

Upper Bounds for 2-Restrained Domination Number of GP(n, 2)

M. Ghanbari^{*a*,*} and M. Jalinoosi^{*b*}

^a Department of Mathematics, Farahan Branch, Islamic Azad University, Farahan, Iran. ^bDepartment of Mathematics, University of Qom, Qom, Iran.

Article Info	Abstract
Keywords	Ghanbari and Mojdeh [3] initiated the concept of restrained 2-rainbow domination in graphs.
Generalized Petersen graphs	In this paper is given upper bounds for 2-restrained domination number of a particular case
2-Rainbow Domination	of generalized Petersen graphs.
Article History	
RECEIVED: 2022 JUNE 14	
Accepted:2022 October 23	

1 Introduction and Preliminary

Throughout this paper, we consider G as a finite simple graph with vertex set V(G) and edge set E(G). We use cf. [5] as a reference for terminology and notation which are not explicitly defined here.

For a graph G = (V(G), E(G)), a set $S \subseteq V(G)$ is called a *dominating set* if every vertex not in S has a neighbor in S cf. [4] .The *domination number* $\gamma(G)$ of G is the minimum cardinality among all dominating sets of G. Let G be a graph and $v \in V(G)$. The open neighborhood of v is the set $N(v) = \{u \in V(G) | uv \in E(G)\}$, and its closed neighborhood is the set $N[v] = N(v) \cup v$. Let f be a function that assigns to each vertex a set of colors chosen from the set $\{1, ..., k\}$; that is, $f : V(G) \to P(\{1, ..., k\})$. If for each vertex $v \in V(G)$ such that $f(v) = \emptyset$ we have $\bigcup_{u \in N(v)} f(u) = \{1, ..., k\}$, then f is called a *k*-rainbow dominating function (kRDF) of G cf. [1] and [2]. The weight, $\omega(f)$, of a function f is defined as $\omega(f) = \sum_{v \in V(G)} |f(v)|$. Given a graph G, the minimum weight of a kRDF is called the *k*-rainbow domination number of G, which we denote by $\gamma_{rk}(G)$. Ghanbari and Mojdeh [3] initiated the concept of restrained 2- rainbow domination in graphs.

Let f be a function that assigns to each vertex a set of colors chosen from the set $\{1,2\}$; that is, $f : V(G) \to P(\{1,2\})$. If for each vertex $v \in V(G)$, such that $f(v) = \emptyset$ we have $\bigcup_{u \in N(v)} f(u) = \{1,2\}$, and v is adjacent to a vertex $w \in V(G)$ such that $f(w) = \emptyset$ then f is called a *restrained 2-rainbow dominating function* (R2RDF) of G. The weight, $\omega(f)$, of a function f is defined as $\omega(f) = \sum_{v \in V(G)} |f(v)|$. Given a graph G, the minimum weight of a R2RDF is called the *restrained 2-rainbow domination number of G*, which we denote by $\gamma_{rr2}(G)$.

2 Main Result

Let $n \ge 3$ and k be relatively prime natural numbers and k < n. The generalized Petersen graph GP(n,k) is defined as follows. Let C_n , C'_n be two disjoint cycles of length n. Let the vertices of C_n be $u_1, ..., u_n$ and edges $u_i u_{i+1}$ for i = 1, ..., n - 1 and $u_n u_1$.

^{*} Corresponding Author's E-mail: ghanbari543@yahoo.com(M. Ghanbari)

Let the vertices of C'_n be $v_1, ..., v_n$ and edges $v_i v_{i+k}$ for i = 1, ..., n, the sum i+k being taken modulo n (throughout this section). The graph GP(n, k) is obtained from the union of C_n and C'_n by adding the edges $u_i v_i$ for i = 1, ..., n. Its obvious that GP(n, k) = GP(n, n - k). The graph GP(5, 2) or GP(5, 3) is the well-known Petersen graph.

Theorem 2.1. For $n \ge 5$

(a) If $n \equiv 0 \pmod{5}$, the inequality $\gamma_{rr2}(GP(n,2)) = \gamma_{rr2}(GP(n,n-2)) \leq \frac{4n}{5} + 2$ is satisfied. (b) If $n \equiv 1 \pmod{5}$, the inequality $\gamma_{rr2}(GP(n,2)) = \gamma_{rr2}(GP(n,n-2)) \leq 4\lfloor\frac{n}{5}\rfloor + 2$ is satisfied. (c) If $n \equiv 2 \pmod{5}$, the inequality $\gamma_{rr2}(GP(n,2)) = \gamma_{rr2}(GP(n,n-2)) \leq 4(\lfloor\frac{n}{5}\rfloor + 1)$ is satisfied. (d) If $n \equiv 3 \pmod{5}$, the inequality $\gamma_{rr2}(GP(n,2)) = \gamma_{rr2}(GP(n,n-2)) \leq 4(\lfloor\frac{n}{5}\rfloor + \frac{3}{2})$ is satisfied. (e) If $n \equiv 4 \pmod{5}$, the inequality $\gamma_{rr2}(GP(n,2)) = \gamma_{rr2}(GP(n,n-2)) \leq 4(\lfloor\frac{n}{5}\rfloor + \frac{3}{2})$ is satisfied.

Proof. We use the following partition of V(GP(n, 2)):

$$V(GP(n,2)) = \{U_{5k}, U_{5k-1}, U_{5k-2}, U_{5k-3}, U_{5k-4}, V_{5k}, V_{5k-1}, V_{5k-2}, V_{5k-3}, V_{5k-4}\}$$

such that

 $U_{5k} = \{u_{5k}, k = 1, 2, \cdots\}, U_{5k-1} = \{u_{5k-1}, k = 1, 2, \cdots\}, U_{5k-2} = \{u_{5k-2}, k = 1, 2, \cdots\}, U_{5k-3} = \{u_{5k-3}, k = 1, 2, \cdots\}, U_{5k-4} = \{u_{5k-4}, k = 1, 2, \cdots\}, V_{5k} = \{u_{5k}, k = 1, 2, \cdots\}, V_{5k-1} = \{u_{5k-1}, k = 1, 2, \cdots\}, V_{5k-2} = \{u_{5k-2}, k = 1, 2, \cdots\}, V_{5k-3} = \{u_{5k-3}, k = 1, 2, \cdots\}, V_{5k-4} = \{u_{5k-4}, k = 1, 2, \cdots\} \text{ and all of indices are taken modulo n.}$

(a) If $n \equiv 0 \pmod{5}$, we use the following algorithm and define the function f on GP(n, 2):

step 1) $f(u_{5k}) = f(u_{5k-1}) = f(u_{5k-3}) = \emptyset, k = 1, 2, \cdots$.

step 2) $f(v_{5k-2}) = f(v_{5k-3}) = f(v_{5k-4}) = \emptyset, k = 1, 2, \cdots$.

step 3) If k ia an odd number, then $f(u_{5k-4}) = \{1\}, k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{2\}, k = 1, 2, \cdots$ but $f(u_1) = \{1, 2\}$. step 4) If k ia an even number, then $f(u_{5k-4}) = \{2\}, k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{1\}, k = 1, 2, \cdots$.

step 4) If k is an odd number, then $f(u_{5k-4}) = \{2\}, k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{1\}, k = 1, 2, \dots$

step 5) If k ia an odd number, then $f(v_{5k-1}) = f(v_{5k}) = \{1\}, k = 1, 2, \cdots$ but $f(u_n) = \{1, 2\}$.

step 6) If k ia an even number, then $f(v_{5k-1}) = f(v_{5k}) = \{2\}, k = 1, 2, \cdots$.

Now we claim that f is a R2RDF on GP(n, 2) and $\gamma_{rr2}(GP(n, 2)) = \gamma_{rr2}(GP(n, n-2)) \leq \frac{4n}{5} + 2$.

Firstly if there exists the vertex w of GP(n, 2), such that $f(w) = \emptyset$, in according definition of f (steps 1 and 2), w is a member of $U_{5k} \bigcup U_{5k-1} \bigcup U_{5k-3} \bigcup V_{5k-2} \bigcup V_{5k-3} \bigcup V_{5k-4}$. In other hand u_{5k} is adjacent to u_{5k-1} , u_{5k-3} is adjacent to v_{5k-3} and v_{5k-2} is adjacent to v_{5k-4} . Therefore w is adjacent to a vertex z and $f(z) = \emptyset$. Now if w is a vertex of GP(n, 2) and $f(w) = \emptyset$, then the following cases has happened.

Case 1) There exist a positive integer k such that $w = u_{5k}$. If $w = u_n$, its obvious that w is adjacent to u_1 and $f(u_1) = \{1, 2\}$ otherwise w is adjacent to u_{5k-1} , $u_{5k+1} = u_{5(k+1)-4}$ and v_{5k} . If k is an odd number, according to step 1, step 4 and step 5, $f(u_{5k-1}) = \emptyset$, $f(u_{5k+1}) = \{2\}$ and $f(v_{5k}) = \{1\}$ respectively. If k is an even number, according to step 1, step 3 and step 6, $f(u_{5k-1}) = \emptyset$, $f(u_{5k+1}) = \{1\}$ and $f(v_{5k}) = \{2\}$ respectively. Note that $f(v_n) = \{1, 2\}$.

Case 2) There exist a positive integer k such that $w = u_{5k-1}$. Then w is adjacent to u_{5k-2} , v_{5k-1} and u_{5k} . If k is an odd number, according to step 1, step 3 and step 5, $f(u_{5k}) = \emptyset$, $f(u_{5k-2}) = \{2\}$ and $f(v_{5k-1}) = \{1\}$ respectively. If k is an even number, according to step 1, step 4 and step 6, $f(u_{5k}) = \emptyset$, $f(u_{5k-2}) = \{1\}$ and $f(v_{5k-1}) = \{2\}$ respectively.

Case 3) There exist a positive integer k such that $w = u_{5k-3}$. Then w is adjacent to u_{5k-4} , u_{5k-2} and v_{5k-3} . If k is an odd number, according to step 2 and step 3, $f(v_{5k-3}) = \emptyset$ and $f(u_{5k-2}) = \{2\}$ and $f(u_{5k-4}) = \{1\}$. If k is an

even number, according to step 2 and step 4, $f(v_{5k-3}) = \emptyset$, $f(u_{5k-2}) = \{1\}$ and $f(u_{5k-4}) = \{2\}$.

Case 4) There exist a positive integer k such that $w = v_{5k-2}$. Then w is adjacent to v_{5k-4} , u_{5k-2} and u_{5k} . If k is an odd number, according to step 2, step 3 and step 5, $f(v_{5k-4}) = \emptyset$ and $f(u_{5k-2}) = \{2\}$ and $f(v_{5k}) = \{1\}$ respectively. If k is an even number, according to step 2, step 4 and step 6, $f(v_{5k-4}) = \emptyset$ and $f(u_{5k-2}) = \{1\}$ and $f(v_{5k}) = \{2\}$ respectively.

Case 5) There exist a positive integer k such that $w = v_{5k-3}$. If $w = v_2$, its obvious that w is adjacent to v_n and $f(v_n) = \{1, 2\}$ otherwise w is adjacent to u_{5k-3} , v_{5k-1} and $v_{5(k-1)}$. If k > 1 is an odd number, according to step 1, step 5 and step 6, $f(u_{5k-3}) = \emptyset$ and $f(v_{5(k-1)}) = \{2\}$ and $f(v_{5k-1}) = \{1\}$ respectively. If k is an even number, according to step 1, step 5 and step 6, $f(u_{5k-3}) = \emptyset$ and $f(v_{5(k-1)}) = \{1\}$ and $f(v_{5k-1}) = \{1\}$ respectively.

Case 6) There exist a positive integer k such that $w = v_{5k-4}$. If $w = v_1$, its obvious that w is adjacent to u_1 and $f(u_1) = \{1, 2\}$ otherwise w is adjacent to v_{5k-2} , $v_{5(k-1)-1}$ and u_{5k-4} . If k > 1 is an odd number, according to step 2, step 6 and step 3, $f(v_{5k-2}) = \emptyset$ and $f(v_{5(k-1)-1}) = \{2\}$ and $f(u_{5k-4}) = \{1\}$ respectively. If k is an even number, according to step 2, step 5 and step 4, $f(v_{5k-2}) = \emptyset$ and $f(v_{5(k-1)-1}) = \{1\}$ and $f(u_{5k-4}) = \{2\}$ respectively. Secondly since $n \equiv 0 \pmod{5}$, then

$$|U_{5k}| = |U_{5k-1}| = |U_{5k-2}| = |U_{5k-3}| = |U_{5k-4}| = |V_{5k}| = |V_{5k-1}| = |V_{5k-2}| = |V_{5k-3}| = |V_{5k-4}| = \lfloor \frac{n}{5} \rfloor$$

So

$$\omega(f) = |U_{5k-2}| + |U_{5k-4}| + |V_{5k}| + |V_{5k-1}| + 2 = \frac{4n}{5} + 2$$

(b) If $n \equiv 1 \pmod{5}$, we use the following algorithm and define the function f on GP(n, 2): step 1) $f(u_{5k}) = f(u_{5k-1}) = f(u_{5k-3}) = \emptyset, k = 1, 2, \cdots$. step 2) $f(v_{5k-2}) = f(v_{5k-3}) = f(v_{5k-4}) = \emptyset, k = 1, 2, \cdots$. step 3) If k ia an odd number, then $f(u_{5k-4}) = \{1\}, k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{2\}, k = 1, 2, \cdots$. step 4) If k ia an even number, then $f(u_{5k-4}) = \{2\}, k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{1\}, k = 1, 2, \cdots$. step 5) If k ia an odd number, then $f(v_{5k-1}) = f(v_{5k}) = \{1\}, k = 1, 2, \cdots$ but $f(v_4) = \{1, 2\}$. step 6) If k ia an even number, then $f(v_{5k-1}) = f(v_{5k}) = \{2\}, k = 1, 2, \cdots$.

Now similarly to proof of part (a) and a little changes, f is a R2RDF on GP(n, 2) and since $n \equiv 1 \pmod{5}$, then

$$|U_{5k}| = |U_{5k-1}| = |U_{5k-2}| = |U_{5k-3}| = |V_{5k}| = |V_{5k-1}| = |V_{5k-2}| = |V_{5k-3}| = \lfloor \frac{n}{5} \rfloor$$

and $|U_{5k-4}| = |V_{5k-4}| = \lfloor \frac{n}{5} \rfloor + 1$. So

$$\omega(f) = |U_{5k-2}| + |U_{5k-4}| + |V_{5k}| + |V_{5k-1}| + 1 = 4\lfloor \frac{n}{5} \rfloor + 2$$

(c) If $n \equiv 2(mod5)$, we use the following algorithm and define the function f on GP(n, 2): step 1) $f(u_{5k}) = f(u_{5k-1}) = f(u_{5k-3}) = \emptyset, k = 1, 2, \cdots$. step 2) $f(v_{5k-2}) = f(v_{5k-3}) = f(v_{5k-4}) = \emptyset, k = 1, 2, \cdots$. step 3) If k ia an odd number, then $f(u_{5k-4}) = \{1\}, k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{2\}, k = 1, 2, \cdots$ but $f(u_1) = \{1, 2\}$. step 4) If k ia an even number, then $f(u_{5k-4}) = \{2\}, k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{1\}, k = 1, 2, \cdots$.

step 5) If k ia an odd number, then $f(v_{5k-1}) = f(v_{5k}) = \{1\}, k = 1, 2, \cdots$ but $f(v_4) = \{1, 2\}$ and $f(v_{n-2}) = \{1, 2\}$. step 6) If k ia an even number, then $f(v_{5k-1}) = f(v_{5k}) = \{2\}, k = 1, 2, \cdots$.

2022, Vol.16, No.2

Now similarly to proof of part (a) and a little changes, f is a R2RDF on GP(n, 2) and since $n \equiv 2(mod5)$, then

$$|U_{5k}| = |U_{5k-1}| = |U_{5k-2}| = |V_{5k}| = |V_{5k-1}| = |V_{5k-2}| = \lfloor \frac{n}{5} \rfloor$$

and $|U_{5k-3}| = |U_{5k-4}| = |V_{5k-4}| = |V_{5k-3}| = \lfloor \frac{n}{5} \rfloor + 1$. So

$$\omega(f) = |U_{5k-2}| + |U_{5k-4}| + |V_{5k}| + |V_{5k-1}| + 3 = 4\lfloor \frac{n}{5} \rfloor + 4$$

(d) If $n \equiv 3(mod5)$, we use the following algorithm and define the function f on GP(n, 2): step 1) $f(u_{5k}) = f(u_{5k-1}) = f(u_{5k-3}) = \emptyset, k = 1, 2, \cdots$. step 2) $f(v_{5k-2}) = f(v_{5k-3}) = f(v_{5k-4}) = \emptyset, k = 1, 2, \cdots$.

step 3) If k ia an odd number, then $f(u_{5k-4}) = \{1\}, k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{2\}, k = 1, 2, \cdots$ but $f(u_1) = \{1, 2\}$ and $f(u_n) = \{1, 2\}$.

step 4) If k ia an even number, then $f(u_{5k-4}) = \{2\}, k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{1\}, k = 1, 2, \cdots$. step 5) If k ia an odd number, then $f(v_{5k-1}) = f(v_{5k}) = \{1\}, k = 1, 2, \cdots$ but $f(v_4) = \{1, 2\}$ and $f(v_{n-3}) = \{1, 2\}$. step 6) If k ia an even number, then $f(v_{5k-1}) = f(v_{5k}) = \{2\}, k = 1, 2, \cdots$.

Now similarly to proof of part (a) and a little changes, *f* is a R2RDF on GP(n, 2) and since $n \equiv 3(mod5)$, then

$$|U_{5k}| = |U_{5k-1}| = |V_{5k}| = |V_{5k-1}| = \lfloor \frac{n}{5} \rfloor$$

and $|U_{5k-4}| = |U_{5k-3}| = |U_{5k-2}| = |V_{5k-4}| = |V_{5k-3}| = |V_{5k-2}| = \lfloor \frac{n}{5} \rfloor + 1$. So

$$\omega(f) = |U_{5k-2}| + |U_{5k-4}| + |V_{5k}| + |V_{5k-1}| + 4 = 4\lfloor \frac{n}{5} \rfloor + 6$$

(e) If $n \equiv 4(mod5)$, we use the following algorithm and define the function f on GP(n, 2): step 1) $f(u_{5k}) = f(u_{5k-1}) = f(u_{5k-3}) = \emptyset, k = 1, 2, \cdots$ but $f(u_n) = \{1\}$. step 2) $f(v_{5k-2}) = f(v_{5k-3}) = f(v_{5k-4}) = \emptyset, k = 1, 2, \cdots$.

step 3) If k ia an odd number, then $f(u_{5k-4}) = \{1\}, k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{2\}, k = 1, 2, \cdots$ but $f(u_1) = \{1, 2\}$. step 4) If k ia an even number, then $f(u_{5k-4}) = \{2\}, k = 1, 2, \cdots$ and $f(u_{5k-2}) = \{1\}, k = 1, 2, \cdots$ but $f(u_{n-1}) = \{1, 2\}$.

step 5) If k ia an odd number, then $f(v_{5k-1}) = f(v_{5k}) = \{1\}, k = 1, 2, \cdots$.

step 6) If k ia an even number, then $f(v_{5k-1}) = f(v_{5k}) = \{2\}, k = 1, 2, \cdots$.

Now similarly to proof of part (a) and a little changes, f is a R2RDF on GP(n, 2) and since $n \equiv 4(mod5)$, then $|U_{5k}| = |V_{5k}| = \lfloor \frac{n}{5} \rfloor$ and

$$|U_{5k-4}| = |U_{5k-3}| = |U_{5k-2}| = |U_{5k-1}| = |V_{5k-4}| = |V_{5k-3}| = |V_{5k-2}| = |V_{5k-1}| = \lfloor \frac{n}{5} \rfloor + 1.$$

So

$$\omega(f) = |U_{5k-2}| + |U_{5k-4}| + |V_{5k}| + |V_{5k-1}| + 3 = 4\lfloor \frac{n}{5} \rfloor + 6.$$

References

- [1] B. Bresar, M.A. Henning, D.F. Rall, *Rainbow domination in graphs*, Taiwanese J. Math., to appear (March, 2008).
- [2] B. Bresar, T. K. Sumenjak, *Note On the 2-rainbow domination in graphs*, Discrete Applied Mathematics 155 , Elsevier (2007), 2394–2400.
- [3] M.ghanbari, D. A. Mojdeh, Restrained 2-rainbow domination of a graph, Submitted (2022).
- [4] T.W. Haynes, S.T. Hedetniemi, M. A. Henning, Fundamentals of Domination in Graphs, Speringer, (2021).
- [5] D.B. West, Introduction to Graph Theory (Second Edition), Prentice Hall, USA, 2001.