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Ghanbari andMojdeh [3] initiated the concept of restrained 2-rainbow domination in graphs.

In this paper is given upper bounds for 2-restrained domination number of a particular case

of generalized Petersen graphs.

1 Introduction and Preliminary
Throughout this paper, we consider G as a finite simple graph with vertex set V (G) and edge set E(G). We use cf.
[5] as a reference for terminology and notation which are not explicitly defined here.
For a graph G = (V (G), E(G)), a set S ⊆ V (G) is called a dominating set if every vertex not in S has a neighbor
in S cf. [4] .The domination number γ(G) of G is the minimum cardinality among all dominating sets of G. Let
G be a graph and v ∈ V (G). The open neighborhood of v is the set N(v) = {u ∈ V (G)|uv ∈ E(G)}, and its
closed neighborhood is the set N [v] = N(v) ∪ v. Let f be a function that assigns to each vertex a set of colors
chosen from the set {1, ..., k}; that is, f : V (G) → P ({1, ..., k}). If for each vertex v ∈ V (G) such that f(v) = ∅ we
have ∪u∈N(v)f(u) = {1, ..., k}, then f is called a k-rainbow dominating function (kRDF) of G cf. [1] and [2]. The
weight, ω(f), of a function f is defined as ω(f) = Σv∈V (G)|f(v)|. Given a graphG, the minimumweight of a kRDF
is called the k-rainbow domination number of G, which we denote by γrk(G). Ghanbari and Mojdeh [3] initiated
the concept of restrained 2- rainbow domination in graphs.
Let f be a function that assigns to each vertex a set of colors chosen from the set {1, 2}; that is, f : V (G) →
P ({1, 2}). If for each vertex v ∈ V (G), such that f(v) = ∅ we have ∪u∈N(v)f(u) = {1, 2}, and v is adjacent to a
vertex w ∈ V (G) such that f(w) = ∅ then f is called a restrained 2-rainbow dominating function (R2RDF) of G.
The weight, ω(f), of a function f is defined as ω(f) = Σv∈V (G)|f(v)|. Given a graph G, the minimum weight of a
R2RDF is called the restrained 2-rainbow domination number of G, which we denote by γrr2(G).

2 Main Result
Let n ≥ 3 and k be relatively prime natural numbers and k < n. The generalized Petersen graph GP (n, k) is
defined as follows. Let Cn, C ′

n be two disjoint cycles of length n. Let the vertices of Cn be u1, ..., un and edges
uiui+1 for i = 1, ..., n− 1 and unu1.
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Let the vertices ofC ′
n be v1, ..., vn and edges vivi+k for i = 1, ..., n, the sum i+k being takenmodulo n (through-

out this section). The graph GP (n, k) is obtained from the union of Cn and C ′
n by adding the edges uivi for

i = 1, ..., n. Its obvious that GP (n, k) = GP (n, n − k). The graph GP (5, 2) or GP (5, 3) is the well-known Pe-
tersen graph.

Theorem 2.1. For n ≥ 5

(a) If n ≡ 0(mod5), the inequality γrr2(GP (n, 2)) = γrr2(GP (n, n− 2)) ≤ 4n
5 + 2 is satisfied.

(b) If n ≡ 1(mod5), the inequality γrr2(GP (n, 2)) = γrr2(GP (n, n− 2)) ≤ 4⌊n5 ⌋+ 2 is satisfied.
(c) If n ≡ 2(mod5), the inequality γrr2(GP (n, 2)) = γrr2(GP (n, n− 2)) ≤ 4(⌊n5 ⌋+ 1) is satisfied.
(d) If n ≡ 3(mod5), the inequality γrr2(GP (n, 2)) = γrr2(GP (n, n− 2)) ≤ 4(⌊n5 ⌋+

3
2) is satisfied.

(e) If n ≡ 4(mod5), the inequality γrr2(GP (n, 2)) = γrr2(GP (n, n− 2)) ≤ 4(⌊n5 ⌋+
3
2) is satisfied.

Proof. We use the following partition of V (GP (n, 2)):

V (GP (n, 2)) = {U5k, U5k−1, U5k−2, U5k−3, U5k−4, V5k, V5k−1, V5k−2, V5k−3, V5k−4}

such that
U5k = {u5k, k = 1, 2, · · · }, U5k−1 = {u5k−1, k = 1, 2, · · · }, U5k−2 = {u5k−2, k = 1, 2, · · · }, U5k−3 = {u5k−3, k =

1, 2, · · · }, U5k−4 = {u5k−4, k = 1, 2, · · · }, V5k = {u5k, k = 1, 2, · · · }, V5k−1 = {u5k−1, k = 1, 2, · · · }, V5k−2 =

{u5k−2, k = 1, 2, · · · }, V5k−3 = {u5k−3, k = 1, 2, · · · }, V5k−4 = {u5k−4, k = 1, 2, · · · } and all of indices are taken
modulo n.
(a) If n ≡ 0(mod5), we use the following algorithm and define the function f on GP (n, 2):
step 1) f(u5k) = f(u5k−1) = f(u5k−3) = ∅, k = 1, 2, · · · .
step 2) f(v5k−2) = f(v5k−3) = f(v5k−4) = ∅, k = 1, 2, · · · .
step 3) If k ia an oddnumber, then f(u5k−4) = {1}, k = 1, 2, · · · and f(u5k−2) = {2}, k = 1, 2, · · · but f(u1) = {1, 2}.
step 4) If k ia an even number, then f(u5k−4) = {2}, k = 1, 2, · · · and f(u5k−2) = {1}, k = 1, 2, · · · .
step 5) If k ia an odd number, then f(v5k−1) = f(v5k) = {1}, k = 1, 2, · · · but f(un) = {1, 2}.
step 6) If k ia an even number, then f(v5k−1) = f(v5k) = {2}, k = 1, 2, · · · .
Now we claim that f is a R2RDF on GP (n, 2) and γrr2(GP (n, 2)) = γrr2(GP (n, n− 2)) ≤ 4n

5 + 2.
Firstly if there exists the vertex w of GP (n, 2), such that f(w) = ∅, in according definition of f (steps 1 and 2),
w is a member of U5k

∪
U5k−1

∪
U5k−3

∪
V5k−2

∪
V5k−3

∪
V5k−4. In other hand u5k is adjacent to u5k−1, u5k−3 is

adjacent to v5k−3 and v5k−2 is adjacent to v5k−4. Therefore w is adjacent to a vertex z and f(z) = ∅.
Now if w is a vertex of GP (n, 2) and f(w) = ∅, then the following cases has happened.
Case 1) There exist a positive integer k such that w = u5k. If w = un, its obvious that w is adjacent to u1 and
f(u1) = {1, 2} otherwise w is adjacent to u5k−1, u5k+1 = u5(k+1)−4 and v5k. If k is an odd number, according to
step 1, step 4 and step 5, f(u5k−1) = ∅, f(u5k+1) = {2} and f(v5k) = {1} respectively. If k is an even number,
according to step 1, step 3 and step 6, f(u5k−1) = ∅, f(u5k+1) = {1} and f(v5k) = {2} respectively. Note that
f(vn) = {1, 2}.
Case 2) There exist a positive integer k such that w = u5k−1. Then w is adjacent to u5k−2, v5k−1 and u5k. If k is an
odd number, according to step 1, step 3 and step 5, f(u5k) = ∅, f(u5k−2) = {2} and f(v5k−1) = {1} respectively.
If k is an even number, according to step 1, step 4 and step 6, f(u5k) = ∅, f(u5k−2) = {1} and f(v5k−1) = {2}
respectively.
Case 3) There exist a positive integer k such that w = u5k−3. Then w is adjacent to u5k−4, u5k−2 and v5k−3. If k is
an odd number, according to step 2 and step 3, f(v5k−3) = ∅ and f(u5k−2) = {2} and f(u5k−4) = {1}. If k is an
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even number, according to step 2 and step 4, f(v5k−3) = ∅, f(u5k−2) = {1} and f(u5k−4) = {2}.
Case 4) There exist a positive integer k such that w = v5k−2. Then w is adjacent to v5k−4, u5k−2 and u5k. If k is an
odd number, according to step 2, step 3 and step 5, f(v5k−4) = ∅ and f(u5k−2) = {2} and f(v5k) = {1} respectively.
If k is an even number, according to step 2, step 4 and step 6, f(v5k−4) = ∅ and f(u5k−2) = {1} and f(v5k) = {2}
respectively.
Case 5) There exist a positive integer k such that w = v5k−3. If w = v2, its obvious that w is adjacent to vn and
f(vn) = {1, 2} otherwise w is adjacent to u5k−3, v5k−1 and v5(k−1). If k > 1 is an odd number, according to step
1, step 5 and step 6, f(u5k−3) = ∅ and f(v5(k−1)) = {2} and f(v5k−1) = {1} respectively. If k is an even number,
according to step 1, step 5 and step 6, f(u5k−3) = ∅ and f(v5(k−1)) = {1} and f(v5k−1) = {2} respectively.
Case 6) There exist a positive integer k such that w = v5k−4. If w = v1, its obvious that w is adjacent to u1 and
f(u1) = {1, 2} otherwise w is adjacent to v5k−2, v5(k−1)−1 and u5k−4. If k > 1 is an odd number, according to step
2, step 6 and step 3, f(v5k−2) = ∅ and f(v5(k−1)−1) = {2} and f(u5k−4) = {1} respectively. If k is an even number,
according to step 2, step 5 and step 4, f(v5k−2) = ∅ and f(v5(k−1)−1) = {1} and f(u5k−4) = {2} respectively.
Secondly since n ≡ 0(mod5), then

|U5k| = |U5k−1| = |U5k−2| = |U5k−3| = |U5k−4| = |V5k| = |V5k−1| = |V5k−2| = |V5k−3| = |V5k−4| = ⌊n
5
⌋

So
ω(f) = |U5k−2|+ |U5k−4|+ |V5k|+ |V5k−1|+ 2 =

4n

5
+ 2

(b) If n ≡ 1(mod5), we use the following algorithm and define the function f on GP (n, 2):
step 1) f(u5k) = f(u5k−1) = f(u5k−3) = ∅, k = 1, 2, · · · .
step 2) f(v5k−2) = f(v5k−3) = f(v5k−4) = ∅, k = 1, 2, · · · .
step 3) If k ia an odd number, then f(u5k−4) = {1}, k = 1, 2, · · · and f(u5k−2) = {2}, k = 1, 2, · · · .
step 4) If k ia an even number, then f(u5k−4) = {2}, k = 1, 2, · · · and f(u5k−2) = {1}, k = 1, 2, · · · .
step 5) If k ia an odd number, then f(v5k−1) = f(v5k) = {1}, k = 1, 2, · · · but f(v4) = {1, 2}.
step 6) If k ia an even number, then f(v5k−1) = f(v5k) = {2}, k = 1, 2, · · · .
Now similarly to proof of part (a) and a little changes, f is a R2RDF on GP (n, 2) and since n ≡ 1(mod5), then

|U5k| = |U5k−1| = |U5k−2| = |U5k−3| = |V5k| = |V5k−1| = |V5k−2| = |V5k−3| = ⌊n
5
⌋

and |U5k−4| = |V5k−4| = ⌊n5 ⌋+ 1.
So

ω(f) = |U5k−2|+ |U5k−4|+ |V5k|+ |V5k−1|+ 1 = 4⌊n
5
⌋+ 2

(c) If n ≡ 2(mod5), we use the following algorithm and define the function f on GP (n, 2):
step 1) f(u5k) = f(u5k−1) = f(u5k−3) = ∅, k = 1, 2, · · · .
step 2) f(v5k−2) = f(v5k−3) = f(v5k−4) = ∅, k = 1, 2, · · · .
step 3) If k ia an oddnumber, then f(u5k−4) = {1}, k = 1, 2, · · · and f(u5k−2) = {2}, k = 1, 2, · · · but f(u1) = {1, 2}.
step 4) If k ia an even number, then f(u5k−4) = {2}, k = 1, 2, · · · and f(u5k−2) = {1}, k = 1, 2, · · · .
step 5) If k ia an odd number, then f(v5k−1) = f(v5k) = {1}, k = 1, 2, · · · but f(v4) = {1, 2} and f(vn−2) = {1, 2}..
step 6) If k ia an even number, then f(v5k−1) = f(v5k) = {2}, k = 1, 2, · · · .
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Now similarly to proof of part (a) and a little changes, f is a R2RDF on GP (n, 2) and since n ≡ 2(mod5), then

|U5k| = |U5k−1| = |U5k−2| = |V5k| = |V5k−1| = |V5k−2| = ⌊n
5
⌋

and |U5k−3| = |U5k−4| = |V5k−4| = |V5k−3| = ⌊n5 ⌋+ 1.
So

ω(f) = |U5k−2|+ |U5k−4|+ |V5k|+ |V5k−1|+ 3 = 4⌊n
5
⌋+ 4

(d) If n ≡ 3(mod5), we use the following algorithm and define the function f on GP (n, 2):
step 1) f(u5k) = f(u5k−1) = f(u5k−3) = ∅, k = 1, 2, · · · .
step 2) f(v5k−2) = f(v5k−3) = f(v5k−4) = ∅, k = 1, 2, · · · .
step 3) If k ia an odd number, then f(u5k−4) = {1}, k = 1, 2, · · · and f(u5k−2) = {2}, k = 1, 2, · · · but f(u1) = {1, 2}
and f(un) = {1, 2}.
step 4) If k ia an even number, then f(u5k−4) = {2}, k = 1, 2, · · · and f(u5k−2) = {1}, k = 1, 2, · · · .
step 5) If k ia an odd number, then f(v5k−1) = f(v5k) = {1}, k = 1, 2, · · · but f(v4) = {1, 2} and f(vn−3) = {1, 2}.
step 6) If k ia an even number, then f(v5k−1) = f(v5k) = {2}, k = 1, 2, · · · .
Now similarly to proof of part (a) and a little changes, f is a R2RDF on GP (n, 2) and since n ≡ 3(mod5), then

|U5k| = |U5k−1| = |V5k| = |V5k−1| = ⌊n
5
⌋

and |U5k−4| = |U5k−3| = |U5k−2| = |V5k−4| = |V5k−3| = |V5k−2| = ⌊n5 ⌋+ 1.
So

ω(f) = |U5k−2|+ |U5k−4|+ |V5k|+ |V5k−1|+ 4 = 4⌊n
5
⌋+ 6

(e) If n ≡ 4(mod5), we use the following algorithm and define the function f on GP (n, 2):
step 1) f(u5k) = f(u5k−1) = f(u5k−3) = ∅, k = 1, 2, · · · but f(un) = {1}.
step 2) f(v5k−2) = f(v5k−3) = f(v5k−4) = ∅, k = 1, 2, · · · .
step 3) If k ia an oddnumber, then f(u5k−4) = {1}, k = 1, 2, · · · and f(u5k−2) = {2}, k = 1, 2, · · · but f(u1) = {1, 2}.
step 4) If k ia an even number, then f(u5k−4) = {2}, k = 1, 2, · · · and f(u5k−2) = {1}, k = 1, 2, · · · but f(un−1) =

{1, 2}.
step 5) If k ia an odd number, then f(v5k−1) = f(v5k) = {1}, k = 1, 2, · · · .
step 6) If k ia an even number, then f(v5k−1) = f(v5k) = {2}, k = 1, 2, · · · .
Now similarly to proof of part (a) and a little changes, f is a R2RDF on GP (n, 2) and since n ≡ 4(mod5), then
|U5k| = |V5k| = ⌊n5 ⌋ and

|U5k−4| = |U5k−3| = |U5k−2| = |U5k−1| = |V5k−4| = |V5k−3| = |V5k−2| = |V5k−1| = ⌊n
5
⌋+ 1.

So
ω(f) = |U5k−2|+ |U5k−4|+ |V5k|+ |V5k−1|+ 3 = 4⌊n

5
⌋+ 6.
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