa^*| \geq 3$ and $\kappa(a) \leq \kappa(b) \leq \kappa(c)$. Then $CI(G) >$ $HWI(G)$.

Example 3.2. *Consider G be a 2-regular complete F G given in Figure 4 having all strong edges with κ ∗* = $\{e,f,g\}$; and $\kappa^*(e)=0.5<\kappa^*(f)=0.6<\kappa^*(g)=0.7$ and $\omega(ef)=0.5, \omega(fg)=0.5, \omega(eg)=0.6.$ The HWI of G *is* 0.445 *while CI* of *G is* 0.577 *which is greater than* $HWI(G)$ *.*

Theorem 3.1. Let G be a FT having $| \kappa^* | \geq 3$. Then $HWI(G) > CI(G)$.

Proof. Consider a *FT* with $| \kappa^* | \geq 3$. There exists a single strong path *P* joining every pair of nodes which is also the single strongest path in a fuzzy tree. For any $l, m \in \kappa^*$, $\frac{d_s(l,m)+d_s^2(l,m)}{2}$ $\frac{a_{\overline{s}}(l,m)}{2}$ is the average sum and sum of squares of all membership values in the single strongest path *P* joining *l* and *m* on the other side $CONN_G(l,m)$ is value of the weakest arc of *P*. This implies $CONN_G(l,m) < \frac{d_s(l,m)+d_s^2(l,m)}{2}$ $\frac{a^2 + a^2 s^2 (l,m)}{2}$. Thus for

 $\frac{1}{2}\Sigma_{l,m\in\kappa^*}[\kappa(l)\kappa(m)d_s(l,m)+\kappa(l)\kappa(m)d_s^2(l,m)] > \Sigma_{l,m\in\kappa^*}\kappa(l)\kappa(m)CONN_G(l,m),$ we have $HWI(G) > CI(G)$. \Box

Example 3.3. *Assume G is a fuzzy tree given in Figure 5 having all strong edges with κ ∗* = *{e, f, g, h}; and* $\kappa^*(e) = 0.5, \kappa^*(f) = 0.4, \kappa^*(g) = 0.3$ and $\kappa^*(h) = 0.5$; $\omega(e f) = 0.4, \omega(f g) = 0.3, \omega(gh) = 0.3$ The HWI of G is 0.513 *while CI* of *G* is 0.341 *which* is less than $HWI(G)$.

Figure 7: HWI of an α -strong arc deleted FG

4 Hyper Wiener indices of arc deleted fuzzy subgraphs.

Many connectivity parameters have low values for the arc removing subgraphs of a *F G*. The *HW I* of a *F G* can be increased or decreased by deleting of a strong arc.

Example 4.1. Consider G be a FG given in Figure 6 having $\kappa^*=\{e,f,g,h\}$; with $\omega(eg)=0.8$ is an α - strong edge; $\omega(ef) = 0.4$, $\omega(fg) = 0.4$, $\omega(gh) = 0.4$ are β - strong edges and $\kappa^*(e) = \kappa^*(f) = \kappa^*(g) = \kappa^*(h) = 1$. Then $HWI(G) = HWI(G - eg) = 3.6$, $HWI(G - ef) = 4.64 > HWI(G)$, $HWI(G - fg) = 6 > HWI(G)$ and $HW I(G - ch) = 1.28 < HW I(G)$.

Proposition 4.1. *Let G be a FG having all edges are* α *- strong and* β *- strong with all* β *- strong edges have equal membership values. Then* $HWI(G) = HWI(G - \alpha)$ *strong - edge.*

Proof. Let *G* be a *FG* having an α - strong edge and remaining edges are β - strong having equal membership $\mathsf{values. Therefore, } \omega^*(lm) = d_s(l,m). \text{ Thus } HWI(G) = HWI(G-lm).$ \Box

Example 4.2. Consider G be a FG given in Figure 7 having $\kappa^* = \{e, f, g\}$; with $\omega(eg) = 0.7$ is an α - strong edge;

 $\omega(ef)=0.3, \omega(fg)=0.3$ are β - strong edges having equal membership values and $\kappa^*(e)=\kappa^*(f)=\kappa^*(g)=1.$ *Then* $HWI(G) = (G - eg) = 0.87$.

5 Conclusion.

Connectivity parameters are very useful to measure connectedness of *F Gs*. *HW I* of *F Gs* and its related results are discussed in this paper. We explained the *HW I* of vertex and arc deleted subgraphs. A link between *CI* and *HW I* is also obtained. For a future work, the different characteristics of topological indices ideas can be transformed from crisp theory to fuzzy theory.

References

- $\lceil 1 \rceil$
- [2] K. R. Bhutani and A. Rosenfeld, Strong arcs in fuzzy graphs, Inf. Sci. 152(2003) 319 322.
- [3] K. R. Bhutani and A. Rosenfeld, Fuzzy end nodes in fuzzy graphs, Inf. Sci. 152(2003) 323 326.
- [4] M. Binu, S. Mathew and J. N. Mordeson, Connectivity index of a fuzzy graph and its application to human trafficking, Fuzzy Sets Syst. 360(2019) 117 - 136.
- [5] M. Binu, S. Mathew and J. N. Mordeson, Wiener index of a fuzzy graph and application to illegal immigration networks, Fuzzy Sets Syst. 384(2020) 132 - 147.
- [6] R. Diestel, Graph Theory, Springer Verlag, New York, 2000.
- [7] N. Jicy and S. Mathew, Some new connectivity parameters for weighted graphs, J. Uncertain. Math. Sci. (2014) 1 - 9.
- [8] M. H. Khalifeh, H. Yousefi Azari and A. R. Ashrafi, The Hyper Wiener index of graph operations, Comput. Math. Appl. 56(2008) 1402 - 1407.
- [9] S. Mathew and M. S. Sunitha, Types a arcs in a fuzzy graph, Inf. Sci. 179(11)(2009) 1760 1768.
- [10] S. Mathew, J. N. Mordeson and D. Malik, Fuzzy Graph Theory, Springer, 2018.
- [11] M. Randic, Novel molecular descriptor for structure—property studies, Chemical Physics Letters, 211 (10) (1993) 478 – 483.
- [12] A. Rosenfeld, Fuzzy graphs, in: L. A. Zadeh, K. S. Fu, M. Shimura(Eds.), Fuzzy sets and their applications, Academic Press, New York, 1975, pp. 77 - 95.
- [13] S. Samanta and M. Pal, Fuzzy planner graphs, IEEE Trans. Fuzzy Syst. 23(6)(2015) 1936 1942.
- [14] H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc 69(1947) 17 20.
- [15] R. T. Yeh and S. Y. Bang, Fuzzy relations, fuzzy graphs and their applications to clustering analysis, in: L. A. Zadeh, K. S. Fu, M. Shimura(Eds.), Fuzzy sets and their Applications, Academic Press, 1975, pp. 125 - 149.
- [16] L. A. Zadeh, Fuzzy sets, Inf. Control 8(1965) 338 353.